
Chapter 2

Continuous-time dynamical

systems

2.1 Linear systems

The simplest case to study is that of an ordinary di↵erential equation with
linear vector field. Let A 2 M(n⇥n,R) be a real n⇥n matrix and consider
the ordinary di↵erential equation ẋ = Ax. It is well known that the flow
is given by �t(x) = eAtx, and the behaviour of the orbits is determined by
the eigenvalues of A. We state a result in the case that all the eigenvalues
of A are simple, an analogous result holds counting the multiplicities of the
eigenvalues and using the Jordan normal form of A.

Theorem 2.1. Let A 2 M(n⇥ n,R) be a real n⇥ n matrix with k distinct
real eigenvalues �1, . . . ,�k, and m = 1

2(n � k) distinct couples of conjugate
complex eigenvalues aj ± i bj. Then there exists an invertible matrix P 2
M(n⇥ n,R) such that

P�1AP = ⇤ := diag
⇣
�1, . . . ,�k, B1, . . . , Bm

⌘

where

Bj =

 
aj �bj

bj aj

!
, 8 j = 1, . . . ,m,

and the flow of the di↵erential equation ẋ = Ax is given by

�t(x) = P e⇤ t P�1 x

where
e⇤ t = diag

⇣
e�1t, . . . , e�kt, etB1 , . . . , etBm

⌘
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and

etBj = eajt
 
cos(bjt) � sin(bjt)

sin(bjt) cos(bjt)

!
, 8 j = 1, . . . ,m.

Remark 2.2. Let us consider the case n = 2, 3, so that the matrix A can
only have multiple real roots. If n = 2 the possible Jordan normal form of
a matrix A with a double real eigenvalue � are

⇤ = diag
⇣
�,�

⌘
or

 
� 1

0 �

!
.

In the non-diagonal case, one writes ⇤ = �I +N , where N is the nilpotent
matrix

N =

 
0 1

0 0

!

for which N2 = 0. So that1 e⇤t = e�t eNt. It follows that

e⇤t = diag
⇣
e�t, e�t

⌘
or e�t

 
1 t

0 1

!
.

Analogously, in the n = 3 case, if A has eigenvalues with geometric multi-
plicities greater than or equal to 2, we are reduced to the previous case. If
A has an eigenvalue � with geometric multiplicity 1 its Jordan normal form
is

⇤ =

0

BB@

� 1 0

0 � 1

0 0 �

1

CCA ,

and as before we write ⇤ = �I+N , where N is a nilpotent matrix such that
N3 = 0. Then

e⇤t = e�t

0

BB@

1 t 1
2 t

2

0 1 t

0 0 1

1

CCA .

In the case of linear ordinary di↵erential equations it is also particularly
simple to find fixed points, periodic orbits, and invariant sets. First, using
Definition 1.5 we find

1
Here we use the fact that the matrices I and N commute.
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Proposition 2.3. The fixed points of the ordinary di↵erential equation ẋ =
Ax are the points in the kernel of A.

In particular, the origin x0 = 0 is a fixed point for all A, and the other
fixed points come in linear subspaces of Rn. We’ll see that the origin plays
a special role in characterizing the dynamics of all the non-trivial orbits.

Concerning periodic orbits, it is straightforward from Theorem 2.1 that
they can exist only if there is a couple of conjugate complex eigenvalues with
null real part. If this is the case, all orbits leaving in the relative eigenspace
are periodic, since they are of the form etBx with a = 0.

In general, the space Rn can be written as the direct sum of generalised
eigenspaces of A, and according to the asymptotic behaviour of the orbits,
it makes sense to consider the following decomposition.

Definition 2.1. Let A 2 M(n ⇥ n,R) be a real n ⇥ n matrix and let E�

denote the generalised eigenspace of an eigenvalue �. We call:
Stable eigenspace of 0 the linear space Es(0) defined as

Es(0) := Span {v 2 E� : <(�) < 0} ;

Central eigenspace of 0 the linear space Ec(0) defined as

Ec(0) := Span {v 2 E� : <(�) = 0} ;

Unstable eigenspace of 0 the linear space Eu(0) defined as

Eu(0) := Span {v 2 E� : <(�) > 0} .

Theorem 2.4. Let A 2 M(n ⇥ n,R) be a real n ⇥ n matrix and consider
the ordinary di↵erential equation ẋ = Ax. Then:

(i) n = dimEs(0) + dimEc(0) + dimEu(0);

(ii) the eigenspaces Es(0), Ec(0), Eu(0) are invariant;

(iii) the following dynamical characterisation holds:

Es(0) = {x 2 Rn : �t(x) ! 0 as t ! +1} ;

Eu(0) = {x 2 Rn : �t(x) ! 0 as t ! �1} .

Proof. It is a simple application of Theorem 2.1.
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Remark 2.5. It is interesting to notice that we haven’t given a dynami-
cal interpretation for the central eigenspace of 0. The reason is that if
dimEc(0) 6= 0 we can find di↵erent behaviours for the orbits. Let us con-
sider the simple case n = dimEc(0) = 2 with � = 0 being a double eigen-
value. Then there are two possibilities for the matrix A (up to use of the
Jordan normal form):

A = diag
⇣
0, 0
⌘

or

 
0 1

0 0

!
.

In the first case the flow is the identity, that is �t(x, y) = (x, y) for all (x, y) 2
R2, whereas in the second case the flow is given by �t(x, y) = (x + ty, y)
for all (x, y) 2 R2. Using Definition 2.2, in the first case (0, 0) is Lyapunov
stable and in the second case it is unstable.

Theorem 2.4 gives the characterisation of the dynamics with respect to
the fixed point 0. In particular if ker(A) = {0} and dimEc(0) = 0, all orbits
converge to 0, either for t ! +1 or for t ! �1. If instead the kernel of
A consists of a non-trivial linear subspace W with dimW = dimEc(0), it is
easy to see that the dynamics of non-fixed points is determined by that of
the points in the space W?.

Linear systems in the plane

In the case of linear systems in R2 it is possible to characterise the dynamical
properties of the system without explicitly computing the eigenvalues of the
matrix A. We also introduce a terminology for fixed points with di↵erent
local dynamics.

The nature of the origin 0 = (0, 0) as a fixed point of a system ẋ = Ax,
with x = (x, y) 2 R2 is determined by the relation between the determinant
and the trace of A. Indeed the characteristic polynomial of A is

pA(�) = �2 � tr(A)�+ det(A) ,

so that the eigenvalues are

�± =
tr(A)±

p
tr2(A)� 4 det(A)

2
,

and we distinguish di↵erent cases according to the sign of the determinant
of A and of the discriminant � := tr2(A)� 4 det(A).
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Case 1. det(A) > 0 and � > 0. The matrix A has two real distinct
eigenvalues satisfying �+ > �� > 0 if tr(A) > 0, and �� < �+ < 0 if
tr(A) < 0.

In both cases the orbits are generalised parabola through 0, at which they
are tangent to the line generated by the eigenvector relative to eigenvalue
of smallest modulus. If tr(A) > 0, all orbits converge to 0 as t ! �1,
and the origin is called an unstable node. We also notice that in this case
Eu(0) = R2. If tr(A) < 0, all orbits converge to 0 as t ! +1, and the
origin is called a stable node. We also notice that in this case Es(0) = R2.

Note that 0 being a node is an open property since su�ciently small
perturbations of A don’t change the nature of the origin.

Case 2. det(A) > 0 and � < 0. The matrix A has a couple of complex
conjugate eigenvalues �± with <(�±) =

1
2 tr(A).

If tr(A) > 0 all orbits are spirals out of 0 and they are either clockwise
or anti-clockwise according for example to the sign of ẋ when y = 0. In this
case the origin is called an unstable focus and Eu(0) = R2. If tr(A) < 0
all orbits are spirals into 0 and as before they are either clockwise or anti-
clockwise. In this case the origin is called a stable focus and Es(0) = R2. If
tr(A) = 0 all orbits are concentric circles about 0 and again they are either
clockwise or anti-clockwise. In this case the origin is called a center and
Ec(0) = R2.

Notice that 0 being a focus is an open property. Instead 0 being a center
is a closed property and arbitrarily small perturbations of A may turn the
origin into an unstable or stable focus.

Case 3. det(A) > 0 and � = 0. The matrix A has one double real eigenvalue
� = 1

2 tr(A) 6= 0.
If A is diagonalisable then the orbits lie on straight lines through 0. If

tr(A) > 0, all orbits converge to 0 as t ! �1, and the origin is called an
unstable star. We also notice that in this case Eu(0) = R2. If tr(A) < 0, all
orbits converge to 0 as t ! +1, and the origin is called a stable star. We
also notice that in this case Es(0) = R2.

If A is not diagonalisable then we use its Jordan normal form to under-
stand the behaviour of the orbits. The di↵erential equation in normal form
reads (

ẋ = �x+ y

ẏ = �y

so that there exists an invariant line, which is generated by the eigenvector
of A, and the behaviour of the orbits can be found by looking at the sign of
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the two components of the vector field. If tr(A) > 0, all orbits converge to
0 as t ! �1, and the origin is called an unstable improper node. We also
notice that in this case Eu(0) = R2. If tr(A) < 0, all orbits converge to 0
as t ! +1, and the origin is called a stable improper node. We also notice
that in this case Es(0) = R2.

Both 0 being a star and being an improper node are closed properties.
An arbitrarily small perturbation can turn the origin into a focus or a node,
not changing the stability but the nature of the fixed point.

Case 4. det(A) < 0. The matrix A has a couple of distinct real eigenvalues
�� < 0 < �+.

In this case the orbits are generalised hyperbolae, and the origin is called
a saddle. It holds dimEu(0) = dimEs(0) = 1, and none of the orbits outside
the eigenspaces approaches the origin as t ! ±1. Being a saddle is an open
property.

Case 5. det(A) = 0. The matrix A has two real eigenvalues, �� = 0 and
�+ = tr(A).

If tr(A) 6= 0, then A is diagonalisable and there is a line of fixed points.
All the other orbits lie in straight lines which are parallel to the eigenspace of
�+. If tr(A) = 0 we are reduced to the case of Remark 2.5 up to a change of
coordinates, hence either all points are fixed or there is a line of fixed points
and all other orbits lie in straight lines which are parallel to the eigenspace
of ��.

Clearly, the properties of the origin considered in this case are closed
and can be changed by arbitrarily small perturbations.


