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3.3 Topological chaos

Definition 3.8. Let T': X — X be a continuous map on a metric space X.
We say that T is chaotic in the sense of Devaney if there exists a compact
forward invariant set A C X such that:

(i) the set of periodic orbits is dense in A;

(ii) T is topologically transitive on A, that is for all open sets U,V C X
with non-empty intersection with A, there exists n € N such that
T U NA)N(VNA)#0;

(iii) T has sensitive dependence on initial conditions on A, that is there
exists ¢ > 0 such that for all x € A and all € > 0 one can find y €
B.(x) N A for which there exists n € N such that d(T"(z), T"(y)) > c.

FEzxzample 3.3. Show that the Symbolic dynamics of Example 1.8 is chaotic
in the sense of Devaney.

Remark 3.9. Conditions (i) and (ii) in Definition 3.8 imply (iii) (see [Rul7,
Thm 7.4]).

Definition 3.9. Let T': X — X be a continuous map on a compact metric
space X. Forn € Nand ¢ > 0, a set S C X is called (n, ¢)-separated if for
all z,y € S there exists k = 0,...,n such that d(T*(z),T*(y)) > e. Then
the quantity

1
hiop(T) := lim limsup - log (max {#S : Sis (n,s)—separated})

e=0t n—oo
is well-defined and is called topological entropy of T.

Proposition 3.10. Let (X,T) and (X,T) be two discrete-time continuous
dynamical systems on compact metric spaces, and assume that (X,T) is a

topological factor of (X, T). Then hiop(T') < hiop(T). In particular, topolog-
ical entropy is invariant under topological conjugacy.

FEzample 3.4. Using Definition 3.9 and Proposition 3.10, show that: The
Symbolic dynamics has positive topological entropy; The Tent map of Ex-
ample 1.5 with s = 2, the Bernoulli map of Example 1.7, and the Logistic
map of Example 1.6 with A = 4 have topological entropy log 2; The rotations
of the circle of Example 1.4 have null topological entropy.

We now move to the case of maps of the interval. First, we give a simple
criterion to compute the topological entropy in a special case.
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Proposition 3.11. Let T : [a,b] — [a,b] be a piecewise continuous mono-
tone map with respect to a partition J = {Ji,...,Jn} of the compact
interval [a,b] into closed subintervals. Assume that T(J;) = [a,b] for all
i=1,...,N. Then

1
hiop(T) = lim - log (#Fix(Tk)> —logN.

We now introduce another notion of chaotic behaviour.

Definition 3.10. Let 7" : X — X be a continuous map on a compact
interval X = [a,b]. We say that T" has a horseshoe if there exists a closed
sub-interval J C X which T-covers itself 2-times.

Proposition 3.12. Let T : X — X be a continuous map on a compact
interval X = [a,b]. Then:

(i) if T has a horseshoe then has periodic orbits with minimal period n
forallm > 1;

(ii) if T has a periodic point with minimal odd period m > 1, then T? has
a horseshoe.

Proof. (i) Let J C [a,b] be the closed interval which covers itself 2-times,
and let K7 and K5 be the open sub-intervals of J such that K1 N Ko = ()
and T(K;) = T(K3) = J. We consider the T-graph of K, K, which is a
full graph on the indices {1, 2}.

Let K1 = (o, 8) and Ko = (8 + €,7), there are two cases. If € > 0 or
e = 0 and $ is not a fixed point, we apply Lemma 3.5 to the admissible
path K1 KoKoK; to find a periodic point of period 3 which is not fixed,
so it has minimal period 3 and we can apply Sharkovsky Theorem 3.8. If
e =0 and f is a fixed point, then it follows that there exists § € (3,) such
that T'([0,~]) = J, so we can repeat the argument with K; = («, 5) and

K3 = (57 7)
(ii) Let m be the smallest odd number for which 7" has a periodic orbit
of minimal period m, and let {p1,...,pm—1} be the points of the periodic

orbit in dynamical order, that is T'(p;) = p;+1 for all i = 1,...,m — 2, and
T(pm—1) = p1. By Step 5 in the proof of Proposition 3.7, the point of the
periodic orbit are ordered in [a, b] as

a<pPm-1<pm-3<--<ps<pP3<p1<p2<ps<-<Pm-sa<pPma2=<b

or specularly. In the first case, we find T'(p1,p2) = (ps,p2) so that there
exists § € (p1, p2) such that T(8) = p1, and hence T?(5) = pa. We now show
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that J = [pm_1,p2] T?-covers itself 2-times. Let K1 = (ppm_1,Pm_3), then
T?(pm—1) = p2 and T%(py_3) = pm_1, hence T?(K1) = J. If we also let
K5 = (pm—3,0), then as shown before again T?(K3) = J. Since K1NKs = 0,
we are done. ]

Definition 3.11. Let T : X — X be a continuous map on a compact
interval X = [a,b]. We say that T is chaotic in the horseshoe sense if there
exists n € N such that 7™ has a horseshoe.

Theorem 3.13 ([Rul7], Thm 4.58 and Thm 7.3). Let T : X — X be a
continuous map on a compact interval X = [a,b]. Then the following are
equivalent:

(i) T is chaotic in the sense of Devaney;
(i1) hiop(T) > 0;
(iii) T is chaotic in the horseshoe sense;
(iv) T has a periodic point with minimal period not a power of 2.

Example 3.5. The Tent map T of Example 1.5 is chaotic for all s > 1. If s >
/2 one shows that 72 has a horseshoe by using the interval Js = [+, —2-],

since 3 € Js and T?(3) < 54%17 whereas T%ﬁ) = TQ(S%) = 75 I
s € (1,4/2), the result follows by observing that there exist intervals J; and
Jo on which T2 is equal to T,2 after rescaling.

Remark 3.14. For a O+ diffeomorphism of a manifold, positive topological
entropy is equivalent to existence of a Smale horseshoe [Ka80].



