Analisi Matematica I

Pisa, 6 luglio 2009

Domanda 1 Date due funzioni $f, g: [0,1] \longrightarrow \mathbb{R}$ derivabili con g(x) > 0 per ogni $x \in [0,1]$ allora necessariamente risulta che

A)
$$\int_{0}^{1} f(x) \log g(x) dx = \int_{0}^{1} f(x) dx \left[\log g(x) \right]_{0}^{1} - \int_{0}^{1} \frac{f(x)}{g(x)} dx$$

B)
$$\int_{0}^{1} f'(x) \log g(x) dx = f(1) \log g(1) - f(0) \log g(0) - \int_{0}^{1} \frac{f(x)}{g(x)} g'(x) dx$$

C)
$$\int_{0}^{1} f(x) \log g(x) dx = +\infty$$
 D) $\int_{0}^{1} f(x) \log g(x) dx = \left[\log g(x) g'(x) f(x) \right]_{0}^{1} - \int_{0}^{1} f'(x) g(x) dx$

Domanda 2 Sia $f:(-1,1)\longrightarrow \mathbb{R}$ una funzione continua. Allora, necessariamente

- A) $\forall \varepsilon > 0$ risulta $|f(x) f(0)| < \varepsilon$
- B) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{tale che se } |x| < \delta \; \text{allora} \; f(0) 3\varepsilon < f(x) < f(0) + \frac{\varepsilon}{2}$
- C) $\forall \varepsilon > 0$, $\forall \delta > 0$ se $|x| < \delta$ allora $|f(x) f(0)| < \varepsilon$

D)
$$\exists \varepsilon > 0$$
 tale che $|f(x)| < \varepsilon \ \forall x \in (-1,1)$

Domanda 3 Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ una funzione derivabile e sia $F(x) = \int_{\pi/4}^{x^3} f(\cos x) dx$. Allora necessariamente

В

A)
$$F'(x) = -\int_{0}^{x^{3}} f'(\cos x) \sin x \, dx$$
 B) $F'(x) = 3x^{2} f'(\cos x) - \frac{\pi}{4} f\left(\frac{\sqrt{2}}{2}\right)$

C)
$$F'(x) = 3x^2 f(\cos(x^3))$$
 D) $F'(x) = x^3 f(\cos(3x^2)) - \frac{\pi}{4} f\left(\frac{\sqrt{2}}{2}\right)$

Domanda 4 Sia $f:(0,+\infty)\longrightarrow \mathbb{R}$ continua e tale che $\left|f(x)-\arctan\frac{1}{x}\right|<\frac{1}{x^2}$. Allora risulta che

A)
$$\int_{0}^{1} f(x) dx$$
 esiste finito B) $\int_{1}^{+\infty} |f(x)| dx$ esiste finito

C)
$$\int_{1}^{+\infty} f(x) dx = +\infty$$
 D)
$$\int_{0}^{1} |f(x)| dx = +\infty$$

Domanda 5 La serie $\sum_{n\geq 2} \frac{\cos(n\pi)}{n\log n}$

- A) converge assolutamente
- C) converge semplicemente
- D) è indeterminata

С

Domanda 6 Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ definita da $f(x) = \begin{cases} e^{x \sin \frac{1}{x} + \sin x} & \text{se } x > 0 \\ x^2 + x + 1 & \text{se } x \leq 0. \end{cases}$

- A) f non è continua in 0
- B) f è derivabile in 0

C

- C) f è continua ma non derivabile in 0 D) f è derivabile ma non continua in 0

Domanda 7 Sia (a_n) una successione di numeri reali tale che $\lim_{n\to\infty}\sin(a_n)=0$. Allora, necessaria-

- A) $\lim_{n \to \infty} a_n = 0$ B) $\lim_{n \to \infty} \cos(|a_n|) = 1$

C) $\lim_{n \to \infty} \frac{\sin(a_n)}{a_n} = 1$ D) $\lim_{n \to \infty} e^{\tan a_n} = 1$

D

Domanda 8 La successione $a_n = \left(\frac{n}{2} + \frac{1}{n}\right) \sin \frac{3}{n}$ con $n \ge 1$

- A) è debolmente decrescente
- B) è limitata superiormente

В

C) non ammette limite D) non è limitata inferiormente

Domanda 9 Siano (a_n) e (b_n) due successioni di segno qualunque tali che $a_n \neq 0, b_n \neq 0$ per ogni $n \in \mathbb{N}$ e $\sum\limits_n a_n$ e $\sum\limits_n b_n$ siano convergenti. Allora, necessariamente

- A) $\sum_{n} a_n b_n$ converge B) $\sum_{n} \frac{\log |a_n|}{e^{b_n}}$ diverge

C) $\sum_{n} e^{b_n} - e^{a_n}$ diverge D) $\sum_{n} \frac{e^{a_n}}{(\log |b_n|)^2}$ converge

В

Domanda 10 Sia $f:(0,+\infty) \longrightarrow \mathbb{R}$ definita da $f(x) = \frac{(e^{x^2} + 1)(1 - \cos\sqrt{x})(1 + \sin x)}{(e^{x^2} - 1)(2 + \sin x)(1 + x^2)}$. Allora

- A) $\int_{0}^{1} f(x) dx$ esiste finito B) $\int_{0}^{+\infty} f(x) dx = +\infty$

C) $\int_{1}^{+\infty} f(x) dx = +\infty$ D) $\int_{0}^{+\infty} f(x) dx$ non esiste

В

Università di Pisa - Corso di Laurea in Ingegneria Civile e Ambientale

Analisi Matematica I

Pisa, 6 luglio 2009

Esercizio 1 Data la successione $a_n = \frac{n^4 - 1}{n - 1}$, definita per $n \ge 2$, calcolare $\lim_{n \to \infty} \frac{a_{n+1} - a_n}{n^2}$. Verificare inoltre se (a_n) è monotona.

Soluzione

Osserviamo che $a_n = n^3 + n^2 + n + 1$ quindi

$$a_{n+1} - a_n = (n+1)^3 + (n+1)^2 + (n+1) + 1 - n^3 - n^2 - n - 1 = 3n^2 + 5n + 2$$

quindi

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{n^2} = \lim_{n \to \infty} \frac{3n^2 + 5n + 2}{n^2} = 3.$$

Per quanto riguarda la monotonia osserviamo che

$$3n^2 + 5n + 2 > 0 \iff n > \frac{2}{3} \text{ oppure } n < -1.$$

Considerando il fatto che $n \in \mathbb{N}$ otteniamo che $a_{n+1} - a_n > 0$ se e solo se $n \geq 2$. Quindi la successione (a_n) è strettamente crescente.

Esercizio 2 Data la funzione $f(x) = \sqrt{2x^2 - |x+1|}$ determinarne gli insiemi di definizione, di continuità, di derivabilità di crescenza e decrescenza. Trovare inoltre i punti di massimo e di minimo locali e assoluti, l'estremo superiore e inferiore e gli eventuali asintoti. Tracciare un grafico approssimativo della funzione.

Soluzione

L'insieme di definizione di f è quello dove l'argomento della radice quadrata e maggiore o uguale di 0, cioè

$$2x^2 > |x+1| \iff -2x^2 \le x+1 \le 2x^2$$

che è equivalente al sistema di disequazioni

$$\begin{cases} 2x^2 + x + 1 \ge 0 \\ 2x^2 - x - 1 \ge 0 \end{cases}.$$

La prima disequazione è soddisfatta per ogni $x \in \mathbb{R}$ mentre la seconda è verificata per $x \ge 1$ oppure per $x \le -\frac{1}{2}$. L'insieme di definizione di f è quindi $D = (-\infty, -\frac{1}{2}] \cup [1, +\infty)$. La funzione è continua in tutto il suo insieme di definizione perché composizione di funzioni continue. Osserviamo ora che $x+1 \ge 0$ se e solo se $x \ge -1$ quindi sarà

$$f(x) = \begin{cases} \sqrt{2x^2 + x + 1} \equiv f_1(x) & \text{se } x \le -1\\ \sqrt{2x^2 - x - 1} \equiv f_2(x) & \text{se } -1 \le x \le -\frac{1}{2} \text{ oppure } x \ge 1. \end{cases}$$

Calcoliamo le derivate:

$$f_1'(x) = \frac{4x+1}{2\sqrt{2x^2+x+1}}, \qquad f_2'(x) = \frac{4x-1}{2\sqrt{2x^2-x-1}}$$

quindi

$$f'_{-}(-1) = \lim_{x \to -1^{-}} f'_{1}(x) = -\frac{3}{2\sqrt{2}}, \qquad f'_{+}(-1) = \lim_{x \to -1^{+}} f'_{2}(x) = -\frac{5}{2\sqrt{2}}$$

ne segue che la funzione non è derivabile per x = -1 che risulta un punto angoloso. Inoltre

$$\lim_{x \to -\frac{1}{2}^{-}} f_2'(x) = -\infty, \qquad \lim_{x \to 1^{+}} f_2'(x) = +\infty$$

quindi f non è derivabile neanche nei punti $-\frac{1}{2}$ e 1 dove risulta

$$f'_{-}\left(-\frac{1}{2}\right) = -\infty, \qquad f'_{+}(1) = +\infty$$

e sono quindi punti a tangente verticale (o di semicuspide). Vediamo ora gli eventuali asintoti.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt{2x^2 + x + 1} = +\infty, \qquad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{2x^2 - x - 1} = +\infty$$

non ci sono quindi asintoti orizzontali. Controlliamo quelli obliqui. Per $x \to -\infty$ risulta

$$f(x) = \sqrt{2x^2 + x + 1} = \sqrt{2}|x|\sqrt{1 + \frac{x}{2x^2} + \frac{1}{2x^2}} = -\sqrt{2}x\left(1 + \frac{1}{4x} + o\left(\frac{1}{x}\right)\right) = -\sqrt{2}x - \frac{1}{2\sqrt{2}} + o(1)$$

quindi a $-\infty$ è presente l'asintoto obliquo $y=-\sqrt{2}x-\frac{1}{2\sqrt{2}}$. Invece per $x\to+\infty$ si ha che

$$f(x) = \sqrt{2x^2 - x - 1} = \sqrt{2}|x|\sqrt{1 - \frac{x}{2x^2} - \frac{1}{2x^2}} = \sqrt{2}x\left(1 - \frac{1}{4x} + o\left(\frac{1}{x}\right)\right) = \sqrt{2}x - \frac{1}{2\sqrt{2}} + o(1)$$

quindi a $+\infty$ è presente l'asintoto obliquo $y=\sqrt{2}x-\frac{1}{2\sqrt{2}}.$

Esaminiamo ora gli intervalli di crescenza e decrescenza studiando il segno della derivata prima. Risulta che

$$f_1'(x) \ge 0 \Longleftrightarrow 4x + 1 \ge 0 \Longleftrightarrow x \ge -\frac{1}{4}$$

e considerando che $f = f_1$ se $x \le -1$ otteniamo che $f_1'(x) \le 0$ per ogni x < -1. Allora la f è decrescente su tutta la semiretta $(-\infty, -1]$.

Per quanto riguarda f_2 invece

$$f_2'(x) \ge 0 \Longleftrightarrow 4x - 1 \ge 0 \Longleftrightarrow x \ge \frac{1}{4}$$

quindi $f_2'(x) \leq 0$ se $-1 < x < -\frac{1}{2}$ e $f_2'(x) \geq 0$ se x > 1. La f è quindi decrescente sull'intervallo $\left[-1, -\frac{1}{2}\right]$ e crescente sulla semiretta $[1, +\infty)$. Riassumendo, la funzione è decrescente in $\left(-\infty, -\frac{1}{2}\right]$ e crescente in $\left[1, +\infty\right)$. I punti $x = -\frac{1}{2}$ e x = 1 sono quindi di minimo locale. Considerando poi che $f\left(-\frac{1}{2}\right) = f(1) = 0$ e che $f(x) \geq 0$ per ogni x del suo insieme di definizione, si ha che i due punti precedenti sono anche di minimo assoluto. Il minimo assoluto vale 0 e l'estremo superiore vale $+\infty$. Non esistono punti di massimo locale (e quindi neanche assoluto).

Esercizio 3 Determinare per quali valori del parametro $\alpha \in \mathbb{R} \setminus \{0\}$ esiste finito l'integrale generalizzato

$$\int_{0}^{+\infty} \frac{\arctan(x^{2/\alpha})}{x + \sin\sqrt{x}} \, dx.$$

Soluzione

Osserviamo che la funzione integranda è continua e positiva per ogni x>0. Infatti il numeratore è sicuramente positivo, mentre per il denominatore basta osservare che se $0 < x \le 1$ allora $\sin \sqrt{x} > 0$ mentre se x>1 allora $x+\sin \sqrt{x} \ge x-1>1-1>0$.

Dobbiamo esaminare separatamente la singolarità in 0 e l'andamento all'infinito. Per $x\to 0$ ricordiamo che sin $\sqrt{x}=\sqrt{x}+o(\sqrt{x})$ quindi

$$x + \sin\sqrt{x} = \sqrt{x}(\sqrt{x} + 1 + o(1)) \sim \sqrt{x}.$$

Per il numeratore si ha che se $\alpha > 0$ allora $x^{2/\alpha} \to 0$ e $\arctan(x^{2/\alpha}) = x^{2/\alpha} + o(x^{2/\alpha})$, quindi, per $x \to 0$ e $\alpha > 0$ si ha che

$$\frac{\arctan(x^{2/\alpha})}{x + \sin\sqrt{x}} \sim \frac{1}{x^{\frac{1}{2} - \frac{2}{\alpha}}}$$

e per il criterio del confronto asintotico la funzione ha integrale finito in un intorno di 0 se e solo se

$$\frac{1}{2} - \frac{2}{\alpha} < 1 \Longleftrightarrow -\alpha < 4$$

quindi per ogni $\alpha > 0$.

Se invece $\alpha < 0$ allora $x^{2/\alpha} \to +\infty$ e $\arctan(x^{2/\alpha}) \to \frac{\pi}{2}$, quindi

$$\frac{\arctan(x^{2/\alpha})}{x + \sin\sqrt{x}} \sim \frac{1}{\sqrt{x}}$$

che ha integrale finito. Allora l'integrale generalizzato esiste finito in un intorno di 0 per ogni valore di α .

Vediamo ora l'integrabilità all'infinito. Per il denominatore, essendo la funzione seno limitata si ha che $x + \sin \sqrt{x} \sim x$. L'andamento del numeratore dipende invece dal valore di α . Se $\alpha > 0$ allora per $x \to +\infty$ si ha che $x^{2/\alpha} \to +\infty$ e $\arctan(x^{2/\alpha}) \to \frac{\pi}{2}$ quindi

$$\frac{\arctan(x^{2/\alpha})}{x + \sin\sqrt{x}} \sim \frac{1}{x}$$

che ha integrale uguale a $+\infty$. Se invece $\alpha < 0$ allora per $x \to +\infty$ si ha che $x^{2/\alpha} \to 0$ e $\arctan(x^{2/\alpha}) = x^{2/\alpha} + o(x^{2/\alpha})$ quindi

$$\frac{\arctan(x^{2/\alpha})}{x + \sin\sqrt{x}} \sim \frac{1}{x^{1 - \frac{2}{\alpha}}}$$

che ha integrale finito se e solo se $1 - \frac{2}{\alpha} > 1$ condizione verificata da ogni $\alpha < 0$. Quindi l'integrale proposto è finito se $\alpha < 0$ mentre vale $+\infty$ se $\alpha > 0$.