Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 22 settembre 2008

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

Domanda 1 Sia S l'insieme $\left\{\frac{n^2-1}{n^2} : n \in \mathbb{N}, n \geq 1\right\}$. Quali delle seguenti affermazioni è vera

- A) $\sup(S) = +\infty$ B) $\inf(S) = 1$ C) $\inf(S) = -\infty$ D) $\sup(S) = 1$
- **Domanda 2** $\lim_{n \to \infty} (n^4 + 1) \left(1 \cos \frac{3}{n^2} \right)$ A) non esiste B) esiste ed è maggiore di 2
- C) vale $+\infty$ D) esiste ed è minore o uguale di 1

Domanda 3 Sia (a_n) una successione tale che $a_n \neq 0$ per ogni $n \in \mathbb{N}$ e $\lim_{n \to \infty} a_n = 0$. Allora $\lim_{n \to \infty} e^{1/a_n}$

A) non esiste B) vale $+\infty$ C) vale 0 D) dipende da (a_n)

Domanda 4 Sia $f:(e,+\infty) \longrightarrow \mathbb{R}$ definita da $f(x) = \frac{3x^3 + e^x}{2x^2 + \log(x^2)}$. Allora

A) f ha un asintoto orizzontale

B) f ha un asintoto obliquo

C

C) f non ha asintoti verticali

D) f è limitata superiormente

Domanda 5 Sia $f:\mathbb{R}\longrightarrow\mathbb{R}$ derivabile due volte, dispari e strettamente crescente. Allora, necessariamente

A)
$$f'(0) = 0$$
 B) $f'(0) > 0$ C) $xf''(x) > 0$ $\forall x \neq 0$ D) $f''(0) = 0$

Domanda 6 La serie $\sum_{n} \frac{(-1)^n}{2n^2 + 3n(-1)^n}$

- A) converge semplicemente ma non assolutamente
- B) converge assolutamente

- C) diverge positivamente
- D) è indeterminata

В

Domanda 7 $\lim_{n\to\infty} \frac{n^{n/2}}{(\log n)^n}$

- A) vale \sqrt{e}
- B) vale 0
- C) vale $+\infty$ D) non esiste

Domanda 8 Sia $f(x) = \frac{\sin(2x)}{2\sqrt[3]{x} + x^2 - \frac{1}{2}x^3}$. Per $x \to 0$, f(x)

- A) è $o(x^{2/3})$ B) diverge a $+\infty$ C) è $o(\sqrt{x})$ D) è un infinitesimo di ordine 3

С

Domanda 9 Sia $f:(0,1) \longrightarrow \mathbb{R}$ una funzione continua tale che $\lim_{x\to 0^+} \frac{f(x)}{\sqrt{x}} = 1$ e $\lim_{x\to 1^-} f(x) = -\infty$. Allora, necessariamente

- A) $\int\limits_0^1 f(x)\,dx = -\infty$ B) $\int\limits_0^1 f(x)\,dx$ esiste ed è finito

С

- C) $\int_{0}^{1} f(x) dx$ esiste D) $\int_{0}^{1} f(x) dx$ non esiste

Domanda 10
$$\int \frac{\cos(2\log x)}{x} dx =$$

- A) $-\frac{\sin(2\log x)}{x^2} + c$ B) $\log x \cos(2x) + c$

 \mathbf{C}

- C) $\sin(\log x)\cos(\log x) + c$ D) $\sin(2\log x)\log x + c$

Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 22 settembre 2008

Esercizio 1 Determinare il comportamento della serie

$$\sum_{n} (\log n)^{\alpha - \frac{3}{2}} \log \left(1 + \left(\sin \frac{1}{n} \right)^{-4\alpha^2 + 5\alpha} \right)$$

al variare del parametro reale α nell'intervallo $(0, \frac{5}{4})$.

Soluzione

Osserviamo subito che la serie è a termini positivi, possiamo quindi applicare il criterio del confronto asintotico. Inoltre se $0 < \alpha < \frac{5}{4}$ risulta $-4\alpha^2 + 5\alpha > 0$. Da questo segue che

$$\lim_{n} \left(\sin \frac{1}{n} \right)^{-4\alpha^2 + 5\alpha} = 0.$$

Ricordando che, per $t \to 0$, $\log(1+t) \sim t$ e $\sin t \sim t$, otteniamo

$$(\log n)^{\alpha - \frac{3}{2}} \log \left(1 + \left(\sin \frac{1}{n} \right)^{-4\alpha^2 + 5\alpha} \right) \sim (\log n)^{\alpha - \frac{3}{2}} \left(\sin \frac{1}{n} \right)^{-4\alpha^2 + 5\alpha}$$
$$\sim (\log n)^{\alpha - \frac{3}{2}} \left(\frac{1}{n} \right)^{-4\alpha^2 + 5\alpha} = \frac{1}{(\log n)^{\frac{3}{2} - \alpha} n^{-4\alpha^2 + 5\alpha}}.$$

La serie considerata è quindi asintoticamente equivalente a una serie del tipo

$$\sum_{n} \frac{1}{(\log n)^a n^b}$$

che converge se e solo se b > 1 oppure b = 1 e a > 1. Nel nostro caso

$$-4\alpha^2 + 5\alpha > 1 \iff \frac{1}{4} < \alpha < 1$$

$$-4\alpha^2 + 5\alpha = 1 \iff \alpha = \frac{1}{4} \text{ oppure } \alpha = 1.$$

Se $\alpha = \frac{1}{4}$ si ha che $\frac{3}{2} - \alpha = \frac{5}{4} > 1$ mentre se $\alpha = 1$ risulta $\frac{3}{2} - \alpha = \frac{1}{2} < 1$. In conclusione la serie data converge se $\frac{1}{4} \le \alpha < 1$ e diverge positivamente in tutti gli altri casi.

Esercizio 2 Data la funzione

$$f(x) = \begin{cases} \frac{e^{x-1} - 1}{x \sin(x^2 - 1)} & \text{se } 0 < x < 1\\ \alpha x + \beta & \text{se } 1 \le x \le 2\\ (x - 2)^2 (\log(x - 2))^2 & \text{se } x > 2 \end{cases}$$

dire per quali valori dei parametri reali α e β la f è continua o derivabile nella semiretta $(0, +\infty)$.

Soluzione

In tutti i punti di $(0, +\infty)$ diversi da 1 e 2 la funzione è sicuramente derivabile (quindi continua) poiché è composizione di funzioni derivabili. Vediamo la continuità in 1 e 2.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{e^{x-1} - 1}{x \sin(x^{2} - 1)} = \lim_{x \to 1^{-}} \frac{1 + (x - 1) + o(x - 1) - 1}{x (x^{2} - 1) + o(x^{2} - 1))}$$

$$= \lim_{x \to 1^{-}} \frac{(x - 1) + o(x - 1)}{x (x + 1)(x - 1) + o(x - 1)} = \frac{1}{2}$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \alpha x + \beta = \alpha + \beta = f(1)$$

quindi per avere la continuità in 1 otteniamo la condizione $\alpha + \beta = \frac{1}{2}$.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \alpha x + \beta = 2\alpha + \beta = f(2)$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x - 2)^{2} \left(\log(x - 2) \right)^{2} = \lim_{t \to 0^{+}} (t \log t)^{2} = 0$$

quindi per avere la continuità in 2 otteniamo la condizione $2\alpha + \beta = 0$. Mettendo insieme le due condizioni otteniamo un sistema lineare che ha per unica soluzione $\alpha = -\frac{1}{2}, \ \beta = 1$. Per tutti gli altri valori dei parametri α e β la funzione non è continua, quindi neanche derivabile. Studiamo ora la derivabilità nel caso $\alpha = -\frac{1}{2}, \ \beta = 1$. Partiamo dal punto x = 2. Se 1 < x < 2 risulta $f(x) = -\frac{x}{2} + 1$ quindi $f'(x) = -\frac{1}{2}$. Allora

$$f'_{-}(2) = \lim_{x \to 2^{-}} f'(x) = -\frac{1}{2}$$

Per x>2 invece abbiamo $f'(x)=2(x-2)\left(\log(x-2)\right)^2+2(x-2)\log(x-2)$ quindi

$$f'_{+}(2) = \lim_{x \to 2^{+}} 2(x-2) \left(\log(x-2) \right)^{2} + 2(x-2) \log(x-2) = 0$$

da cui segue che la funzione f non è derivabile in x=2. Risulta quindi inutile fare la verifica anche nel punto x=1. Riassumendo, la f è continua in $(0,+\infty)$ solo per $\alpha=-\frac{1}{2},\ \beta=1$ e non è derivabile per nessuna coppia di valori dei parametri α e β .

Esercizio 3 Stabilire se esiste finito il seguente integrale generalizzato

$$\int_{0}^{+\infty} \frac{x^2}{(2+3x^4)\arctan(x^{5/2})} dx .$$

Osserviamo che la funzione integranda diverge positivamente per $x \to 0^+$, che è continua e strettamente positiva per ogni x > 0. Per decidere l'integrabilità dovremo quindi esaminare separatamente gli intevalli (0,1) e $[1,+\infty)$ (ricordiamo che la scelta del punto x=1 è del tutto arbitraria e poteva essere scelto qualsiasi altro punto c>0 per spezzare l'intervallo di integrazione). Applicheremo il criterio del confronto asintotico. Osserviamo che

$$\lim_{x \to 0^+} \frac{x^2}{(2+3x^4)\arctan(x^{5/2})} \, x^{1/2} = \frac{1}{2}$$

quindi per $x\to 0^+$ la funzione integranda è asintoticamente equivalente a $\frac{1}{x^{1/2}}$ che è integrabile nell'intervallo (0,1). Esaminiamo ora l'altro intervallo

$$\lim_{x \to +\infty} \frac{x^2}{(2+3x^4)\arctan(x^{5/2})} x^2 = \frac{2}{3\pi}$$

quindi per $x \to +\infty$ la funzione integranda è asintoticamente equivalente a $\frac{1}{x^2}$ che è integrabile nell'intervallo $(0, +\infty)$. Ne segue che l'integrale proposto esiste finito.