
2.3. INTEGRALS OF MOTION AND INVARIANT SETS 37

2.3 Integrals of motion and invariant sets

Conservative systems and first integrals

Definition 2.6. A C1 function I : Rn ! R is a first integral for a vector
field F : Rn ! Rn if İ(x) = 0 for all x 2 Rn, with İ(x) defined as in (2.1).

If I : Rn ! R is a first integral for a vector field F : Rn ! Rn, then
its level sets are invariant for the di↵erential equation ẋ = F (x), so that in
particular orbits of ẋ = F (x) lie in the level sets of I.

An important example of di↵erential equations with a first integral are
Hamiltonian systems with Hamiltonian function independent of time.

Definition 2.7. Let H : R2n ! R be a C1 function and use the notation
(x, y) for points in R2n, with x, y 2 Rn. The Hamiltonian vector field asso-
ciated to H is FH : R2n ! R2n given for i = 1, . . . , n, by (FH)i = @H/@yi
and (FH)(n+i) = �@H/@xi, and H is called the Hamiltonian function of the
field. The system of di↵erential equations in R2n with field FH is called the
Hamiltonian system of H.

A particular case are conservative mechanical systems with one degree
of freedom, systems which describe for example the motion in R of a point
of mass m under conservative forces. In this case the Hamiltonian function
has the form

H : R2 ! R , H(x, y) =
1

2m
y2 +W (x) (2.2)

where W (x) 2 C1 is the potential energy of the system. We recall that in
this case the Hamiltonian system associated to H is

(
ẋ = @H

@y
(x, y) = 1

m
y

ẏ = �@H

@x
(x, y) = �W 0(x)

and corresponds to the second-order di↵erential equation mẍ = �W 0(x).

Proposition 2.14. A C1 function H is a first integral for the Hamiltonian
vector field FH .

Proof. A simple computation gives

Ḣ = hrH , FHi =
nX

i=1

⇣@H
@xi

@H

@yi
� @H

@yi

@H

@xi

⌘
⌘ 0.
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Theorem 2.15 (Liouville theorem). A Hamiltonian system in R2n with C2

Hamiltonian function H preserves the 2n-dimensional Lebesgue measure of
the sets.

Proof. For A ⇢ R2n let �t(A) be the evolution of the set at time t, and let
m be the 2n-dimensional Lebesgue measure. Then

m(�t(A)) =

Z

�t(A)
1 dm =

Z

A

| det(J�t)| dm.

The variation equation of a di↵erential equation shows that J�t satisfies the
Cauchy problem

(
d

dt
J�t(x) = JFH(�t(x)) J�t(x)

J�t(x)|t=0 = I

where I is the identity matrix. The solution to the previous Cauchy problem
is then

J�t(x) = exp
⇣Z t

0
JFH(�s(x)) ds

⌘
I,

and using the identity det(exp(M)) = exp(tr(M)), valid for any finite square
matrix M , we obtain

det(J�t(x)) = exp
⇣Z t

0
tr(JFH(�s(x))) ds

⌘
.

Then

m(�t(A)) =

Z

A

exp

✓Z
t

0
div(FH)(�s(x)) ds

◆
dm.

Since

div(FH) =
nX

i=1

⇣ @2H

@xi@yi
� @2H

@yi@xi

⌘
⌘ 0,

it follows that
m(�t(A)) = m(A) , 8 t 2 R

and the proof is finished.

Corollary 2.16. A Hamiltonian system in R2n cannot have fixed points
which are sinks or sources.

Let us consider mechanical Hamiltonian systems with one degree of free-
dom with Hamiltonian function H(x, y) as in (2.2). Applying the general
theory of the previous sections and the results in this section, one can easily
prove the following characterisation of the fixed points.
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Proposition 2.17. Let H : R2 ! R be a C2 function written as in (2.2).
Then the fixed points of the associated Hamiltonian system are of the form
(x0, 0) with W 0(x0) = 0.
If W 00(x0) < 0 then (x0, 0) is a hyperbolic fixed point of saddle type, if
W 00(x0) > 0 it is not hyperbolic and it is a center.
If W 00(x0) = 0 the point (x0, 0) is not hyperbolic and one needs to use the
level sets of H(x, y) to study the dynamics in a neighbourhood of the point.

Example 2.4. The Hamiltonian function of a pendulum of massm and length
` in a vertical gravitational field with potential energy W (h) = mgh is

H(x, y) =
1

2m`2
y2 +mg`(1� cosx) ,

Consider the motion of this pendulum in presence of a constant friction
given by �µ y, with µ � 0.

Example 2.5. Study the system
(

ẋ = y

ẏ = x� x3 � µ y

with µ 2 R.

Invariant sets

It is in general di�cult to find explicit expressions for invariant sets. How-
ever, there are particular easy situations. For example, given a vector field
F : Rn ! Rn with F = (F1, . . . , Fn), if there exists c 2 R such that
Fi(x1, . . . , xi�1, c, xi+1, . . . , xn) = 0 for all xj 2 R with j 6= i, then the
hyperplane {xi = c} is an invariant set. This can be proved by the following
method.

Proposition 2.18. Let I : Rn ! R be a C1 function and for c 2 R let
Ic := {I(x) = c} be a non-empty level set of I such that rI|Ic 6⌘ 0. The
level set Ic is invariant for a vector field F : Rn ! Rn if İ|Ic ⌘ 0.

Proof. Let x0 2 Ic such that rI(x0) 6= 0. Then there exists a local di↵eren-
tiable change of coordinates y = h(x) such that in a neighbourhood U(x0)
we have Ic \ U = {yn = 0} and let x0 = (ỹ

0
, 0) with ỹ

0
2 Rn�1. Hence, in

these new coordinates rI 2 Span{(0, . . . , 0, 1)} in U .
Then, from İ|Ic ⌘ 0, we have that Fn|U ⌘ 0. Let F̃ : Rn�1 ! Rn�1 be

defined as F̃ (y1, . . . , yn�1) = (F1(y1, . . . , yn�1, 0), . . . , Fn�1(y1, . . . , yn�1, 0)).



40 CHAPTER 2. CONTINUOUS-TIME DYNAMICAL SYSTEMS

Then by the local uniqueness of the solutions to the system ẋ = F (x), the
solution with initial condition in x0 coincides in U with (�̃t(ỹ0), 0), where �̃t

is the flow of the system ˙̃y = F̃ (ỹ). Hence, the solution is in Ic. This proves
the invariance of Ic.

Example 2.6. Given the system
8
<

:

ẋ = x2 � y � 1

ẏ = (x� 2)y

the lines y = 0, y = x+ 1 and y = 3x� 3 are invariant sets.

Stable and unstable manifolds

An important example of invariant sets is given by the stable and unstable
manifolds of a hyperbolic fixed point.

Definition 2.8. Let x0 be a fixed point of a vector field F : Rn ! Rn with
flow �t(·), and let U be a neighbourhood of x0. The local stable manifold
W s

loc
(x0) of x0 in U is the set

W s

loc
(x0) := {x 2 U : �t(x) 2 U for all t � 0, �t(x) ! x0 as t ! +1}

Analogously, the local unstable manifold W u

loc
(x0) of x0 in U is the set

W u

loc
(x0) := {x 2 U : �t(x) 2 U for all t  0, �t(x) ! x0 as t ! �1}

Theorem 2.19 (Stable and unstable manifolds). Let x0 be a fixed point of
a Ck, k � 1, vector field F : Rn ! Rn with flow �t(·). Let’s assume that x0
is hyperbolic and let Es(0) and Eu(0) be the stable and unstable eigenspaces
associated to the linear system ẏ = JF (x0)y. Then there exists " > 0 such
that there exist local stable and unstable manifolds, W s

loc
(x0) and W u

loc
(x0),

of x0 in B"(x0) with the following properties:

(i) W s

loc
(x0) and W u

loc
(x0) are unique in B"(x0);

(ii) W s

loc
(x0) is forward invariant, and W u

loc
(x0) is backward invariant;

(iii) W s

loc
(x0) and W u

loc
(x0) are Ck manifolds, dimW s

loc
(x0) = dimEs(0)

and dimW u

loc
(x0) = dimEu(0);

(iv) W s

loc
(x0) is tangential to x0 + Es(0) at x0, and W u

loc
(x0) is tangential

to x0 + Eu(0) at x0.
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Proof of Theorem 2.19 in R2 (see [HSD]). Without loss of generality, let’s
assume that the fixed point is (x0, y0) = (0, 0). If dimEs = 2 or dimEu =
2, the proof is trivial since in these cases either W s

loc
(0, 0) or W u

loc
(0, 0),

respectively, coincide with a ball around (0, 0) and the properties of the
statement follow from the Hartman-Grobman Theorem 2.8.

The interesting case is when dimEs = dimEu = 1 and (0, 0) is a saddle.
Up to a change of variables, we can assume that the system is written as

(
ẋ = ��x+ f(x, y)

ẏ = µ y + g(x, y)
(2.3)

with �, µ > 0, f, g 2 Ck with f(0, 0) = g(0, 0) = 0, and f, g = O(x2 + y2)
if k � 2, and f, g, @xf, @yf, @xg, @yg = o(

p
x2 + y2) if k = 1. Hence, Es =

Span{(1, 0)} and Eu = Span{(0, 1)}.
We give the proof for the local stable manifold, it follows analogously for

the local unstable one. For any " > 0 and M > 1, introduce the following
notations:

D" := {|x|  ", |y|  "} , CM := {|x| � M |y|} ,

S±

" := CM \ {x = ±"} , C±

M
:= CM \ {x ? 0} .

(2.4)

The proof is divided into di↵erent steps.

Step I. There exists "0 > 0 such that for all M > 1 we have ẋ|
D"\C

±

M
7 0.

By assumption, there exists " > 0 such that

|f(x, y)|  �

2
p
2

p
x2 + y2 , 8 (x, y) 2 D".

Then, on D" \ C+
M
, we have

ẋ = ��x+ f(x, y)  ��x+
�

2
p
2

p
x2 + y2 

 ��x+
�

2
p
2

s

x2
✓
1 +

1

M2

◆
 x

✓
��+

�

2

◆
= ��

2
x < 0.

Similarly, on D" \ C�

M
, we have

ẋ = ��x+ f(x, y) � ��x� �

2
p
2

p
x2 + y2 �

� ��x� �

2
p
2

s

x2
✓
1 +

1

M2

◆
� |x|

✓
�� �

2

◆
=

�

2
|x| > 0.
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Step II. For any M > 1, there exists "1 = "1(M) > 0 such that for " 2 (0, "1)
on the boundary of D" \ CM the field F points towards the outside of CM .
First of all, we consider " 2 (0, "0) with "0 from Step I. Let us study the
case x, y > 0. We have ẋ|

@(D"\C
+
M ) < 0. It is then enough to prove that

ẏ|
@(D"\C

+
M ) > 0. Fixed M > 1, by assumption, there exists "1 < "0 such

that for " 2 (0, "1)

|g(x, y)|  µ

2
p
1 +M2

p
x2 + y2 , 8 (x, y) 2 D".

Then, on @(D" \ C+
M
), we have

ẏ = µ y + g(x, y) � µ y � µ

2
p
1 +M2

p
x2 + y2 =

= µ y � µ

2
p
1 +M2

p
y2(M2 + 1) = y

⇣
µ� µ

2

⌘
=

µ

2
y > 0.

The other cases follow analogously.

Step III. For " 2 (0, "1), on S+
" there exist non-empty open intervals I+ and

I� such that for all (x0, y0) 2 I± the orbit �t(x0, y0) intersects @(D"\C+
M
)\

{y ? 0}.
The existence and the properties of the intervals I+ and I� follow from Steps
I and II, and from the local uniqueness and the continuity with respect to
the initial conditions of the solutions to (2.3).

Step IV. There exists "2 < "1 such that for " 2 (0, "2) The set S+
" \ (I+[ I�)

consists of a single point (", ȳ+(")).
By the properties of the solutions to (2.3), there exist y1, y2 such that

S+
" \ (I+ [ I�) = {(", y) : y 2 [y1, y2]} .

We need to show that y1 = y2 = ȳ+.

Let’s assume that y1 < y2. It is known that multiplying a vector field
F (x, y) by a non-vanishing function h(x, y), the orbits of the system do
not change but only their time-parametrisation is a↵ected. Let h(x, y) =
1/(�� f(x, y)/x) in D" \ CM . Then the system in D" \ CM becomes

8
<

:

ẋ = �x

ẏ = µ y+g(x,y)

��
f(x,y)

x

= µ

�
y + g̃(x, y)

(2.5)
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with g̃, @y g̃ = o(
p

x2 + y2). There exists "2 < "1 such that for all M > 1
and all " 2 (0, "2) we have

����
@g̃

@y
(x, y)

���� 
µ

2�
p
2

p
x2 + y2 , 8 (x, y) 2 D".

Then the solutions to (2.5) with initial condition (", y) are of the form
(" e�t, y(t)). Hence, we can compute the vertical distance between the or-
bits �t(", y1) and �t(", y2) by computing the distance y2(t) � y1(t) of the
second components of the solutions to (2.5) with initial conditions (", y1)
and (", y2). We have

d

dt
(y2(t)� y1(t)) =

µ

�
y2(t) + g̃(" e�t, y2(t))�

µ

�
y1(t) + g̃(" e�t, y1(t)) =

=
µ

�
(y2(t)� y1(t)) +

@g̃

@y
(" e�t, ⇠(t)) (y2(t)� y1(t)) �

� (y2(t)� y1(t))

 
µ

�
� µ

2�
p
2
" e�t

r
1 +

1

M2

!
�

� µ

2�
(y2(t)� y1(t)).

Hence, (y2(t) � y1(t)) ! +1, which contradicts that the orbits of the set
S+
" \ (I+ [ I�) are forward asymptotic to (0, 0). We have thus proved that

y1 = y2 = ȳ+.

Conclusion part I.
By Steps I-IV, for all M > 1 there exists "2 = "2(M) > 0 such that for
all " 2 (0, "2) we obtain the existence of a unique point (", ȳ+(")) in S+

"

whose orbit is forward asymptotic to (0, 0). Therefore, fixing a M̄ > 1 the
local stable manifold W s

loc
(0, 0) in D"\C+

M
for all " 2 (0, "2(M̄)) is given by

the forward orbit of the point ("2(M̄), ȳ+("2(M̄))). An analogous argument
shows the existence of the local stable manifold W s

loc
(0, 0) in D" \ C�

M
for

all " 2 (0, "2(M̄)).
This shows the uniqueness of W s

loc
(0, 0), its forward invariance, its reg-

ularity since the orbits of a system inherit the regularity of the vector field,
and that its dimension is 1. It remains to prove that W s

loc
(0, 0) is tangent

at (0, 0) to Es = Span{(1, 0)}, that is to the x-axis.

Step V. Fixing a M̄ > 1, for all " 2 (0, "2(M̄)) the orbit �t(", ȳ+(")) has
vanishing angular coe�cient as t ! +1.
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Let (x"(t), y"(t)) denote the two components of �t(", ȳ+(")). We need to
show that y"(t)/x"(t) ! 0 as t ! +1.

By the local uniqueness of the solutions to (2.3), for all " 2 (0, "2(M̄))
the point (", ȳ+(")) is in the orbit of ("0, ȳ+("0)) for all "0 2 (", "2(M̄)). This
shows that, for all " 2 (0, "2(M̄)), for all t � 0 there exists "̃(t) < " such that
(x"(t), y"(t)) = ("̃(t), ȳ+("̃(t))). Hence, as t ! +1 we have "̃(t) ! 0+ so
that (x"(t), y"(t)) is in \

M̄MM̃(t)C
+
M

for some M̃(t) ! +1. This shows

that y"(t)/x"(t)  1/M̃(t) ! 0+ as t ! +1.

Conclusion part II.
Step V concludes the proof of the theorem.

Given a hyperbolic fixed point x0, one can introduce a notion of global
stable and unstable manifolds. However, these sets in general have weaker
properties than the local counterparts.

Definition 2.9. Let x0 be a hyperbolic fixed point of a Ck, k � 1, vector
field F : Rn ! Rn with flow �t(·). The global stable and unstable manifolds
of x0 are defined as

W s(x0) :=
[

t0

�t(W
s

loc
(x0)) , W u(x0) :=

[

t�0

�t(W
u

loc
(x0)), (2.6)

where W s,u

loc
(x0) are the local manifolds in B"(x0) for some " > 0.

It is interesting to analyse the possible intersection of the global stable
and unstable manifolds. By the local uniqueness of the solutions to an ODE,
the two global manifolds cannot intersect transversally. In R2 they can
coincide or end up at another saddle fixed point, giving rise to a homoclinic
or two heteroclinic orbits respectively. In Rn with n � 3 more interesting
phenomena occurs, and some imply the existence of “chaotic” phenomena
(see Section 3.4).


