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3.3 Topological chaos

Definition 3.8. Let T : X ! X be a continuous map on a metric space X.
We say that T is chaotic in the sense of Devaney if there exists a compact
forward invariant set ⇤ ⇢ X such that:

(i) the set of periodic orbits is dense in ⇤;

(ii) T is topologically transitive on ⇤, that is for all open sets U, V ⇢ X
with non-empty intersection with ⇤, there exists n 2 N such that
Tn(U \ ⇤) \ (V \ ⇤) 6= ;;

(iii) T has sensitive dependence on initial conditions on ⇤, that is there
exists c > 0 such that for all x 2 ⇤ and all " > 0 one can find y 2
B"(x)\⇤ for which there exists n 2 N such that d(Tn(x), Tn(y)) > c.

Example 3.3. Show that the Symbolic dynamics of Example 1.8 is chaotic
in the sense of Devaney.

Remark 3.9. Conditions (i) and (ii) in Definition 3.8 imply (iii) (see [Ru17,
Thm 7.4]).

Definition 3.9. Let T : X ! X be a continuous map on a compact metric
space X. For n 2 N and " > 0, a set S ⇢ X is called (n, ")-separated if for
all x, y 2 S there exists k = 0, . . . , n such that d(T k(x), T k(y)) > ". Then
the quantity

htop(T ) := lim
"!0+

lim sup
n!1

1

n
log

⇣
max {#S : S is (n, ")-separated}

⌘

is well-defined and is called topological entropy of T .

Proposition 3.10. Let (X,T ) and (X̃, T̃ ) be two discrete-time continuous
dynamical systems on compact metric spaces, and assume that (X̃, T̃ ) is a
topological factor of (X,T ). Then htop(T )  htop(T̃ ). In particular, topolog-
ical entropy is invariant under topological conjugacy.

Example 3.4. Using Definition 3.9 and Proposition 3.10, show that: The
Symbolic dynamics has positive topological entropy; The Tent map of Ex-
ample 1.5 with s = 2, the Bernoulli map of Example 1.7, and the Logistic
map of Example 1.6 with � = 4 have topological entropy log 2; The rotations
of the circle of Example 1.4 have null topological entropy.

We now move to the case of maps of the interval. First, we give a simple
criterion to compute the topological entropy in a special case.
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Proposition 3.11. Let T : [a, b] ! [a, b] be a piecewise continuous mono-
tone map with respect to a partition J = {J1, . . . , JN} of the compact
interval [a, b] into closed subintervals. Assume that T (Ji) = [a, b] for all
i = 1, . . . , N . Then

htop(T ) = lim
k!1

1

k
log

⇣
#Fix(T k)

⌘
= logN .

We now introduce another notion of chaotic behaviour.

Definition 3.10. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. We say that T has a horseshoe if there exists a closed
sub-interval J ✓ X which T -covers itself 2-times.

Proposition 3.12. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. Then:

(i) if T has a horseshoe then has periodic orbits with minimal period n
for all n � 1;

(ii) if T has a periodic point with minimal odd period m > 1, then T 2 has
a horseshoe.

Proof. (i) Let J ✓ [a, b] be the closed interval which covers itself 2-times,
and let K1 and K2 be the open sub-intervals of J such that K1 \ K2 = ;
and T (ÑK1) = T (ÑK2) = J . We consider the T -graph of K1, K2, which is a
full graph on the indices {1, 2}.

Let K1 = (↵,�) and K2 = (� + ", �), there are two cases. If " > 0 or
" = 0 and � is not a fixed point, we apply Lemma 3.5 to the admissible
path K1K2K2K1 to find a periodic point of period 3 which is not fixed,
so it has minimal period 3 and we can apply Sharkovsky Theorem 3.8. If
" = 0 and � is a fixed point, then it follows that there exists � 2 (�, �) such
that T ([�, �]) = J , so we can repeat the argument with K1 = (↵,�) and
K3 = (�, �).

(ii) Let m be the smallest odd number for which T has a periodic orbit
of minimal period m, and let {p1, . . . , pm�1} be the points of the periodic
orbit in dynamical order, that is T (pi) = pi+1 for all i = 1, . . . ,m � 2, and
T (pm�1) = p1. By Step 5 in the proof of Proposition 3.7, the point of the
periodic orbit are ordered in [a, b] as

a  pm�1 < pm�3 < · · · < p5 < p3 < p1 < p2 < p4 < · · · < pm�4 < pm�2  b

or specularly. In the first case, we find T (p1, p2) = (p3, p2) so that there
exists � 2 (p1, p2) such that T (�) = p1, and hence T 2(�) = p2. We now show
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that J = [pm�1, p2] T 2-covers itself 2-times. Let K1 = (pm�1, pm�3), then
T 2(pm�1) = p2 and T 2(pm�3) = pm�1, hence T 2(ÑK1) = J . If we also let
K2 = (pm�3, �), then as shown before again T 2(ÑK2) = J . Since K1\K2 = ;,
we are done.

Definition 3.11. Let T : X ! X be a continuous map on a compact
interval X = [a, b]. We say that T is chaotic in the horseshoe sense if there
exists n 2 N such that Tn has a horseshoe.

Theorem 3.13 ([Ru17], Thm 4.58 and Thm 7.3). Let T : X ! X be a
continuous map on a compact interval X = [a, b]. Then the following are
equivalent:

(i) T is chaotic in the sense of Devaney;

(ii) htop(T ) > 0;

(iii) T is chaotic in the horseshoe sense;

(iv) T has a periodic point with minimal period not a power of 2.

Example 3.5. The Tent map Ts of Example 1.5 is chaotic for all s > 1. If s �p
2 one shows that T 2

s has a horseshoe by using the interval Js = [ 1
s+1 ,

s

s+1 ],

since 1
2 2 Js and T 2(12)  1

s+1 , whereas T 2( 1
s+1) = T 2( s

s+1) = s

s+1 . If

s 2 (1,
p
2), the result follows by observing that there exist intervals J1 and

J2 on which T 2
s is equal to Ts2 after rescaling.

Remark 3.14. For a C1+↵ di↵eomorphism of a manifold, positive topological
entropy is equivalent to existence of a Smale horseshoe [Ka80].


