Chapter 2

Continuous-time dynamical systems

2.1 Linear systems

The simplest case to study is that of an ordinary differential equation with linear vector field. Let $A \in M(n \times n, \mathbb{R})$ be a real $n \times n$ matrix and consider the ordinary differential equation $\dot{x} = Ax$. It is well known that the flow is given by $\phi_t(\underline{x}) = e^{At} \underline{x}$, and the behaviour of the orbits is determined by the eigenvalues of *A*. We state a result in the case that all the eigenvalues of *A* are simple, an analogous result holds counting the multiplicities of the eigenvalues and using the Jordan normal form of *A*.

Theorem 2.1. Let $A \in M(n \times n, \mathbb{R})$ be a real $n \times n$ matrix with k distinct *real eigenvalues* $\lambda_1, \ldots, \lambda_k$ *, and* $m = \frac{1}{2}(n-k)$ *distinct couples of conjugate complex eigenvalues* $a_j \pm ib_j$ *. Then there exists an invertible matrix* $P \in$ $M(n \times n, \mathbb{R})$ *such that*

$$
P^{-1}AP = \Lambda := diag(\lambda_1, \ldots, \lambda_k, B_1, \ldots, B_m)
$$

where

$$
B_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix}, \quad \forall j = 1, \dots, m,
$$

and the flow of the differential equation $\dot{x} = Ax$ is given by

$$
\phi_t(\underline{x}) = P e^{\Lambda t} P^{-1} \underline{x}
$$

where

$$
e^{\Lambda t} = diag\left(e^{\lambda_1 t}, \ldots, e^{\lambda_k t}, e^{t B_1}, \ldots, e^{t B_m}\right)
$$

and

$$
e^{tB_j} = e^{a_j t} \begin{pmatrix} \cos(b_j t) & -\sin(b_j t) \\ \sin(b_j t) & \cos(b_j t) \end{pmatrix}, \quad \forall j = 1, \dots, m.
$$

Remark 2.2*.* Let us consider the case $n = 2, 3$, so that the matrix *A* can only have multiple real roots. If $n = 2$ the possible Jordan normal form of a matrix A with a double real eigenvalue λ are

$$
\Lambda = \text{diag} \left(\lambda, \lambda \right) \quad \text{or} \quad \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.
$$

In the non-diagonal case, one writes $\Lambda = \lambda I + N$, where *N* is the nilpotent matrix \mathcal{L}^{max}

$$
N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$

for which $N^2 = 0$. So that $e^{\Lambda t} = e^{\lambda t} e^{Nt}$. It follows that

$$
e^{\Lambda t} = \text{diag}\left(e^{\lambda t}, e^{\lambda t}\right) \quad \text{or} \quad e^{\lambda t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.
$$

Contract Contract

Analogously, in the $n = 3$ case, if *A* has eigenvalues with geometric multiplicities greater than or equal to 2, we are reduced to the previous case. If *A* has an eigenvalue λ with geometric multiplicity 1 its Jordan normal form is \overline{a} $\ddot{}$

$$
\Lambda = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix},
$$

and as before we write $\Lambda = \lambda I + N$, where *N* is a nilpotent matrix such that $N^3 = 0$. Then \overline{a} 22

$$
e^{\Lambda t} = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{1}{2}t^2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}.
$$

In the case of linear ordinary differential equations it is also particularly simple to find fixed points, periodic orbits, and invariant sets. First, using Definition 1.5 we find

¹Here we use the fact that the matrices I and N commute.

Proposition 2.3. The fixed points of the ordinary differential equation $\dot{x} =$ *Ax are the points in the kernel of A.*

In particular, the origin $x_0 = 0$ is a fixed point for all *A*, and the other fixed points come in linear subspaces of \mathbb{R}^n . We'll see that the origin plays a special role in characterizing the dynamics of all the non-trivial orbits.

Concerning periodic orbits, it is straightforward from Theorem 2.1 that they can exist only if there is a couple of conjugate complex eigenvalues with null real part. If this is the case, all orbits leaving in the relative eigenspace are periodic, since they are of the form $e^{tB}x$ with $a=0$.

In general, the space \mathbb{R}^n can be written as the direct sum of generalised eigenspaces of *A*, and according to the asymptotic behaviour of the orbits, it makes sense to consider the following decomposition.

Definition 2.1. Let $A \in M(n \times n, \mathbb{R})$ be a real $n \times n$ matrix and let E_{λ} denote the generalised eigenspace of an eigenvalue λ . We call: *Stable eigenspace of* 0 the linear space $E^s(0)$ defined as

$$
E^{s}(\underline{0}) := \text{Span}\left\{v \in E_{\lambda} : \Re(\lambda) < 0\right\};
$$

Central eigenspace of 0 the linear space $E^c(0)$ defined as

$$
E^c(\underline{0}) := \text{Span}\left\{v \in E_\lambda : \Re(\lambda) = 0\right\};
$$

Unstable eigenspace of 0 the linear space $E^u(0)$ defined as

$$
E^u(\underline{0}) := \text{Span}\left\{v \in E_\lambda : \Re(\lambda) > 0\right\}.
$$

Theorem 2.4. Let $A \in M(n \times n, \mathbb{R})$ be a real $n \times n$ matrix and consider *the ordinary differential equation* $\underline{\dot{x}} = A \underline{x}$ *. Then:*

- (i) $n = \dim E^s(0) + \dim E^c(0) + \dim E^u(0)$;
- *(ii)* the eigenspaces $E^s(0)$, $E^c(0)$, $E^u(0)$ are invariant;

(iii) the following dynamical characterisation holds:

$$
E^{s}(\underline{0}) = \{ \underline{x} \in \mathbb{R}^{n} : \phi_{t}(\underline{x}) \to \underline{0} \text{ as } t \to +\infty \};
$$

$$
E^{u}(\underline{0}) = \{ \underline{x} \in \mathbb{R}^{n} : \phi_{t}(\underline{x}) \to \underline{0} \text{ as } t \to -\infty \}.
$$

Proof. It is a simple application of Theorem 2.1.

 \Box

Remark 2.5*.* It is interesting to notice that we haven't given a dynamical interpretation for the central eigenspace of 0. The reason is that if $\dim E^{c}(0) \neq 0$ we can find different behaviours for the orbits. Let us consider the simple case $n = \dim E^c(0) = 2$ with $\lambda = 0$ being a double eigenvalue. Then there are two possibilities for the matrix *A* (up to use of the Jordan normal form):

$$
A = \text{diag}\left(0, 0\right) \quad \text{or} \quad \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$

.

In the first case the flow is the identity, that is $\phi_t(x, y) = (x, y)$ for all $(x, y) \in$ \mathbb{R}^2 , whereas in the second case the flow is given by $\phi_t(x, y) = (x + ty, y)$ for all $(x, y) \in \mathbb{R}^2$. Using Definition 2.2, in the first case $(0, 0)$ is Lyapunov stable and in the second case it is unstable.

Theorem 2.4 gives the characterisation of the dynamics with respect to the fixed point 0. In particular if $\text{ker}(A) = \{0\}$ and dim $E^{c}(0) = 0$, all orbits converge to <u>0</u>, either for $t \to +\infty$ or for $t \to -\infty$. If instead the kernel of *A* consists of a non-trivial linear subspace *W* with dim $W = \dim E^c(0)$, it is easy to see that the dynamics of non-fixed points is determined by that of the points in the space W^{\perp} .

Linear systems in the plane

In the case of linear systems in \mathbb{R}^2 it is possible to characterise the dynamical properties of the system without explicitly computing the eigenvalues of the matrix \dot{A} . We also introduce a terminology for fixed points with different local dynamics.

The nature of the origin $\underline{0} = (0,0)$ as a fixed point of a system $\underline{\dot{x}} = Ax$, with $x = (x, y) \in \mathbb{R}^2$ is determined by the relation between the determinant and the trace of *A*. Indeed the characteristic polynomial of *A* is

$$
p_A(\lambda) = \lambda^2 - \text{tr}(A)\,\lambda + \det(A)\,,
$$

so that the eigenvalues are

$$
\lambda_{\pm} = \frac{\text{tr}(A) \pm \sqrt{\text{tr}^2(A) - 4 \det(A)}}{2},
$$

and we distinguish different cases according to the sign of the determinant of *A* and of the discriminant $\Delta := \text{tr}^2(A) - 4 \det(A)$.

Case 1. $det(A) > 0$ *and* $\Delta > 0$. The matrix *A* has two real distinct eigenvalues satisfying $\lambda_+ > \lambda_- > 0$ if $tr(A) > 0$, and $\lambda_- < \lambda_+ < 0$ if $tr(A) < 0.$

In both cases the orbits are generalised parabola through 0, at which they are tangent to the line generated by the eigenvector relative to eigenvalue of smallest modulus. If $tr(A) > 0$, all orbits converge to 0 as $t \to -\infty$, and the origin is called an *unstable node*. We also notice that in this case $E^u(0) = \mathbb{R}^2$. If $tr(A) < 0$, all orbits converge to 0 as $t \to +\infty$, and the origin is called a *stable node*. We also notice that in this case $E^s(0) = \mathbb{R}^2$.

Note that θ being a node is an open property since sufficiently small perturbations of *A* don't change the nature of the origin.

Case 2. $det(A) > 0$ *and* $\Delta < 0$. The matrix *A* has a couple of complex conjugate eigenvalues λ_{\pm} with $\Re(\lambda_{\pm}) = \frac{1}{2} \text{tr}(A)$.

If $tr(A) > 0$ all orbits are spirals out of $\underline{0}$ and they are either clockwise or anti-clockwise according for example to the sign of \dot{x} when $y = 0$. In this case the origin is called an *unstable focus* and $E^u(0) = \mathbb{R}^2$. If $tr(A) < 0$ all orbits are spirals into $\underline{0}$ and as before they are either clockwise or anticlockwise. In this case the origin is called a *stable focus* and $E^s(0) = \mathbb{R}^2$. If $tr(A) = 0$ all orbits are concentric circles about 0 and again they are either clockwise or anti-clockwise. In this case the origin is called a *center* and $E^{c}(0) = \mathbb{R}^{2}$.

Notice that 0 being a focus is an open property. Instead 0 being a center is a closed property and arbitrarily small perturbations of *A* may turn the origin into an unstable or stable focus.

Case 3. $det(A) > 0$ *and* $\Delta = 0$. The matrix *A* has one double real eigenvalue $\lambda = \frac{1}{2} \text{tr}(A) \neq 0.$

If *A* is diagonalisable then the orbits lie on straight lines through 0. If $tr(A) > 0$, all orbits converge to 0 as $t \to -\infty$, and the origin is called an *unstable star.* We also notice that in this case $E^u(0) = \mathbb{R}^2$. If $tr(A) < 0$, all orbits converge to 0 as $t \to +\infty$, and the origin is called a *stable star*. We also notice that in this case $E^s(0) = \mathbb{R}^2$.

If *A* is not diagonalisable then we use its Jordan normal form to understand the behaviour of the orbits. The differential equation in normal form reads

$$
\begin{cases} \dot{x} = \lambda x + y \\ \dot{y} = \lambda y \end{cases}
$$

so that there exists an invariant line, which is generated by the eigenvector of *A*, and the behaviour of the orbits can be found by looking at the sign of the two components of the vector field. If $tr(A) > 0$, all orbits converge to 0 as $t \to -\infty$, and the origin is called an *unstable improper node*. We also notice that in this case $E^u(0) = \mathbb{R}^2$. If $tr(A) < 0$, all orbits converge to 0 as $t \to +\infty$, and the origin is called a *stable improper node*. We also notice that in this case $E^s(0) = \mathbb{R}^2$.

Both $\underline{0}$ being a star and being an improper node are closed properties. An arbitrarily small perturbation can turn the origin into a focus or a node, not changing the stability but the nature of the fixed point.

Case 4. $det(A) < 0$. The matrix *A* has a couple of distinct real eigenvalues $\lambda_{-}<0<\lambda_{+}.$

In this case the orbits are generalised hyperbolae, and the origin is called a *saddle*. It holds dim $E^u(0) = \dim E^s(0) = 1$, and none of the orbits outside the eigenspaces approaches the origin as $t \to \pm \infty$. Being a saddle is an open property.

Case 5. det(*A*) = 0. The matrix *A* has two real eigenvalues, $\lambda = 0$ and $\lambda_+ = \text{tr}(A).$

If $tr(A) \neq 0$, then *A* is diagonalisable and there is a line of fixed points. All the other orbits lie in straight lines which are parallel to the eigenspace of λ_+ . If tr(*A*) = 0 we are reduced to the case of Remark 2.5 up to a change of coordinates, hence either all points are fixed or there is a line of fixed points and all other orbits lie in straight lines which are parallel to the eigenspace of λ .

Clearly, the properties of the origin considered in this case are closed and can be changed by arbitrarily small perturbations.