
2.2. STABILITY 29

2.2 Stability

Let ẋ = F (x) be an ordinary di↵erential equation in Rn with flow �t(·).

Definition 2.2. A point x is Lyapunov stable if for all " > 0 there exists
� > 0 such that d(x, y) < � implies d(�t(x),�t(y)) < " for all t � 0.

Remark 2.6. Show that it is necessary to introduce also the notion of orbital
stability.

Definition 2.3. A point x is Lyapunov asymptotically stable if it is Lya-
punov stable and there exists � > 0 such that d(x, y) < � implies

d(�t(x),�t(y)) ����!
t!+1

0 .

We call domain of asymptotic stability of x the set D(x) of points y for
which d(�t(x),�t(y)) ! 0 as t ! +1. If D(x) = Rn we say that x is
globally Lyapunov asymptotically stable.

Remark 2.7. If in Definition 2.3 we drop the request that the point x is
Lyapunov stable, then x is called quasi-asymptotically stable. In this case
there exists a neighbourhood B�(x) so that d(�t(x),�t(y)) ! 0 as t ! +1
for all y 2 B�(x), but the orbits of these points may go arbitrarily far from
that of x before convergence.

It is particularly important to study the stability of a fixed point x0 for
which �t(x0) = x0 for all t in Definitions 2.2 and 2.3.

Example 2.1 (see [Gl94]). Let us consider the following di↵erential equation
in R2 8

<

:

ẋ = x� y � x(x2 + y2) + xyp
x2+y2

ẏ = x+ y � y(x2 + y2)� x
2p

x2+y2

Using polar coordinates (⇢, ✓) as shown in Section 2.4 (see (2.8)) with x =
⇢ cos ✓, y = ⇢ sin ✓, we are reduced to the equation

(
⇢̇ = ⇢(1� ⇢2)

✓̇ = 1� cos ✓

It is now easy to determine the phase portrait of the equation and deduce
that (x0, y0) = (1, 0) is a quasi-asymptotically fixed point, but it is not
Lyapunov stable.
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One first tool to study the stability of a fixed point is to look at the
linearisation of the vector field in the point.

Definition 2.4. A fixed point x0 of a C1 vector field F : Rn ! Rn is called
hyperbolic if all the eigenvalues of the Jacobian matrix JF (x0) have real
part di↵erent from zero.

Theorem 2.8 (Hartman-Grobman). Let x0 be a hyperbolic fixed point of
a C1 vector field F : Rn ! Rn. Then there exists a neighbourhood U(x0)
and a homeomorphism h : U(x0) ! Rn which sends orbits of the di↵erential
equation ẋ = F (x) into orbits of the linear di↵erential equation ẏ = JF (x0)y
without changing their direction of time parametrisation2. In particular the
homeomorphism h leaves invariant the stability properties of the fixed point
y
0
= 0.

The proof can be found in Appendix C.
Theorem 2.8 implies that we can characterise a hyperbolic fixed point x0

by looking at the linear system ẏ = JF (x0)y. In particular the qualitative
behaviour of the orbits in a neighbourhood of x0 coincides with that of the
orbits in a neighbourhood of y

0
= 0. However, in general, the regularity of

h in Theorem 2.8 does not increase by increasing the regularity of a general
F . Hence, the “shape” of the orbits may change under the action of h.

The situation is easier in dimension two. If x0 2 R2 is a hyperbolic fixed
point, then JF (x0) is in one of the cases 1-4 excluding case 2 with vanishing
trace. If we are not in case 3, the fixed point x0 can be characterised like
y
0
= 0 for ẏ = JF (x0)y. Hence we can talk about stable and unstable

nodes, stable and unstable foci, and saddles. See [Gl94, Section 5.2].
We now briefly discuss the problem of the regularity of h for F 2 C!.

Lyapunov functions

Given a real C1 function V (x), we introduce the notation V̇ (x) for its deriva-
tive along a vector field F . Namely

V̇ (x) := hrV (x) , F (x)i (2.1)

Notice that V̇ (x) = d

dt
V (�t(x))|t=0.

2
A formal statement is that, if �t is the flow of the original system ẋ = F (x) and  t

is the flow of the linear system ẏ = JF (x0)y, then for all x 2 U(x0) we have h(�t(x)) =
 t(h(x)) for all t 2 R such that �t(x) 2 U(x0).
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Definition 2.5. Let x0 be a fixed point of a vector field F : Rn ! Rn. A
C1 real function V : U ! R defined in a neighbourhood U of x0 is called a
Lyapunov function for x0 if:

(i) V (x) > V (x0) for all x 2 U \ {x0};

(ii) V̇ (x)  0 for all x 2 U .

If the function V : U ! R satisfies (i) and

(ii)’ V̇ (x) < 0 for all x 2 U \ {x0},

it is called a strict Lyapunov function for x0.

Theorem 2.9 (First Lyapunov stability theorem). Let x0 2 Rn be a fixed
point of a vector field F : Rn ! Rn. If there exists a Lyapunov function for
x0, then x0 is Lyapunov stable.

Proof. Let V : U ! R be the Lyapunov function for x0. Given " > 0 such
that B"(x0) ⇢ U , we let

m := min
@B"(x0)

V and Sm := {x 2 B"(x0) : V (x) < m}

By definition V (x0) < m, hence x0 2 Sm. Moreover by continuity there
exists � > 0 such that B�(x0) ⇢ Sm. We now show that if y 2 B�(x0) then
�t(y) 2 B"(x0) for all t � 0.

Condition (ii) in Definition 2.5 implies that V (�t(y))  V (y) < m for all
t � 0. We conclude that if there exists t0 > 0 such that �t0(y) 62 B"(x0), then
by continuity of the flow there exists t1 2 (0, t0) such that �t1(y) 2 @B"(x0).
This is a contradiction to the definition of m.

Theorem 2.10 (Second Lyapunov stability theorem). Let x0 2 Rn be a
fixed point of a vector field F : Rn ! Rn. If there exists a strict Lyapunov
function for x0, then x0 is Lyapunov asymptotically stable.

Proof. Let V : U ! R be the strict Lyapunov function for x0. By Theorem
2.9 the fixed point x0 is Lyapunov stable. We now need to show that the
domain of asymptotic stability of x0 contains a ball B�(x0).

Let us fix " > 0, and let � > 0 be such that d(x0, y) < � implies
d(x0,�t(y)) < " for all t � 0. Hence O+(y) ⇢ B"(x0) for all y 2 B�(x0), and
by Proposition 1.1 we have that !(y) is a non-empty, compact, invariant
subset of B"(x0) for all y 2 B�(x0).
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Let us fix y 2 B�(x0). Condition (ii)’ in Definition 2.5 implies that
V (�t(y)) is a decreasing function of t, hence there exists

c := lim
t!+1

V (�t(y))

But V |!(y) ⌘ c by continuity, in fact for all z 2 !(y) we have

V (z) = lim
k!1

V (�tk(y)) = c

where {tk}k is the diverging sequence such that �tk(y) ! z as k ! 1.
Finally, since !(y) is invariant, we have V (�t(z)) = c for all t, which by

(2.1) implies V̇ (z) = 0 for all z 2 !(y). Hence !(y) ⇢ {V̇ ⌘ 0}, and by
condition (ii)’ !(y) = {x0}.

We have thus proved that B�(x0) ⇢ D(x0).

Corollary 2.11 (La Salle’s Invariance Principle). Let x0 be a fixed point
of a vector field F : Rn ! Rn. If there exists a Lyapunov function for x0
defined on a neighbourhood U of x0, then for all y 2 U such that O+(y) is

contained in U and is bounded, we have !(y) ✓ {V̇ ⌘ 0}.

Example 2.2. Let us consider the system in R2 given by
(

ẋ = y

ẏ = �y3 � x� x3

The point (0, 0) is the only fixed point and it is not hyperbolic. Looking
for a Lyapunov function of the form V (x, y) = ax2 + bx4 + cy2 one finds
V̇ (x, y) = 2xy(a� c) + 2x3y(2b� c)� 2cy4. Hence

V (x, y) = 2x2 + x4 + 2y2

is a Lyapunov function for (0, 0), with {V̇ ⌘ 0} = {y = 0}. Hence V is not a
strict Lyapunov function. By Theorem 2.9 we have that (0, 0) is Lyapunov
stable, and applying Corollary 2.11 we also obtain that there exists � > 0
such that for all y 2 B�((0, 0)) it holds !(y) ⇢ {y = 0}. Moreover, since
!(y) is an invariant set and the only invariant subset of {y = 0} is {(0, 0)},
we have proved that (0, 0) is asymptotically stable.

Theorem 2.12 (Bounding functions). Let F be a vector field in Rn, and
assume that there exist a C1 real function V : Rn ! R, a compact set
G ⇢ Rn and k 2 R such that: (a) G ⇢ Vk := {V < k}; (b) there exists � > 0
such that V̇ (x)  �� for all x 2 Rn \ G. Then for all x 2 Rn there exists
t0 � 0 such that �t(x) 2 Vk for all t > t0.
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Proof. If x 2 Vk we are done, since by assumption (b) V̇ |@Vk
< 0, and we

can choose t0 = 0. If x 62 Vk and �t(x) 62 Vk for all t > 0

V (�t(x))� V (x) =

Z
t

0

d

ds
V (�s(x)) ds =

Z
t

0
V̇ (�s(x)) ds  ��t

which implies V (�t(x)) < k for t > V (x)�k

�
. Hence we find a contradiction,

and we have thus proved that there exists t0 > 0 such that �t0(x) 2 Vk, and
as before this implies that �t(x) 2 Vk for all t � t0.

Example 2.3 (Lorenz equations). Let us consider the system in R3 given by

8
>><

>>:

ẋ = �(�x+ y)

ẏ = rx� y � xz

ż = �bz + xy

with �, r, b positive constants. We can apply Theorem 2.12 with

G =
�
(x, y, z) 2 R3 : rx2 + y2 + b(z � r)2 < 2br2

 

V (x, y, z) =
1

2

⇣
rx2 + �y2 + �(z � 2r)2

⌘

and � = �br2.

Using the theory of Lyapunov functions we now give a proof of the
asymptotic stability of sinks, i.e. hyperbolic fixed points of a C1 vector field
with all eigenvalues of the Jacobian matrix of the field with negative real
part.

Corollary 2.13. Let x0 be a hyperbolic fixed point of a C1 vector field
F : Rn ! Rn, and assume that all the eigenvalues of JF (x0) have negative
real part. Then x0 is asymptotically stable.

Proof. Let’s assume without loss of generality that x0 = 0, then the vector
field F satisfies F (0) = 0 and can be written as

F (x) = JF (0)x+G(x)

where G : Rn ! Rn is a C1 function satisfying G(0) = 0 and JG(0) = 0.
Let �1, . . . ,�k be the, not necessarily distinct, negative real eigenvalues

of JF (0), and let aj ± ibj , with j = 1, . . . , 12(n� k), be the, not necessarily
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distinct, couples of conjugate complex eigenvalues with aj < 0. For simplic-
ity we also assume that JF (0) is written in Jordan normal form, therefore

JF (0) = diag
⇣
⇤1, . . . ,⇤h, B1, . . . Bm

⌘

where the ⇤j ’s are the Jordan blocks relative to the real eigenvalues, and
the Bj ’s are the Jordan blocks relative to the complex eigenvalues.

Let us consider the following change of variables. For " > 0 let y =
(y1, . . . , yn) be defined as follows:

• if (xm, . . . , xm+s�1) are the components of x corresponding to a Jordan
block ⇤j , we let ym+` := "�`xm+` for ` = 0, . . . , s� 1;

• if (xp, . . . , xp+2s�1) are the components of x corresponding to a Jordan
block Bj , we let yp+2` := "�`xp+2` and yp+2`+1 := "�`xp+2`+1, for
` = 0, . . . , s� 1.

Then it is a standard computation to verify that y satisfies the ODE

ẏ = A"y + G̃(y),

with G̃(0) = 0 and JG̃(0) = 0 and

A" = diag
⇣
⇤̃1, . . . , ⇤̃h, B̃1, . . . B̃m

⌘
,

where

⇤̃j =

0

BBBBBBBBBB@

�j " 0 . . . 0 0

0 �j " 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 �j " 0

0 . . . . . . 0 �j "

0 . . . . . . . . . 0 �j

1

CCCCCCCCCCA

and

B̃j =

0

BBBBBBBBBB@

Rj "I2 0 . . . 0 0

0 Rj "I2 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 Rj "I2 0

0 . . . . . . 0 Rj "I2

0 . . . . . . . . . 0 Rj

1

CCCCCCCCCCA

, with Rj =

✓
aj �bj
bj aj

◆
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and I2 the 2⇥ 2 identity matrix.
We now show that V (y) =

P
n

i=1 y
2
i
is a strict Lyapunov function for 0.

It is enough to study the derivative V̇ (y) = 2
P

n

i=1 yiẏi.
If (ym, . . . , ym+s�1) are the components of y corresponding to a Jordan

block ⇤̃j we have

s�1X

`=0

ym+` ẏm+` =
s�2X

`=0

ym+`(�jym+` + "ym+`+1) + �jy
2
m+s�1 +O(|y|3) =

 �j

s�1X

`=0

y2
m+`

+
"

2
(y2m + y2m+s�1) + "

s�2X

`=1

y2
m+`

+O(|y|3) 

 (�j + ")
s�1X

`=0

y2
m+`

+O(|y|3).

With an analogous argument, if (ym, . . . , ym+2s�1) are the components of y

corresponding to a Jordan block B̃j we have

s�1X

`=0

(ym+2` ẏm+2` + ym+2`+1 ẏm+2`+1) =

=
s�2X

`=0

ym+2` (ajym+2` � bjym+2`+1 + "ym+2`+2)+

+
s�2X

`=0

ym+2`+1 (bjym+2` + ajym+2`+1 + "ym+2`+3)+

+ ym+2s�2 (ajym+2s�2 � bjym+2s�1) + ym+2s�1 (bjym+2s�2 + ajym+2s�1)+

+O(|y|3) =

= aj

s�1X

`=0

(y2
m+2` + y2

m+2`+1) + "
s�2X

`=0

⇣
ym+2` ym+2`+2 + ym+2`+1 ym+2`+3

⌘
+

+O(|y|3) 

 (aj + ")
s�1X

`=0

(y2
m+2` + y2

m+2`+1) +O(|y|3).
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If we fix " > 0 such that (�j + ") < 0 and (aj + ") < 0 for all eigenvalues
of JF (0), letting µ 2 R� satisfy (�j + ")  µ < 0 and (aj + ")  µ < 0 for
all j, we have proved that

V̇ (y)  2µ|y|2 +O(|y|3).

We need to show that there exists � > 0 such that V̇ (y) < 0 for all y 2 B�(0)

and y 6= 0. By definition of O(·) functions, there exist c > 0 and �̃ > 0 such
that

O(|y|3)  c|y|3 , 8 y 2 B
�̃
(0).

If we choose � = min{�2µ
c
, �̃} it follows

V̇ (y)  2µ|y|2 + c|y|3 = |y|2(2µ+ c|y|) < 0, 8 y 2 B�(0) \ {0},

and the proof is finished.


