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2.2 Stability

Let £ = F'(z) be an ordinary differential equation in R™ with flow ¢;(-).

Definition 2.2. A point z is Lyapunov stable if for all € > 0 there exists
d > 0 such that d(z,y) < d implies d(¢¢(z), ¢(y)) < € for all t > 0.

Remark 2.6. Show that it is necessary to introduce also the notion of orbital
stability.

Definition 2.3. A point z is Lyapunov asymptotically stable if it is Lya-
punov stable and there exists § > 0 such that d(z,y) < ¢ implies
d(¢e(z), p1(y)) —— 0.

t——+o0

We call domain of asymptotic stability of z the set D(x) of points y for
which d(¢¢(z),¢¢(y)) — 0 as t — +oo. If D(z) = R" we say that z is
globally Lyapunov asymptotically stable.

Remark 2.7. If in Definition 2.3 we drop the request that the point z is
Lyapunov stable, then z is called quasi-asymptotically stable. In this case
there exists a neighbourhood Bj(x) so that d(¢¢(x), ¢¢(y)) — 0 as t — 400
for all y € Bs(x), but the orbits of these points may go arbitrarily far from
that of z before convergence.

It is particularly important to study the stability of a fixed point z, for
which ¢¢(zy) = z, for all ¢ in Definitions 2.2 and 2.3.

Ezxample 2.1 (see [G194]). Let us consider the following differential equation
in R? ' . .
By mal@ )t e

22

. _ 2 2\ _
y=x+y—ylx*+y°) Ve

Using polar coordinates (p, ) as shown in Section 2.4 (see (2.8)) with x =
pcosf, y = psinf, we are reduced to the equation

{pzpﬂ—p%
0 =1—cosf

It is now easy to determine the phase portrait of the equation and deduce
that (zo,y0) = (1,0) is a quasi-asymptotically fixed point, but it is not
Lyapunov stable.



30 CHAPTER 2. CONTINUOUS-TIME DYNAMICAL SYSTEMS

One first tool to study the stability of a fixed point is to look at the
linearisation of the vector field in the point.

Definition 2.4. A fixed point z; of a C! vector field F' : R — R" is called
hyperbolic if all the eigenvalues of the Jacobian matrix JF(z,) have real
part different from zero.

Theorem 2.8 (Hartman-Grobman). Let z, be a hyperbolic fived point of
a C! wvector field F : R® — R™. Then there exists a neighbourhood U(x)
and a homeomorphism h : U(zy) — R™ which sends orbits of the differential
equation & = F(z) into orbits of the linear differential equation y = JF (xq)y
without changing their direction of time parametrisation®. In particular the
homeomorphism h leaves invariant the stability properties of the fized point

Yy =0

The proof can be found in Appendix C.

Theorem 2.8 implies that we can characterise a hyperbolic fixed point z,
by looking at the linear system ¢ = JF(z,)y. In particular the qualitative
behaviour of the orbits in a neighbourhood of z, coincides with that of the
orbits in a neighbourhood of Y, = 0. However, in general, the regularity of
h in Theorem 2.8 does not increase by increasing the regularity of a general
F'. Hence, the “shape” of the orbits may change under the action of h.

The situation is easier in dimension two. If z, € R? is a hyperbolic fixed
point, then JF'(z) is in one of the cases 1-4 excluding case 2 with vanishing
trace. If we are not in case 3, the fixed point x, can be characterised like
y, = 0 for § = JF(zy)y. Hence we can talk about stable and unstable
nodes, stable and unstable foci, and saddles. See [G194, Section 5.2].

We now briefly discuss the problem of the regularity of h for F' € C¥.

Lyapunov functions

Given a real C! function V (), we introduce the notation V (z) for its deriva-
tive along a vector field F'. Namely

V(z) == (VV(z), F(z)) (2.1)

Notice that V(z) = LV (¢r(2)) o0

2A formal statement is that, if ¢; is the flow of the original system & = F(z) and v
is the flow of the linear system ¢ = JF'(z,)y, then for all z € U(z,) we have h(¢:(z)) =
¢ (h(z)) for all t € R such that ¢.(z) € U(z,).
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Definition 2.5. Let z be a fixed point of a vector field F' : R” — R". A
C! real function V : U — R defined in a neighbourhood U of z is called a
Lyapunov function for z if:

(i) V(z) > V(xg) for all z € U \ {z};
(i) V(z) <0 forall z € U.
If the function V' : U — R satisfies (i) and
(i) V(z) <O0forall z € U\ {z,},
it is called a strict Lyapunov function for x,.

Theorem 2.9 (First Lyapunov stability theorem). Let x, € R™ be a fized
point of a vector field F : R™ — R™. If there exists a Lyapunov function for
zg, then zy is Lyapunov stable.

Proof. Let V : U — R be the Lyapunov function for z,. Given € > 0 such
that B:(zy) C U, we let

m:= min V and Sy :={z € B:(zy) : V(z) <m}
OBc ()

By definition V' (z,) < m, hence z;, € Sp,. Moreover by continuity there
exists 0 > 0 such that Bs(zg) C Sp,. We now show that if y € Bs(z,) then
o1(y) € Be(zy) for all t > 0. B

“Condition (ii) in Definition 2.5 implies that V (¢(y)) < V(y) < m for all
t > 0. We conclude that if there exists to > 0 such that ¢, (y) ¢ B.(z), then
by continuity of the flow there exists t; € (0,?g) such that ¢¢, (y) € 0B:(zy)-
This is a contradiction to the definition of m. B O]

Theorem 2.10 (Second Lyapunov stability theorem). Let z, € R™ be a
fized point of a vector field F' : R™ — R™. If there exists a strict Lyapunov
function for xy, then zy is Lyapunov asymptotically stable.

Proof. Let V : U — R be the strict Lyapunov function for z,. By Theorem
2.9 the fixed point z; is Lyapunov stable. We now need to show that the
domain of asymptotic stability of z, contains a ball Bs(z,).

Let us fix ¢ > 0, and let § > 0 be such that d(zy,y) < ¢ implies
d(zg, ¢(y)) < € for all ¢ > 0. Hence O (y) C B:(z) for all y € Bs(zy), and
by Propgsmon 1.1 we have that w(y) is a non-empty, compact, invariant
subset of B.(z,) for all y € Bs(zg).
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Let us fix y € Bs(zy). Condition (ii)” in Definition 2.5 implies that
V(¢¢(y)) is a decreasing function of ¢, hence there exists

c:= lim V(d:(y)
But V() = ¢ by continuity, in fact for all z € w(y) we have
V(z) = lim V(¢ (y)) =c
k—o00

where {t} is the diverging sequence such that ¢y, (y) — 2 as k — oo.
Finally, since w(y) is invariant, we have V(¢:(z)) = ¢ for all ¢, which by

(2.1) implies V(2) = 0 for all z € w(y). Hence w(y) C {V = 0}, and by
condition (ii)’ w(y) = {z¢}.
We have thus proved that Bs(z,) C D(z). O

Corollary 2.11 (La Salle’s Invariance Principle). Let z, be a fized point
of a vector field F' : R™ — R". If there exists a Lyapunov function for z,
defined on a neighbourhood U of z, then for all y € U such that (’)+(y) ]

contained in U and is bounded, we have w(y) C {V = 0}.

Example 2.2. Let us consider the system in R? given by

T=y
j=—y’—z—a’

The point (0,0) is the only fixed point and it is not hyperbolic. Looking
for a Lyapunov function of the form V(z,y) = ax? + bx* + cy? one finds
V(z,y) = 2zy(a — c) + 223y(2b — ¢) — 2cy*. Hence

V(z,y) = 222 + z* + 2¢°

is a Lyapunov function for (0,0), with {V = 0} = {y = 0}. Hence V is not a
strict Lyapunov function. By Theorem 2.9 we have that (0,0) is Lyapunov
stable, and applying Corollary 2.11 we also obtain that there exists § > 0
such that for all y € Bs((0,0)) it holds w(y) C {y = 0}. Moreover, since
w(y) is an invariant set and the only invariant subset of {y = 0} is {(0,0)},
we have proved that (0,0) is asymptotically stable.

Theorem 2.12 (Bounding functions). Let F' be a vector field in R™, and
assume that there exist a C' real function V. : R® — R, a compact set
G C R"™ and k € R such that: (a) G C Vi, :={V < k}; (b) there exists § > 0
such that V(z) < —0 for all z € R*\ G. Then for all z € R" there exists
to > 0 such that ¢i(x) € Vi for all t > ty.
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Proof. If x € Vj, we are done, since by assumption (b) V|8Vk < 0, and we
can choose tg = 0. If z ¢ Vi, and ¢y(z) & Vi for all ¢t > 0

Vi) -V = [ SVien)as = [ Vo) ds <o

which implies V' (¢:(z)) < k for ¢ > W. Hence we find a contradiction,

and we have thus proved that there exists top > 0 such that ¢y, (z) € Vi, and
as before this implies that ¢;(x) € Vi for all ¢ > tg. O

Ezample 2.3 (Lorenz equations). Let us consider the system in R? given by
t=o0(—x+vy)
Yy=rr—y—xz
z=—-bz+ 2y

with o, 7, b positive constants. We can apply Theorem 2.12 with

G={(z,y,2) € R ra? 2 +0(z — 1) < 2b7“2}

1
V(z,y,z) = 5 (rx2 + oyt +o(z— 2r)2>

and § = obr2.

Using the theory of Lyapunov functions we now give a proof of the
asymptotic stability of sinks, i.e. hyperbolic fixed points of a C! vector field
with all eigenvalues of the Jacobian matrix of the field with negative real
part.

Corollary 2.13. Let z, be a hyperbolic fized point of a C* wvector field
F :R" —» R", and assume that all the eigenvalues of JF(z,) have negative
real part. Then x, is asymptotically stable.

Proof. Let’s assume without loss of generality that z, = 0, then the vector
field F satisfies F'(0) = 0 and can be written as

F(z) = JF(0)z + G(x)

where G : R® — R" is a C! function satisfying G(0) = 0 and JG(0) = 0.
Let Aq1,..., A be the, not necessarily distinct, negative real eigenvalues
of JF(0), and let a; £14b;, with j =1,..., %(n — k), be the, not necessarily
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distinct, couples of conjugate complex eigenvalues with a; < 0. For simplic-
ity we also assume that JF'(0) is written in Jordan normal form, therefore

JF(0) = diag(Al, ... A, By, ..Bm)

where the A;’s are the Jordan blocks relative to the real eigenvalues, and
the Bj’s are the Jordan blocks relative to the complex eigenvalues.

Let us consider the following change of variables. For ¢ > 0 let y =
(Y1, ..., Yyn) be defined as follows: -

o if (T, ..., Tmis—1) are the components of z corresponding to a Jordan
block Aj, we let yp,4¢ = el for 0=0,...,5s—1;

o if (xp,...,xpy2s—1) are the components of = corresponding to a Jordan
Y 4
block Bj, we let y,i12¢ 1= € "wpio0 and ypyo041 = € Tpyoey1, for
£=0,...,s— 1.

Then it is a standard computation to verify that y satisfies the ODE
i = Ay +Gly),
with G(0) = 0 and JG(0) = 0 and
A =diag(Ry,... Aw By, By,

where
Ajoe 0 0 0
0 A ¢ 0 0
i =
0 0 A ¢ 0
0 0 A\
0 0 A
and
R; el O 0 0
0 R; eI, 0 0
B; = , with Rj = (“{' _bﬂ)
0 0 R;j el O bj aj
0O ... ... 0 R; €l
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and Is the 2 x 2 identity matrix.

We now show that V(y) = >, y? is a strict Lyapunov function for 0.
It is enough to study the derivative V(Q) =230 Yl

If (Yms-- s Ymys—1) are the components of y corresponding to a Jordan
block /~\j we have

s—1 s—2

D YmitUmie = > YmteNYm e + Ymrer1) + Ajymgs1 + O(yl?) =
=0 =0
s—1 c s—2
<N D e+ 5 W+ Umgso1) HE Y Ui +O(lyf) <
£=0 =1

s—1

<N +9)D vare T O(lyP).
=0

With an analogous argument, if (4, ..., Ymy2s—1) are the components of y
corresponding to a Jordan block Bj we have

s—1

> (Umt2e mr2e + Yoot Ymr2ep1) =
=0

s—2

= z Ym+20 (jYm+20 — DjYm42041 + EYm+2042)+
=0
s—2

+ Z Ym+20+1 (05Ym20 + QYma2041 + EYma2043)+
=0

+ Yma2s—2 (ajym+2572 - bjym+2871) + Yma2s—1 (bjym+2572 + ajym+2sfl)+

+O(lyP) =

s—1 s—2

=4aj Z(yfnwe + ?/72n+2e+1) te Z (ym+2£ Ymy2042 T Ymy2041 ym+2€+3) +
=0 =0

+O(ly*) <

—_

Ss—

< (aj +e) (y72n+2€ + 3/72n+2£+1) + O(|y|3)-
(=0
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If we fix € > 0 such that (A\j+¢) < 0 and (a; +¢) < 0 for all eigenvalues
of JF(0), letting p € R~ satisfy (A\j +¢) < p <0 and (a; +¢) < p <0 for
all j, we have proved that

V(y) < 2ulyl® + O(ly*).

We need to show that there exists § > 0 such that V(y) < 0 for all y € Bs(0)
and y # 0. By definition of O(-) functions, there exist ¢ > 0 and d > 0 such

that
O(ly®) <y, Yy e B;(0).

If we choose 0 = min{ —27“, o} it follows
V(y) < 2ulyl +clyl® = |yl 2+ cly)) <0, Yy € B5(0)\ {0},

and the proof is finished. ]



