Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica A

Pisa, 18 dicembre 2015

Domanda 1 La successione $a_n = e^{\frac{(-1)^n n^2 + 3n + 5}{(n+1)!}}$

- A) non ha né massimo né minimo
- B) ha massimo ma non ha minimo
- C) ha sia massimo che minimo
- D) ha minimo ma non ha massimo

Domanda 2

 $\lim_{n\to\infty} \sqrt[n]{\frac{\overline{n!}}{n!}} =$

- A) $+\infty$ B) $\frac{1}{e}$ C) 1

- D) e

Domanda 3 La successione $a_n = 3n + \sin(4n)$

- A) non è monotona
- B) è limitata
- C) non ha limite D) è strettamente crescente

D

В

С

Domanda 4 Dato $A = \left\{ n \in \mathbb{N}, n \ge 1 : \log\left(1 + \frac{(-1)^n}{2n}\right) < 0 \right\}$, risulta A) $\sup(A) = +\infty$ B) $\min(A) = -\log 2$ C) $\max(A) = \log 5 - \log 4$ D) $\max(A) = 2$

Α

Domanda 5

 $\int_{2}^{x} \frac{dx}{x \log x} =$

- A) $1 \log 2$ B) $\frac{1}{e} \frac{1}{2 \log 2}$ C) $\log(\log 2)$ D) $\frac{1 + \log 2}{4(\log 2)^2}$

 \mathbf{C}

D

Domanda 6 Sia F(x) la primitiva di $f(x)=\frac{\sin x}{1+\cos^2 x}$ tale che F(0)=0. Allora $F\left(\frac{\pi}{2}\right)=A$) $\frac{\pi}{2}$ B) 1 C) $\frac{1}{2}$ D) $\frac{\pi}{4}$

Domanda 7 Indicando con [x] la parte intera di x, risulta $\int_{0}^{x} [x] dx = \int_{0}^{x} [x] dx$

- A) 1
- B) -1
- C) non è integrabile

D

С

В

Domanda 8 Una soluzione dell'equazione differenziale $y' = \frac{x}{y^3}$ è

- A) $y(x) = \sqrt[4]{x^2 + 2}$ B) $y(x) = \frac{4}{(x^2 + 1)^2}$ C) $y(x) = \sqrt[4]{2x^2 + 1}$ D) $y(x) = 4\sqrt[4]{x^2 + 3}$

Domanda 9 Sia y(x) una soluzione dell'equazione differenziale $y'=4y+e^x$. Allora $\lim_{x\to -\infty}y(x)=0$

- $A) +\infty$
- B) 0
- C) $-\infty$
- D) dipende dalla soluzione scelta

Domanda 10 Sia y(x) la soluzione del problema di Cauchy $\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 3 \end{cases}$ Allora y(1) = y'(0) = 0.

$$y \begin{cases} y'' + y' - 2y = 0 \\ y(0) = 3 \end{cases}$$
 Allors
$$y'(0) = 0.$$

A)
$$e + e^2$$

- A) $e + e^2$ B) $1 + \frac{1}{e}$ C) $e \frac{2}{e^2}$ D) $2e + \frac{1}{e^2}$

D

Università di Pisa - Corso di Laurea in Informatica

Analisi Matematica A

Pisa, 18 dicembre 2015

Esercizio 1 Studiare la funzione $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da

$$f(x) = \begin{cases} x \arctan \frac{1}{x} + \log \sqrt{1 + x^2} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

In particolare determinarne gli insiemi di continuità e di derivabilità, eventuali asintoti (compresi quelli obliqui), estremi superiore e inferiore, massimo e minimo, punti di massimo e di minimo locali e intervalli di convessità.

Soluzione

Osserviamo subito che

$$f(-x) = -x \arctan \frac{1}{-x} + \log \sqrt{1 + (-x)^2} = f(x)$$

quindi la funzione è pari e basterà studiarla sulla semiretta $[0, +\infty)$. Calcoliamo i limiti della funzione all'infinito e in 0.

$$\lim_{x \to 0^+} f(x) = 0 \arctan \frac{1}{0^+} + \log \sqrt{1+0} = 0 \arctan(+\infty) + \log 1 = 0 \frac{\pi}{2} + 0 = 0 = f(0)$$

che prova la continuità della funzione in x = 0. La funzione è ovviamente continua in ogni altro punto di \mathbb{R} , quindi non ci sono asintoti verticali.

$$\lim_{x \to +\infty} f(x) \ge \lim_{x \to +\infty} \log \sqrt{1 + x^2} = \log \sqrt{+\infty} = \log(+\infty) = +\infty$$

quindi $\sup(f) = +\infty$, la funzione non ha massimo e non ci sono asintoti orizzontali. Osserviamo anche che $f(x) \ge 0$ per ogni $x \in \mathbb{R}$ e che f(0) = 0 quindi $\min(f) = \inf(f) = 0$ e x = 0 è punto di minimo locale ed assoluto. Cerchiamo eventuali asintoti obliqui.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \arctan \frac{1}{x} + \frac{\log \sqrt{1+x^2}}{x} = \arctan \frac{1}{+\infty} + \lim_{x \to +\infty} \frac{\log \left(x\sqrt{1+\frac{1}{x^2}}\right)}{x}$$
$$= \arctan 0 + \lim_{x \to +\infty} \left(\frac{\log x}{x} + \frac{\log \sqrt{1+\frac{1}{x^2}}}{x}\right) = 0 + 0 + \frac{\log 1}{+\infty} = 0$$

quindi non ci sono asintoti obliqui. Calcoliamo ora la derivata, tenendo conto del fatto che $\log \sqrt{1+x^2} = \frac{1}{2} \log(1+x^2)$

$$f'(x) = \arctan \frac{1}{x} + x \frac{1}{1 + \frac{1}{x^2}} \left(-\frac{1}{x^2} \right) + \frac{1}{2} \frac{2x}{1 + x^2} = \arctan \frac{1}{x} - x \frac{1}{x^2 + 1} + \frac{x}{1 + x^2} = \arctan \frac{1}{x}.$$

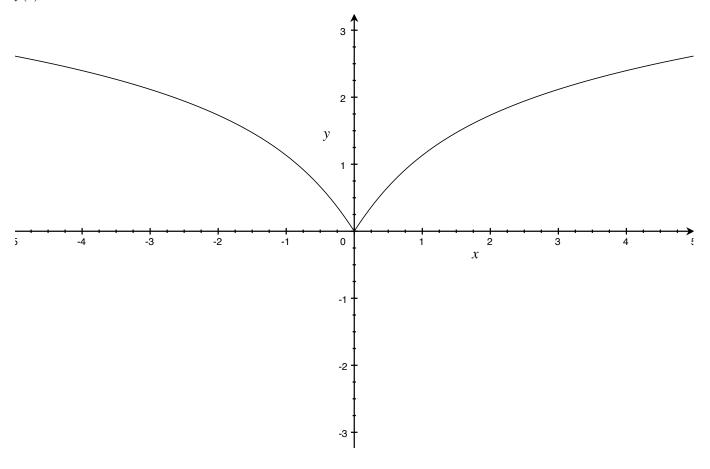
Si ottiene subito che f'(x) > 0 per ogni $x \in (0, +\infty)$. La funzione è quindi strettamente crescente in $[0, +\infty)$ e strettamente decrescente in $(-\infty, 0]$. Il punto x = 0 è quindi l'unico punto di minimo locale (e assoluto) e non ci sono punti di massimo locale. Controlliamo la derivabilità in x = 0. Dato che la funzione è continua in x = 0 abbiamo che

$$f'_{+}(0) = \lim_{x \to 0^{+}} f'(x) = \arctan \frac{1}{0^{+}} = \arctan(+\infty) = \frac{\pi}{2}.$$

Dalla parità della funzione otteniamo anche che $f'_{-}(0) = -\frac{\pi}{2}$ e il punto x = 0 è un punto angoloso. Per verificare la convessità valutiamo la derivata seconda per $x \neq 0$, dato che in x = 0 non esiste neanche la derivata prima.

$$f''(x) = \frac{1}{1 + \frac{1}{x^2}} \left(-\frac{1}{x^2} \right) = -\frac{1}{x^2 + 1}$$

quindi f''(x) < 0 per ogni $x \neq 0$. Ne segue che f è concava sulla semiretta $(-\infty, 0]$ e sulla semiretta $[0, +\infty)$. La funzione non è globalmente concava in \mathbb{R} , come si può verificare facilmente unendo con un segmento un punto del grafico con ascissa negativa a uno con ascissa positiva e osservando che il grafico non è sopra il segmento dato che f(0) = 0.



Esercizio 2 Calcolare il massimo per $x \in [0, \frac{\pi}{4}]$ della funzione

$$f(x) = \int_{\cos x}^{\sin x} \sqrt{1 - t^2} \, dt.$$

Soluzione

Dato che $|\cos x| \le 1$ e $|\sin x| \le 1$ la funzione integranda è definita in tutto l'intervallo di integrazione inoltre, essendo anche continua, segue che f(x) è derivabile (anche gli estremi di integrazione sono funzioni derivabili). La f inoltre è continua in $\left[0, \frac{\pi}{4}\right]$ e per il teorema di Weierstrass ammette massimo e minimo. Valutiamo la derivata

$$f'(x) = \sqrt{1 - \sin^2 x} \cos x - \sqrt{1 - \cos^2 x} (-\sin x) = \sqrt{\cos^2 x} \cos x + \sqrt{\sin^2 x} \sin x$$
$$= |\cos x| \cos x + |\sin x| \sin x = \cos^2 x + \sin^2 x = 1$$

dato che nell'intervallo $\left[0, \frac{\pi}{4}\right]$ le funzioni seno e coseno sono non negative. Abbiamo ottenuto che f'(x) > 0 in tutto l'insieme di definizione, quindi f è strettamente crescente in $\left[0, \frac{\pi}{4}\right]$. Ne segue che

$$\max(f) = f\left(\frac{\pi}{4}\right) = \int_{\cos\frac{\pi}{4}}^{\sin\frac{\pi}{4}} \sqrt{1 - t^2} \, dt = \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} \sqrt{1 - t^2} \, dt = 0.$$

Esercizio 3 Risolvere il problema di Cauchy

$$\begin{cases} y' = 2xy + x^5 \\ y(0) = 3. \end{cases}$$

Soluzione

L'equazione è lineare del primo ordine a coefficienti continui. Poniamo quindi a(x) = 2x, $b(x) = x^5$ e determiniamo una primitiva A(x) di a(x)

$$A(x) = \int 2x \, dx = x^2.$$

Eseguiamo ora l'integrazione

$$\int e^{-A(x)}b(x) \, dx = \int e^{-x^2} x^5 \, dx$$

effettuando la sostituzione

$$-x^2 = t$$
, $\frac{dt}{dx} = -2x$, $x = -\frac{1}{2}dt$

otteniamo

$$\int e^{-x^2} x^5 \, dx = -\frac{1}{2} \int e^t t^2 \, dt.$$

Eseguiamo l'ultimo integrale per parti

$$\int e^t t^2 dt = e^t t^2 - \int e^t 2t dt = e^t t^2 - 2\left(e^t t - \int e^t dt\right) = e^t t^2 - 2e^t t + 2e^t + c.$$

Quindi, dato che $t = -x^2$, abbiamo

$$\int e^{-x^2} x^5 dx = -\frac{1}{2} e^{-x^2} (x^4 + 2x^2 + 2) + c.$$

L'intergrale generale dell'equazione differenziale sarà quindi

$$y(x) = e^{A(x)} \left(\int e^{-A(x)} b(x) \, dx + c \right) = e^{x^2} \left(-\frac{1}{2} e^{-x^2} \left(x^4 + 2x^2 + 2 \right) + c \right) = -\frac{1}{2} \left(x^4 + 2x^2 + 2 \right) + c e^{x^2}.$$

Ricaviamo la costante c dalla condizione iniziale y(0) = 3

$$3 = y(0) = -\frac{1}{2} 2 + c \iff c = 4.$$

La soluzione del problema di Cauchy risulta quindi

$$y(x) = 4e^{x^2} - \frac{x^4}{2} - x^2 - 1.$$