
Chapter 1

Introduction and basic

concepts

1.1 Dynamical systems

Definition 1.1. A dynamical system is a triple (X,G,S) defined as the
action S of a semigroup G with identity e on a set X, that is a function

S : G⇥X ! X

such that S(e, x) = x for all x 2 X, and S(g1,S(g2, x)) = S(g1g2, x) for all
g1, g2 2 G and all x 2 X.

In the following, the set X is assumed to be a locally compact connected
metric space.

Two main examples of dynamical system are given in the following def-
initions.

Definition 1.2. A discrete-time dynamical system is defined by the action
of N0 on a set X defined through the iterations of a map T : X ! X by

S(n, x) = Tn(x),

where Tn = T � · · · � T is the composition of T with itself n times. A
discrete-time dynamical system is denoted by the triple (X,N0, T ).

If the map T is invertible, the system can be extended to the action
of the group Z on X. Examples of a discrete-time dynamical system are
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8 CHAPTER 1. INTRODUCTION AND BASIC CONCEPTS

sequences defined by a recurrence relation. Let {xn} be a sequence of real
numbers defined by

x0 = a 2 R, xn = f(xn�1) 8n � 1,

for a real-valued function f . This corresponds to the dynamical system
defined on X = R through the iterations of the map f : R ! R, that is
xn = fn(a).

Definition 1.3. A continuous-time dynamical system is defined by the ac-
tion of R on a set X ⇢ Rn defined through the flow �t(x) of an autonomous
ordinary di↵erential equation ẋ(t) = F (x), that is

S(t, x) = �t(x),

where �t(x) is the solution of an ordinary di↵erential equation1 with initial
condition x, and �t : X ! X is a continuous function. A continuous-time
dynamical system is denoted by the triple (X,R,�).

Definiton 1.3 includes the case of non-autonomous di↵erential equations
by using the standard procedure of “enlarging” the space of variables. Let
F : R ⇥ Rn ! Rn define a time-dependent vector field F (t, x) on Rn and
consider the Cauchy problem

(
ẋ(t) = F (t, x(t))

x(0) = x0

If we let y = (x, t) 2 Rn+1 and F̃ (y) = (F (t, x), 1) be a vector field on
Rn+1, the previous non-autonomous Cauchy problem is equivalent to the
autonomous problem (

ẏ(t) = F̃ (y(t))

y(0) = (x0, 0)

A similar procedure can be applied to the case of sequences defined by a
recurrence relation depending on n.

Analogously, it is known that ordinary di↵erential equations of order
greater than one can be reduced to systems of ordinary di↵erential equations
of order one, hence again included in Definition 1.3. The same is true for the
discrete-time case. The following example shows how the procedure works.

1
All ordinary di↵erential equations we consider are assumed to have the property of

local uniqueness of solutions and time-interval of existence of solutions given by R up to

reparametrization.
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Example 1.1. Let us consider the sequence {xn} defined as follows

x1 = 0, x2 = 1, x3 = 1, xn = xn�1 + 2n�3 xn�2 + xn�3 8n � 4.

We define the vector y
n
= (xn, xn�1, xn�2, n) 2 R4. Then using the previous

recurrence we have

y
n+1

=
⇣
xn + 2n�2 xn�1 + xn�2 , xn , xn�1 , n+ 1

⌘
= T (y

n
) 8n � 3

with initial condition set to be y3 = (1, 1, 0, 3) and T : R4 ! R4 defined by

T (a, b, c, d) =
⇣
a+ 2d�2 b+ c , a , b , d+ 1

⌘
.

The idea of an action of a semigroup on a set X can be used in more
abstract contexts. Here we show only one example of algebraic nature that
will be studied in more details in part IV of this book.

Example 1.2. Let X be a group, G be R, and consider the action S on X
given by multiplication for a one-parameter subgroup of X. For example, if
X = SL(2,R) the action of R defined by

S(t, x) = x

✓
et/2 0
0 e�t/2

◆
2 SL(2,R)

represents the geodesic flow on the hyperbolic Poincaré half-plane (see Chap-
ter 9).

1.2 Basic notions

Definition 1.4. Given a dynamical system (X,G,S), the orbit of a point
x 2 X is the set O(x) := {S(g, x) : g 2 G}.

For a discrete-time dynamical system (X,N0, T ), the orbit of a point
x 2 X is the set

O(x) = {Tn(x) : n 2 N0} . (1.1)

If the map T is invertible, then we can consider the action of the group Z
on X and define the forward orbit and backward orbit of a point x 2 X by

O+(x) := {Tn(x) : n � 0} , O�(x) := {Tn(x) : n  0} .

The orbit O(x) is then given by O+(x) [O�(x).
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For a continuous-time dynamical system (X,R,�), the forward orbit and
backward orbit of a point x 2 X are defined by

O+(x) :=
[

t�0

�t(x), O�(x) :=
[

t0

�t(x), (1.2)

and the orbit is O(x) = O+(x) [O�(x).

Definition 1.5. Given a dynamical system (X,G,S), the centralizer of a
point x 2 X is the sub-semigroup

C(x) := {g 2 G : S(g, x) = x} .

A point x is called fixed if C(x) = G.

For a discrete-time dynamical system (X,N0, T ), a point x 2 X is fixed
if and only if T (x) = x. If x is not a fixed point but its centralizer is not
G, x is called periodic and the minimum positive element in C(x) is the
minimal period of x. For a fixed point O(x) = {x}, and for a periodic point
of minimal period p

O(x) =
�
x, T (x), T 2(x), . . . , T p�1(x)

 
.

For a non-invertible map there might be points which are not periodic but
are pre-images of a periodic point. For such points x, the centralizer con-
tains only the identity of G, but there exists k � 1 such that C(T k(x))
has a minimal positive element p. These points are called pre-periodic with
minimal period p.

For a continuous-time dynamical system (X,R,�) given by the solutions
to ẋ(t) = F (x), a point x 2 X is fixed if and only if F (x) = 0. If x is not
a fixed point but its centralizer is not trivial, x is called periodic and the
minimum positive element in C(x) is the minimal period of T . A periodic
point x of minimal period T > 0 satisfies

�t+T (x) = �t(x), 8 t 2 R,

and
�t+s(x) 6= �t(x), 8 s 2 (0, T ), t 2 R.

For a fixed point O(x) = {x}. For a periodic point of minimal period T

O(x) =
[

0tT

�t(x),

and its orbits is called a periodic orbit of period T .
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Definition 1.6. Given a dynamical system (X,G,S), a set A ⇢ X is called
invariant if for each x 2 A it holds S(g, x) 2 A for all g 2 G.

For a continuous-time dynamical system one can introduce a weaker
notion. We say that a subset A of X is forward invariant if for each x 2 A
it holds �t(x) 2 A for all t � 0. Analogously A is called backward invariant
if the same relation holds for all t  0. By definition, A is invariant if the
previous relation holds for all t 2 R.

For a discrete-time dynamical system (X,N0, T ), we consider more sit-
uations. We say that a subset A of X is forward invariant if T (A) ✓ A,
A is called fully invariant if T (A) = A, A is called completely invariant if
T�1(A) = A. The di↵erent notions are useful in di↵erent approaches.

Finally, if the action of the group G on X can be interpreted in terms of
time evolution, we can introduce notions about the forward and backward
evolution of an orbit. In more general situations, one studies the set of all
the possible limit points of an orbit as the sequence of the elements of the
group acting varies.

Definition 1.7. For a discrete-time dynamical system (X,N0, T ), the !-
limit set of a point x 2 X is the set

!(x) := {y 2 X : 9nk ! +1 such that Tnk(x) ! y as k ! 1} .

Definition 1.8. For a continuous-time dynamical system (X,R,�), the ↵-
limit set of a point x 2 X is the set

↵(x) :=
�
y 2 X : 9 tk ! �1 such that �tk(x) ! y as k ! 1

 
.

Analogously the !-limit set of a point x 2 X is the set

!(x) :=
�
y 2 X : 9 tk ! +1 such that �tk(x) ! y as k ! 1

 
.

Proposition 1.1. Given a continuous-time dynamical system (X,R,�), let
x 2 X such that O+(x) is bounded. Then the set !(x) is non-empty, compact
and invariant. If O�(x) is bounded, the same holds for the set ↵(x).

Proof (see [Gl94]). Given a point x with bounded forward orbit, let us con-
sider a strictly increasing sequence {⌧j}1j=0 of times in R+ with ⌧0 = 0 and
⌧j ! +1, and let xj := �⌧j (x). We first show that

!(x) =
1\

j=0

áO+(xj). (1.3)
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By the definition of the !-limit set, it is immediate that !(x) ⇢ áO+(xj) for

all j � 0. Hence it remains to show that if y 2 \1

j=0
áO+(xj) then y 2 !(x).

By definition of closure of a set, for all j � 0 there exists a sequence {⇠j
n
}n of

points in O+(xj) such that ⇠j
n
! y, hence there exists a sequence {tjn}n such

that �
t
j
n
(xj) ! y. In particular we have proved that there exists a strictly

increasing diverging sequence {⌧j}1j=0 and sequences {tjn}n such that

�
⌧j+t

j
n
(x) ���!

n!1
y, 8 j � 0.

From {⌧j + tjn}j,n we can then extract a diverging sequence {t̃k}k such that
�
t̃k
(x) ! y as k ! 1. Hence y 2 !(x), and (1.3) is proved.

The first properties of !(x) follow from (1.3). The sets { áO+(xj)}j define
a decreasing sequence of non-empty closed sets, which are bounded because
O+(x) is bounded. Hence !(x) is a non-empty compact set. It remains to
prove that it is invariant.

Let y 2 !(x), and let {tk}k be a positively diverging sequence such that
�tk(x) ! y as k ! 1. By the properties of a continuous-time dynamical
system

�t+tk(x) = �t(�tk(x)) ���!
k!1

�t(y), 8 t 2 R.

Hence we have shown that �t(y) 2 !(x) for all t 2 R. This concludes the
proof for the !-limit set.

The proof for the ↵-limit set follows along the same lines.

Proposition 1.2. Given a discrete-time dynamical system (X,N0, T ), let
x 2 X such that O(x) is bounded. Then the set !(x) is non-empty and
compact. If T is continuous then !(x) is fully invariant.

Proof. We can repeat the proof of Proposition 1.1 to show that the !-limit
set is non-empty and compact. In particular the proof follows from the
analogue of (1.3).

Let T : X ! X be a continuous map with respect to a topological struc-
ture on X. Then given y 2 !(x), and being {nk}k the diverging sequence
of naturals for which Tnk ! y as k ! 1, we have

Tnk+1(x) = T (Tnk(x)) ���!
k!1

T (y).

Hence T (y) 2 !(x), and !(x) is a positively invariant set. On the other
hand, since O(x) is bounded, the sequence {Tnk�1(x)}k admits a convergent
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sub-sequence {Tnkj
�1(x)}j with limit point z. Hence z 2 !(x). Again by

continuity of T we find

T (z) = T
⇣

lim
j!1

Tnkj
�1(x)

⌘
= lim

j!1

Tnkj (x) = y

since nkj is a subsequence of nk. Hence y 2 T (!(x)), and !(x) is then fully
invariant.

We remark that the !-limit set is not completely invariant in general. It
is su�cient to think of the case in which the !-limit set is a fixed point with
more than one pre-image.

Definition 1.9. For a continuous-time dynamical system (X,R,�), the or-
bit of a point y is called homoclinic if there exists a fixed point x such
that

↵(y) = !(y) = {x}.
If there exist two distinct fixed points x1, x2 such that

↵(y) = {x1} and !(y) = {x2},

then the orbit of the point y is called heteroclinic.

Definition 1.9 can be adapted verbatim to the case of a discrete-time
dynamical system (X,N0, T ) with invertible T .

1.3 Examples

Here we collect the main examples of discrete dynamical systems that will
be used in the following.

Example 1.3 (The roots). Sequences defined by a recurrence are the first very
basic example of a discrete-time dynamical system. Let c > 0, k 2 [1, 3],
and consider the sequence {an} defined by

(
an+1 =

1
2

⇣
an + c

akn

⌘
, 8n � 0

a0 2 (0,+1)

It is an exercise to prove that for all a0 2 R+ it holds limn an = c
1

k+1 . This
can be read as a result about the asymptotic behaviour of the orbits of
points in R+ for the dynamical system defined by the map

Tc,k : R+ ! R+, Tc,k(x) =
1

2

⇣
x+

c

xk

⌘
.

In fact one can prove that !(x) = c
1

k+1 for all x 2 R+.
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Example 1.4 (Rotations of the circle). Let us consider the action of Z on S1

given by the rotation of an angle 2⇡↵, for ↵ 2 R, that is

S(n, z) = z e2⇡in↵ 2 S1, 8 z 2 S1, n 2 Z.

By writing S1 = {z 2 C : z = e2⇡ix, x 2 R}, we make the identification
of S1 with [0, 1]/(0 ⇠ 1), the unit interval with end points identified. The
rotation of angle 2⇡↵ can then be written as a map on S1 as

R↵ : S1 ! S1, R↵(x) = x+ ↵ (mod 1) = {x+ ↵}. (1.4)

Proposition 1.3. If ↵ is rational all orbits of R↵ are periodic of the same
minimal period. If ↵ is irrational all orbits of R↵ are dense.

Proof. If ↵ = p/q 2 Q with (p, q) = 1, then Rq
↵(x) = {x + q↵} = x for all

x 2 [0, 1). In addition, if n 2 N and n < q, we can write n↵ = np/q = m+r/q
with m 2 Z and r/q 2 Q \ (0, 1). Hence Rn

↵(x) = {x+ r/q} 6= x. It follows
that all orbits are periodic of the minimal period q.

Let’s now assume that ↵ is irrational. Since R↵ is an isometry, it is
enough to show that one orbit is dense. In fact, we prove that forward
orbits are dense by considering {Rn

↵(0)}n�0.
Let x 2 S1, then we show that for any " > 0 there exists n̄ such that

Rn̄
↵(0) 2 (x � " , x + "). First, by Proposition B.3, we find p, q 2 N such

that 0 < q↵ � p < ". This means that Rq
↵(0) 2 (�", "). If we now consider

the points {k(q↵ � p)}k�0, it follows that there exists K > 0 such that the
points {k(q↵ � p)}0kK create a partition of [0, 1] into intervals of length
less than ". Therefore for all x 2 S1

min
0kK

d(x, k(q↵� p)) < "

and the minimum is achieved for some value k̄. Hence choosing n̄ = k̄q the
proof is finished.

A consequence of the proposition is that if ↵ is rational, then all points
have their own periodic orbit as ↵-limit and !-limit sets. Instead, if ↵ is
irrational, then ↵(x) = !(x) = S1 for all x.

Example 1.5 (The tent maps). It is a family of maps

Ts : [0, 1] ! [0, 1] with s 2 (0, 2]

defined as

Ts(x) =

(
s x, if x 2 [0, 12 ];

s (1� x), if x 2 [12 , 1].
(1.5)
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Example 1.6 (The logistic maps). It is a family of maps

T� : [0, 1] ! [0, 1] with � 2 (0, 4]

defined as
T�(x) = �x (1� x). (1.6)

Example 1.7 (Linear endomorphisms of the circle). It is a family of maps

Tm : S1 ! S1 with m 2 N, m � 2

where again we think of S1 as [0, 1]/(0 ⇠ 1), defined as

Tm(x) = {mx}. (1.7)

Special cases are m = 2 which is also called the Bernoulli map and is related
with the binary expansion of real numbers, and m = 10 which is related with
the decimal expansion of real numbers.

Example 1.8 (Symbolic dynamics). We now introduce an abstract system.
Let A be a finite or countable alphabet and denote by N 2 N [ {1} the
number of symbols. Let ⌦A be the set of all infinite strings with symbols
from A, that is

⌦A = AN0 = {! = (!i)i2N0 : !i 2 A 8 i 2 N0} .

If N < 1, the space X is compact when endowed with the product topology
or with the metric

d✓(!, !̃) := ✓min{i2N0 :!i 6=!̃i} , for a fixed ✓ 2 (0, 1). (1.8)

The space ⌦A is totally disconnected and a basis of the product topology is
given by the cylinders: for k 2 N, i1, i2, . . . , ik 2 N0, and a1, a2, . . . , ak 2 A,
we define

Ci1,i2,...,ik(a1, a2, . . . , ak) :=
�
! 2 ⌦A : !ij = aj 8 j = 1, . . . , k

 
.

In particular, we use the notations C(a) = C1(a) and

Ci1,i2,...,ik(!) = Ci1,i2,...,ik(!i1 ,!i2 , . . . ,!ik)

for a fixed ! 2 ⌦A.
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On ⌦A we consider the discrete dynamical system given by the action of
the continuous map

� : ⌦A ! ⌦A, (�(!))i = !i+1 8 i 2 N0.

The system (⌦A,N0,�) is called full shift on A.
In some situations it is useful to consider a sub-system of the full shift.

A first easy example is given by considering infinite strings which cannot
contain a given set of words of finite length. For example, let M = (mij) 2
M(N ⇥ N, {0, 1}), a N ⇥ N matrix with coe�cients in the set {0, 1} and
rows and columns indexed by A. We set

⌦A,M :=
n
! 2 AN0 : m!i !i+1 = 1 8 i 2 N0

o
,

that is, saying that the transition from a 2 A to b 2 A is allowed i↵ mab = 1,
the set ⌦A,M contains the infinite strings in AN0 which contain only allowed
transitions. It is immediate to verify that ⌦A,M is forward invariant for the
action of � and it is fully invariant if for each b 2 A there exists a 2 A with
mab = 1. Hence we can restrict the action of � to ⌦A,M , and the dynamical
system (⌦A,M ,N0,�) is called subshift of finite type on A.

Finally, by considering bi-infinite strings AZ, one can consider the action
of � onAZ and onAZ

M
. In this case the map � is invertible and the dynamical

systems (AZ,Z,�) and (AZ
M
,Z,�) are called double full shift and double

subshift of finite type, respectively.

Example 1.9 (Toral automorphisms). Let T2 := R2/Z2 be the two dimen-
sional torus. Given a matrix A 2 M(2⇥ 2,Z) with det(A) = ±1, the linear
map R2 3 x 7! Ax may be projected onto a continuous automorphisms of
T2 given by

T2 3
✓
x
y

◆
7! TA(x, y) := A

✓
x
y

◆
mod Z2.

The most famous example is the so-called Arnold’s Cat map, which is the
toral automorphism given by the matrix

A =

✓
2 1
1 1

◆

Example 1.10 (The standard map). Let us consider an electron with charge e
moving horizontally in a cyclotron thanks to the action of a vertical magnetic
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field of constant modulus B, and subject to a time-dependent voltage drop
V sin(!t) across a narrow azimuthal gap. Let E denote the energy of the
electron, then the period of rotation is given by T = 2⇡ E

eBc
. We measure

energy and time (E, t) just before every voltage drop, hence after one circuit
we obtain

E0 = E � e V sin(!t) , t0 = t+
2⇡

eBc
E0 .

Using the variables x := !

2⇡ t and y := !

eBc
E, and setting k := 2⇡ !V

Bc
, we

have defined the map

T̃ : R⇥ R ! R⇥ R , T̃ (x, y) =
⇣
x+ y � k

2⇡
sin(2⇡x) , y � k

2⇡
sin(2⇡x)

⌘
.

Note that T̃ (x + 1, y) = T̃ (x, y) + (1, 0), hence given the projection ⇡ :
R⇥ R ! S1 ⇥ R defined as ⇡(x, y) = (x� bxc, y), it follows that the map

T : S1 ⇥R ! S1 ⇥R , T (x, y) =
⇣
x+ y� k

2⇡
sin(2⇡x) , y� k

2⇡
sin(2⇡x)

⌘

(1.9)
satisfies ⇡ � T̃ = T � ⇡. Hence T̃ is a lift of T . The map T is known as the
(Chirikov) standard map.

Note also that T (x, y + 1) = T (x, y) + (0, 1), hence the standard map
can be considered as acting on T2.

Example 1.11 (Birkho↵ billiards). Let ⌦ ⇢ R2 be a strictly convex domain
with C3 boundary2. Let us normalize the set to |@⌦| = 1 and fix the positive
orientation of the boundary.

The mathematical billiard is the continuous dynamical system given by
the frictionless motion of a pointwise ball inside ⌦, with elastic specular
reflections at @⌦. The phase space is then given by ⌦⇥S1, since the velocity
of the ball is preserved in modulus.

A convenient simpler description of the system is given by the Poincaré
map of the flow on the set @⌦ ⇥ [0,⇡], described by the evolution of the
couples (position,angle) of the subsequent collisions of the ball with the
boundary of the set. For each collision, its position can be described by the
arc-length coordinate s 2 S1 and its angle by the angle # 2 [0,⇡] between
the trajectory of the ball after the collision and the oriented tangent vector
to @⌦ at the collision point. We have thus described a map

T : S1 ⇥ (0,⇡) ! S1 ⇥ (0,⇡)

2
Thanks to [Ha77] this assumption avoid accumulation of collision times
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which can be continuously extended to S1 ⇥ [0,⇡] by T (s, 0) = (s, 0) and
T (s,⇡) = (s,⇡).

This map may be defined with some cautions for more general domains
⌦ ⇢ R2 (see [CM06]).

Example 1.12 (Mechanics and Billiards). Let m1 and m2 be two distinct
point masses moving frictionless on the interval [0, 1], subject to perfectly
elastic collisions among them and with two infinite ideal walls at the ex-
tremes of the interval. Let x1, x2 2 [0, 1] with x1  x2, and v1, v2 2 R,
denote the positions and velocities of the masses, and introduce the vari-
ables q1 :=

p
m1 x1 and q2 :=

p
m2 x2, and u1 =

p
m1 v1 and u2 :=

p
m2 v2.

The invariances of the kinetic energy K and of the linear momentum P of
the system read in the new variables as

u21 + u22 = 2K ,
p
m1 u1 +

p
m2 u2 = P .

In the new variables, the configuration space is given by the triangle

A =
�
(q1, q2) 2 R2 : q1 � 0 , q2 

p
m2 ,

p
m2 q1 

p
m1 q2

 
.

A trajectory (q1(t), q2(t)) satisfies the following constraints:

q̇21(t) + q̇22(t) = 2K 8 t

(hence the motion occurs with constant speed);

p
m1 q̇1 +

p
m2 q̇2 = P 8 t

(hence the velocity vector of the motion has fixed scalar product with the
vector (

p
m1,

p
m2)).

These properties imply that the motion (q1(t), q2(t)) in A can be de-
scribed by the orbit of a mathematical billiard ball inside A.

1.4 Exercises

1.1. Let T : [0, 1] ! [0, 1] be defined by

T (x) =

(
1
2x, if x 2 (0, 1];

1, if x = 0.

Show that for all x 2 [0, 1] the !-limit set !(x) is non-empty but not forward
invariant.
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1.2. In Example 1.12 let the masses move in [0,+1), and consider the
motion with initial positions q1(0) < q2(0) and velocities u1(0) = 0 and
u2(0) = �1. If m2 � m1, how many collisions among the two balls and
among mass m1 and the wall at x = 0 will occur? What happens if m2 =
100nm1?


