2.2. STABILITY 29

2.2 Stability

Let $\dot{x} = F(x)$ be an ordinary differential equation in \mathbb{R}^n with flow $\phi_t(\cdot)$.

Definition 2.2. A point *x* is *Lyapunov stable* if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $d(\underline{x}, y) < \delta$ implies $d(\phi_t(\underline{x}), \phi_t(y)) < \varepsilon$ for all $t \geq 0$.

Remark 2.6*.* Show that it is necessary to introduce also the notion of orbital stability.

Definition 2.3. A point *x* is *Lyapunov asymptotically stable* if it is Lyapunov stable and there exists $\delta > 0$ such that $d(\underline{x}, y) < \delta$ implies

$$
d(\phi_t(\underline{x}), \phi_t(\underline{y})) \xrightarrow[t \to +\infty]{} 0.
$$

We call *domain of asymptotic stability of* x the set $D(x)$ of points *y* for which $d(\phi_t(\underline{x}), \phi_t(y)) \to 0$ as $t \to +\infty$. If $D(\underline{x}) = \mathbb{R}^n$ we say that \underline{x} is *globally Lyapunov asymptotically stable*.

Remark 2.7*.* If in Definition 2.3 we drop the request that the point *x* is Lyapunov stable, then *x* is called *quasi-asymptotically stable*. In this case there exists a neighbourhood $B_{\delta}(\underline{x})$ so that $d(\phi_t(\underline{x}), \phi_t(y)) \to 0$ as $t \to +\infty$ for all $y \in B_\delta(\underline{x})$, but the orbits of these points may go arbitrarily far from that of *x* before convergence.

It is particularly important to study the stability of a fixed point \underline{x}_0 for which $\phi_t(\underline{x}_0) = \underline{x}_0$ for all *t* in Definitions 2.2 and 2.3.

Example 2.1 (see [Gl94]). Let us consider the following differential equation in \mathbb{R}^2

$$
\begin{cases} \n\dot{x} = x - y - x(x^2 + y^2) + \frac{xy}{\sqrt{x^2 + y^2}} \\
\dot{y} = x + y - y(x^2 + y^2) - \frac{x^2}{\sqrt{x^2 + y^2}}\n\end{cases}
$$

Using polar coordinates (ρ, θ) as shown in Section 2.4 (see (2.8)) with $x =$ $\rho \cos \theta$, $y = \rho \sin \theta$, we are reduced to the equation

$$
\begin{cases} \n\dot{\rho} = \rho (1 - \rho^2) \\
\dot{\theta} = 1 - \cos \theta \n\end{cases}
$$

It is now easy to determine the phase portrait of the equation and deduce that $(x_0, y_0) = (1, 0)$ is a quasi-asymptotically fixed point, but it is not Lyapunov stable.

One first tool to study the stability of a fixed point is to look at the linearisation of the vector field in the point.

Definition 2.4. A fixed point \underline{x}_0 of a C^1 vector field $F : \mathbb{R}^n \to \mathbb{R}^n$ is called *hyperbolic* if all the eigenvalues of the Jacobian matrix $JF(x_0)$ have real part different from zero.

Theorem 2.8 (Hartman-Grobman). Let x_0 be a hyperbolic fixed point of *a* C^1 *vector field* $F : \mathbb{R}^n \to \mathbb{R}^n$. Then there exists a neighbourhood $U(\underline{x}_0)$ *and a homeomorphism* $h: U(\underline{x}_0) \to \mathbb{R}^n$ *which sends orbits of the differential equation* $\dot{x} = F(x)$ *into orbits of the linear differential equation* $\dot{y} = JF(x_0)y$ *without changing their direction of time parametrisation*2*. In particular the homeomorphism h leaves invariant the stability properties of the fixed point* $y_{0} = 0.$

The proof can be found in Appendix C.

Theorem 2.8 implies that we can characterise a hyperbolic fixed point x_0 by looking at the linear system $\dot{y} = JF(\underline{x}_0)y$. In particular the qualitative behaviour of the orbits in a neighbourhood of x_0 coincides with that of the orbits in a neighbourhood of $y_0 = 0$. However, in general, the regularity of *h* in Theorem 2.8 does not increase by increasing the regularity of a general *F*. Hence, the "shape" of the orbits may change under the action of *h*.

The situation is easier in dimension two. If $\underline{x}_0 \in \mathbb{R}^2$ is a hyperbolic fixed point, then $JF(\underline{x}_0)$ is in one of the cases 1-4 excluding case 2 with vanishing trace. If we are not in case 3, the fixed point x_0 can be characterised like $y_0 = 0$ for $\dot{y} = JF(\underline{x}_0)y$. Hence we can talk about stable and unstable nodes, stable and unstable foci, and saddles. See [Gl94, Section 5.2].

We now briefly discuss the problem of the regularity of *h* for $F \in C^{\omega}$.

Lyapunov functions

Given a real C^1 function $V(x)$, we introduce the notation $\dot{V}(x)$ for its derivative along a vector field *F*. Namely

$$
\dot{V}(\underline{x}) := \langle \nabla V(\underline{x}), F(\underline{x}) \rangle \tag{2.1}
$$

Notice that $\dot{V}(\underline{x}) = \frac{d}{dt}V(\phi_t(\underline{x}))|_{t=0}$.

²A formal statement is that, if ϕ_t is the flow of the original system $\dot{x} = F(x)$ and ψ_t is the flow of the linear system $\dot{y} = JF(\underline{x}_0)y$, then for all $\underline{x} \in U(\underline{x}_0)$ we have $h(\phi_t(\underline{x})) =$ $\psi_t(h(\underline{x}))$ for all $t \in \mathbb{R}$ such that $\overline{\phi}_t(\underline{x}) \in U(\overline{x_0}).$

Definition 2.5. Let \underline{x}_0 be a fixed point of a vector field $F : \mathbb{R}^n \to \mathbb{R}^n$. A C^1 real function $V: U \to \mathbb{R}$ defined in a neighbourhood *U* of \underline{x}_0 is called a *Lyapunov function for* x_0 if:

- (i) $V(\underline{x}) > V(\underline{x}_0)$ for all $\underline{x} \in U \setminus {\underline{x}_0};$
- (ii) $\dot{V}(x) \leq 0$ for all $x \in U$.

If the function $V: U \to \mathbb{R}$ satisfies (i) and

(ii)' $\dot{V}(x) < 0$ for all $x \in U \setminus \{x_0\}$,

it is called a *strict Lyapunov function for* x_0 .

Theorem 2.9 (First Lyapunov stability theorem). Let $x_0 \in \mathbb{R}^n$ be a fixed *point of a vector field* $F : \mathbb{R}^n \to \mathbb{R}^n$. If there exists a Lyapunov function for \underline{x}_0 *, then* \underline{x}_0 *is Lyapunov stable.*

Proof. Let $V: U \to \mathbb{R}$ be the Lyapunov function for x_0 . Given $\varepsilon > 0$ such that $B_{\varepsilon}(\underline{x}_0) \subset U$, we let

$$
m := \min_{\partial B_{\varepsilon}(\underline{x}_0)} V \quad \text{and} \quad S_m := \{ \underline{x} \in B_{\varepsilon}(\underline{x}_0) \, : \, V(\underline{x}) < m \}
$$

By definition $V(\underline{x}_0) < m$, hence $\underline{x}_0 \in S_m$. Moreover by continuity there exists $\delta > 0$ such that $B_{\delta}(\underline{x}_0) \subset S_m$. We now show that if $y \in B_{\delta}(\underline{x}_0)$ then $\phi_t(y) \in B_{\varepsilon}(\underline{x}_0)$ for all $t \geq 0$.

Condition (ii) in Definition 2.5 implies that $V(\phi_t(y)) \leq V(y) < m$ for all $t \geq 0$. We conclude that if there exists $t_0 > 0$ such that $\phi_{t_0}(y) \notin B_{\varepsilon}(\underline{x}_0)$, then by continuity of the flow there exists $t_1 \in (0, t_0)$ such that $\phi_{t_1}(y) \in \partial B_{\varepsilon}(\underline{x}_0)$. This is a contradiction to the definition of *m*. \Box

Theorem 2.10 (Second Lyapunov stability theorem). Let $x_0 \in \mathbb{R}^n$ be a *fixed point of a vector field* $F : \mathbb{R}^n \to \mathbb{R}^n$. If there exists a strict Lyapunov *function for* \underline{x}_0 *, then* \underline{x}_0 *is Lyapunov asymptotically stable.*

Proof. Let $V: U \to \mathbb{R}$ be the strict Lyapunov function for \underline{x}_0 . By Theorem 2.9 the fixed point x_0 is Lyapunov stable. We now need to show that the domain of asymptotic stability of x_0 contains a ball $B_\delta(x_0)$.

Let us fix $\varepsilon > 0$, and let $\delta > 0$ be such that $d(\underline{x}_0, y) < \delta$ implies $d(\underline{x}_0, \phi_t(y)) < \varepsilon$ for all $t \geq 0$. Hence $\mathcal{O}^+(y) \subset B_{\varepsilon}(\underline{x}_0)$ for all $\underline{y} \in B_{\delta}(\underline{x}_0)$, and by Proposition 1.1 we have that $\omega(y)$ is a non-empty, compact, invariant subset of $B_{\varepsilon}(\underline{x}_0)$ for all $y \in B_{\delta}(\underline{x}_0)$.

Let us fix $y \in B_\delta(\underline{x}_0)$. Condition (ii)' in Definition 2.5 implies that $V(\phi_t(y))$ is a decreasing function of *t*, hence there exists

$$
c := \lim_{t \to +\infty} V(\phi_t(\underline{y}))
$$

But $V|_{\omega(y)} \equiv c$ by continuity, in fact for all $z \in \omega(y)$ we have

$$
V(\underline{z}) = \lim_{k \to \infty} V(\phi_{t_k}(\underline{y})) = c
$$

where $\{t_k\}_k$ is the diverging sequence such that $\phi_{t_k}(y) \to z$ as $k \to \infty$. Finally, since $\omega(y)$ is invariant, we have $V(\phi_t(\underline{z})) = c$ for all t, which by (2.1) implies $\dot{V}(z) = 0$ for all $z \in \omega(y)$. Hence $\omega(y) \subset {\dot{V} \equiv 0}$, and by condition (ii)' $\omega(y) = {\{\underline{x}_0\}}$.

We have thus proved that $B_{\delta}(\underline{x}_0) \subset D(\underline{x}_0)$. \Box

Corollary 2.11 (La Salle's Invariance Principle). Let x_0 be a fixed point *of a vector field* $F : \mathbb{R}^n \to \mathbb{R}^n$. If there exists a Lyapunov function for \underline{x}_0 *defined on a neighbourhood U* of x_0 , then for all $y \in U$ such that $\mathcal{O}^+(y)$ is *contained in U and is bounded, we have* $\omega(y) \subseteq {\tilde{V} \equiv 0}$.

Example 2.2. Let us consider the system in \mathbb{R}^2 given by

$$
\begin{cases} \dot{x} = y \\ \dot{y} = -y^3 - x - x^3 \end{cases}
$$

The point (0*,* 0) is the only fixed point and it is not hyperbolic. Looking for a Lyapunov function of the form $V(x, y) = ax^2 + bx^4 + cy^2$ one finds $\dot{V}(x, y) = 2xy(a - c) + 2x^3y(2b - c) - 2cy^4$. Hence

$$
V(x, y) = 2x^2 + x^4 + 2y^2
$$

is a Lyapunov function for $(0,0)$, with $\{\dot{V} \equiv 0\} = \{y = 0\}$. Hence *V* is not a strict Lyapunov function. By Theorem 2.9 we have that (0*,* 0) is Lyapunov stable, and applying Corollary 2.11 we also obtain that there exists $\delta > 0$ such that for all $y \in B_\delta((0,0))$ it holds $\omega(y) \subset \{y=0\}$. Moreover, since $\omega(y)$ is an invariant set and the only invariant subset of $\{y = 0\}$ is $\{(0,0)\},$ we have proved that $(0,0)$ is asymptotically stable.

Theorem 2.12 (Bounding functions). Let F be a vector field in \mathbb{R}^n , and assume that there exist a C^1 real function $V : \mathbb{R}^n \to \mathbb{R}$, a compact set $G \subset \mathbb{R}^n$ and $k \in \mathbb{R}$ such that: (a) $G \subset V_k := \{V < k\}$; (b) there exists $\delta > 0$ *such that* $\dot{V}(x) \leq -\delta$ *for all* $x \in \mathbb{R}^n \setminus G$ *. Then for all* $x \in \mathbb{R}^n$ *there exists* $t_0 \geq 0$ *such that* $\phi_t(\underline{x}) \in V_k$ *for all* $t > t_0$ *.*

2.2. STABILITY 33

Proof. If $x \in V_k$ we are done, since by assumption (b) $\dot{V}|_{\partial V_k} < 0$, and we can choose $t_0 = 0$. If $\underline{x} \notin V_k$ and $\phi_t(\underline{x}) \notin V_k$ for all $t > 0$

$$
V(\phi_t(\underline{x})) - V(\underline{x}) = \int_0^t \frac{d}{ds} V(\phi_s(\underline{x})) ds = \int_0^t \dot{V}(\phi_s(\underline{x})) ds \le -\delta t
$$

which implies $V(\phi_t(\underline{x})) < k$ for $t > \frac{V(\underline{x}) - k}{\delta}$. Hence we find a contradiction, and we have thus proved that there exists $t_0 > 0$ such that $\phi_{t_0}(\underline{x}) \in V_k$, and as before this implies that $\phi_t(\underline{x}) \in V_k$ for all $t \geq t_0$.

Example 2.3 (Lorenz equations). Let us consider the system in \mathbb{R}^3 given by

$$
\begin{cases}\n\dot{x} = \sigma(-x + y) \\
\dot{y} = rx - y - xz \\
\dot{z} = -bz + xy\n\end{cases}
$$

with σ , r, b positive constants. We can apply Theorem 2.12 with

$$
G = \{(x, y, z) \in \mathbb{R}^3 : rx^2 + y^2 + b(z - r)^2 < 2br\}
$$

$$
V(x, y, z) = \frac{1}{2} \left(rx^2 + \sigma y^2 + \sigma (z - 2r)^2 \right)
$$

and $\delta = \sigma br^2$.

Using the theory of Lyapunov functions we now give a proof of the asymptotic stability of *sinks*, i.e. hyperbolic fixed points of a *C*¹ vector field with all eigenvalues of the Jacobian matrix of the field with negative real part.

Corollary 2.13. Let x_0 be a hyperbolic fixed point of a C^1 vector field $F: \mathbb{R}^n \to \mathbb{R}^n$, and assume that all the eigenvalues of $JF(\underline{x}_0)$ have negative *real part. Then* x_0 *is asymptotically stable.*

Proof. Let's assume without loss of generality that $x_0 = 0$, then the vector field *F* satisfies $F(0) = 0$ and can be written as

$$
F(\underline{x}) = JF(\underline{0})\underline{x} + G(\underline{x})
$$

where $G: \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 function satisfying $G(0) = 0$ and $JG(0) = 0$.

Let $\lambda_1, \ldots, \lambda_k$ be the, not necessarily distinct, negative real eigenvalues of $JF(\underline{0})$, and let $a_j \pm ib_j$, with $j = 1, \ldots, \frac{1}{2}(n-k)$, be the, not necessarily distinct, couples of conjugate complex eigenvalues with $a_j < 0$. For simplicity we also assume that $JF(0)$ is written in Jordan normal form, therefore

$$
JF(\underline{0}) = diag(\Lambda_1, \ldots, \Lambda_h, B_1, \ldots B_m)
$$

where the Λ_j 's are the Jordan blocks relative to the real eigenvalues, and the B_j 's are the Jordan blocks relative to the complex eigenvalues.

Let us consider the following change of variables. For $\varepsilon > 0$ let $y =$ (y_1, \ldots, y_n) be defined as follows:

- if (x_m, \ldots, x_{m+s-1}) are the components of <u>*x*</u> corresponding to a Jordan block Λ_j , we let $y_{m+\ell} := \varepsilon^{-\ell} x_{m+\ell}$ for $\ell = 0, \ldots, s-1;$
- if $(x_p, \ldots, x_{p+2s-1})$ are the components of <u>x</u> corresponding to a Jordan block B_j , we let $y_{p+2\ell} := \varepsilon^{-\ell} x_{p+2\ell}$ and $y_{p+2\ell+1} := \varepsilon^{-\ell} x_{p+2\ell+1}$, for $\ell = 0, \ldots, s - 1.$

Then it is a standard computation to verify that *y* satisfies the ODE

$$
\dot{y} = A_{\varepsilon} y + \tilde{G}(y),
$$

with $\tilde{G}(\underline{0})=\underline{0}$ and $J\tilde{G}(\underline{0})=0$ and

$$
A_{\varepsilon} = diag(\tilde{\Lambda}_1, \ldots, \tilde{\Lambda}_h, \tilde{B}_1, \ldots \tilde{B}_m),
$$

where

$$
\tilde{\Lambda}_j = \begin{pmatrix}\n\lambda_j & \varepsilon & 0 & \dots & 0 & 0 \\
0 & \lambda_j & \varepsilon & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \dots & 0 & \lambda_j & \varepsilon & 0 \\
0 & \dots & \dots & 0 & \lambda_j & \varepsilon \\
0 & \dots & \dots & \dots & 0 & \lambda_j\n\end{pmatrix}
$$

and

$$
\tilde{B}_j = \begin{pmatrix}\nR_j & \varepsilon I_2 & 0 & \dots & 0 & 0 \\
0 & R_j & \varepsilon I_2 & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \dots & 0 & R_j & \varepsilon I_2 & 0 \\
0 & \dots & \dots & 0 & R_j & \varepsilon I_2 \\
0 & \dots & \dots & \dots & 0 & R_j\n\end{pmatrix}, \text{ with } R_j = \begin{pmatrix}\na_j & -b_j \\
b_j & a_j\n\end{pmatrix}
$$

2.2. STABILITY 35

and I_2 the 2×2 identity matrix.

We now show that $V(\underline{y}) = \sum_{i=1}^{n} y_i^2$ is a strict Lyapunov function for $\underline{0}$. It is enough to study the derivative $\dot{V}(\underline{y})=2\sum_{i=1}^{n} y_i \dot{y}_i$.

If (y_m, \ldots, y_{m+s-1}) are the components of *y* corresponding to a Jordan block $\tilde{\Lambda}_j$ we have

$$
\sum_{\ell=0}^{s-1} y_{m+\ell} \dot{y}_{m+\ell} = \sum_{\ell=0}^{s-2} y_{m+\ell} (\lambda_j y_{m+\ell} + \varepsilon y_{m+\ell+1}) + \lambda_j y_{m+s-1}^2 + O(|\underline{y}|^3) =
$$

$$
\leq \lambda_j \sum_{\ell=0}^{s-1} y_{m+\ell}^2 + \frac{\varepsilon}{2} (y_m^2 + y_{m+s-1}^2) + \varepsilon \sum_{\ell=1}^{s-2} y_{m+\ell}^2 + O(|\underline{y}|^3) \le
$$

$$
\leq (\lambda_j + \varepsilon) \sum_{\ell=0}^{s-1} y_{m+\ell}^2 + O(|\underline{y}|^3).
$$

With an analogous argument, if $(y_m, \ldots, y_{m+2s-1})$ are the components of *y* corresponding to a Jordan block \tilde{B}_j we have

$$
\sum_{\ell=0}^{s-1} (y_{m+2\ell} \dot{y}_{m+2\ell} + y_{m+2\ell+1} \dot{y}_{m+2\ell+1}) =
$$
\n
$$
= \sum_{\ell=0}^{s-2} y_{m+2\ell} (a_j y_{m+2\ell} - b_j y_{m+2\ell+1} + \varepsilon y_{m+2\ell+2}) +
$$
\n
$$
+ \sum_{\ell=0}^{s-2} y_{m+2\ell+1} (b_j y_{m+2\ell} + a_j y_{m+2\ell+1} + \varepsilon y_{m+2\ell+3}) +
$$
\n
$$
+ y_{m+2s-2} (a_j y_{m+2s-2} - b_j y_{m+2s-1}) + y_{m+2s-1} (b_j y_{m+2s-2} + a_j y_{m+2s-1}) +
$$
\n
$$
+ O(|\underline{y}|^3) =
$$
\n
$$
= a_j \sum_{\ell=0}^{s-1} (y_{m+2\ell}^2 + y_{m+2\ell+1}^2) + \varepsilon \sum_{\ell=0}^{s-2} (y_{m+2\ell} \dot{y}_{m+2\ell+2} + y_{m+2\ell+1} y_{m+2\ell+3}) +
$$
\n
$$
+ O(|\underline{y}|^3) \le
$$
\n
$$
\le (a_j + \varepsilon) \sum_{\ell=0}^{s-1} (y_{m+2\ell}^2 + y_{m+2\ell+1}^2) + O(|\underline{y}|^3).
$$

If we fix $\varepsilon > 0$ such that $(\lambda_j + \varepsilon) < 0$ and $(a_j + \varepsilon) < 0$ for all eigenvalues of *JF*(0), letting $\mu \in \mathbb{R}^-$ satisfy $(\lambda_j + \varepsilon) \leq \mu < 0$ and $(a_j + \varepsilon) \leq \mu < 0$ for all *j*, we have proved that

$$
\dot{V}(\underline{y}) \le 2\mu |\underline{y}|^2 + O(|\underline{y}|^3).
$$

We need to show that there exists $\delta > 0$ such that $\dot{V}(\underline{y}) < 0$ for all $\underline{y} \in B_{\delta}(\underline{0})$ and $\underline{y} \neq \underline{0}$. By definition of $O(\cdot)$ functions, there exist $c > 0$ and $\overline{\tilde{\delta}} > 0$ such that

$$
O(|\underline{y}|^3) \le c|\underline{y}|^3\,,\quad \forall \,\underline{y} \in B_{\tilde{\delta}}(\underline{0}).
$$

If we choose $\delta = \min\{-\frac{2\mu}{c}, \tilde{\delta}\}\)$ it follows

$$
\dot{V}(\underline{y}) \le 2\mu |\underline{y}|^2 + c|\underline{y}|^3 = |\underline{y}|^2 (2\mu + c|\underline{y}|) < 0, \quad \forall \underline{y} \in B_\delta(\underline{0}) \setminus \{\underline{0}\},
$$

and the proof is finished.

