Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 26 gennaio 2006

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

Domanda 1 Sia (a_n) la successione definita da $a_n = n^2 \sin \frac{n\pi}{2}$. Allora

- A) (a_n) è limitata
- B) (a_n) è limitata inferiormente
- C) non esiste $\lim_{n\to\infty} a_n$ D) $\lim_{n\to\infty} a_n = +\infty$

С

Domanda 2 Per ogni $z, w \in \mathbb{C}$ con $w \neq 0$ risulta:

- A) $\left| \frac{z}{w} \right| = |z| |w|$ B) |zw| = |z||w| C) $|zw| = e^{zw}$ D) |z + w| = |z| + |w|

В

Domanda 3 Se $a_n \ge 0$ e $a_{n+1} \le a_n$ per ogni $n \in \mathbb{N}$ allora, necessariamente A) $\sum_{n=0}^{\infty} (-1)^n a_n$ converge B) $\sum_{n=0}^{\infty} (-1)^n \frac{a_n}{n^2}$ converge

C) $\sum_{n=0}^{\infty} a_n$ converge D) $\sum_{n=0}^{\infty} n a_n$ diverge

В

Domanda 4 Dati a, b < 0 allora necessariamente

- A) $\log(ab) = \log a + \log b$ B) $\log \frac{a}{b} = \log(-a) \log(-b)$
- C) $\log(a^b) = b \log a$ D) $\log(ab) = -\log a \log b$

В

Domanda 5 Sia $f(x) = \sin(x^2)$. Allora:

- A) f è crescente per x > 0
- B) f ha infiniti punti di massimo assoluto

C) f non è limitata

D) f ha solo punti di massimo locali ma non ha massimo assoluto

Domanda 6 $\int_{-\infty}^{+\infty} \frac{\sin(t^2)}{t^2} dt$

- A) non esiste B) converge ma non converge assolutamente

- C) è un numero minore di 1
- D) vale $+\infty$

Domanda 7 Data f continua in \mathbb{R} risulta che $\int_{-\infty}^{b} \sin(f(x)) dx =$

- A) $\sin(f(b)) \sin(f(a))$ B) $(\cos b) f(a) (\sin a) f(b)$
- C) un numero reale minore o uguale a |a-b| D) $\int_{-\infty}^{f(b)} \sin t \, dt$

 \mathbf{C}

 \mathbf{C}

Domanda 8 Sia $f: \mathbb{R} \longrightarrow \mathbb{R}$ limitata superiormente. Allora, necessariamente

- A) $f(x) \le M$, $\forall x \in \mathbb{R}$, $\forall M \in \mathbb{R}$ B) $\exists M \in \mathbb{R} : \forall \varepsilon > 0 \ \forall x \in \mathbb{R}$, $f(x) \le M + \varepsilon$
- C) $\forall M \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists x_0 \in \mathbb{R}: \ f(x_0) > M \varepsilon$

В

D) $\forall M \in \mathbb{R} \exists \varepsilon > 0 : M - \varepsilon < f(x) \leq M + \varepsilon, \ \forall x \in \mathbb{R}$

Domanda 9 Siano (a_n) e (b_n) due successioni di numeri reali positivi con (b_n) limitata e $\lim_{n\to\infty} a_n = 0$. Allora, necessariamente:

- A) $a_n b_n$ è limitata B) $\frac{a_n}{b_n}$ è limitata C) $\lim_{n \to \infty} \frac{b_n}{a_n} = +\infty$ D) $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$

Α

Domanda 10 Sia $f:[a,b] \longrightarrow \mathbb{R}$ continua con due punti di minimo assoluti. Allora, necessariamente:

- A) f ha un solo punto di massimo locale B) f ha un solo punto di massimo assoluto
- C) f è costante
- D) f è superiormente limitata

D

Rispondere alle seguenti 5 domande inserendo il risultato nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata o mancante vale 0.

Domanda 11 Scrivere parte reale e parte immaginaria

del numero complesso $z = e^{3+2i}$

$$\Re(z) = e^3 \cos 2$$
, $\Im(z) = e^3 \sin 2$

Domanda 12 Calcolare il limite $\lim_{n\to\infty} \frac{e^{1/n^2}-1}{\sin\frac{1}{n}}$

0

Domanda 13 Determinare il carattere della serie $\sum_{n=0}^{\infty} \frac{\sin(n^2) - n}{n^3 + \cos n}$

converge

Domanda 14 Calcolare $\int \frac{x^3}{x^2+1} dx$

$$\frac{x^2}{2} - \frac{1}{2}\log(x^2 + 1) + c$$

Domanda 15 Calcolare $\lim_{x\to 0} \frac{\log(1+x^2)-x^2}{3x^4}$

 $-\frac{1}{6}$

Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 26 gennaio 2006

Esercizio 1 Studiare la funzione $f(x) = 2 + \log(1 + 2x^2)$ compresa l'analisi della convessità.

Soluzione

La funzione è definita in tutta la retta reale. Inoltre, essendo $1 + x^2 \ge 1$ risulta $f(x) \ge 2 \ \forall x \in \mathbb{R}$ e f(x) = 2 se e solo se x = 0. Il punto x = 0 è quindi punto di minimo assoluto per f e il minimo assoluto di f vale 2. Osserviamo che la funzione è pari.

$$\lim_{x \to \infty} f(x) = +\infty$$

quindi anche $\lim_{x\to -\infty} f(x) = +\infty$. Di conseguenza f non ha massimo assoluto e il suo estremo superiore vale $+\infty$.

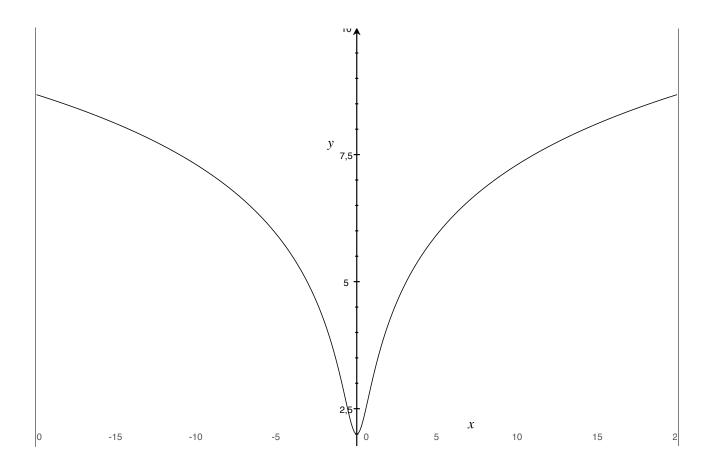
$$f'(x) = \frac{4x}{1 + 2x^2}$$

quindi $f'(x) \ge 0$ se e solo se $x \ge 0$. Ne segue che la f è decrescente per x < 0 e crescente per x > 0. Quindi la f non ha altri punti di massimo o di minimo locali oltre x = 0.

$$f''(x) = 4 \frac{1 - 2x^2}{(1 + 2x^2)^2}$$

$$f''(x) \geq 0 \quad \Longleftrightarrow 1 - 2x^2 \geq 0 \quad \Longleftrightarrow x^2 \leq \frac{1}{2} \quad \Longleftrightarrow -\frac{\sqrt{2}}{2} \leq x \leq \frac{\sqrt{2}}{2}$$

La funzione è quindi convessa nell'intervallo $\left[-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right]$ e concava in ognuna delle due semirette $\left(-\infty,-\frac{\sqrt{2}}{2}\right],\ \left[\frac{\sqrt{2}}{2},+\infty\right)$. I punti $x=\pm\frac{\sqrt{2}}{2}$ sono punti di flesso.



Esercizio 2 Calcolare l'integrale
$$\int_{0}^{\pi/2} e^{\cos x} \sin x \, dx$$

Soluzione

Cerchiamo una primitiva della funzione $f(x) = e^{\cos x}$. Eseguendo la sostituzione $\cos x = t$ si ottiene:

$$\int e^{\cos x} \sin x \, dx = \int e^t \, dt \bigg|_{t=\cos x} = e^t \bigg|_{t=\cos x} = e^{\cos x}$$

quindi

$$\int_{0}^{\pi/2} e^{\cos x} \sin x \, dx = \left[e^{\cos x} \right]_{0}^{\pi/2} = e - 1.$$

Esercizio 3 Risolvere l'equazione complessa $|z|^2 - z|z| + z = 0$.

Soluzione

Scrivendo $z = a + ib \operatorname{con} a, b \in \mathbb{R}$ otteniamo:

$$a^{2} + b^{2} - (a+ib)\sqrt{a^{2} + b^{2}} + a + ib = 0$$

quindi, separando parte reale e parte immaginaria otteniamo il sistema di equazioni:

$$\begin{cases} a^2 + b^2 - a\sqrt{a^2 + b^2} + a = 0\\ -b\sqrt{a^2 + b^2} + b = 0 \end{cases}$$

Risolviamo prima la seconda equazione:

$$b\left(1 - \sqrt{a^2 + b^2}\right) = 0$$

che ha soluzione b=0 oppure $\sqrt{a^2+b^2}=1$. Se $\sqrt{a^2+b^2}=1$, sostituendo nella prima equazione otteniamo 1-a+a=0 che è falsa. Quindi l'unica possibilità è che sia b=0. Sostituendo nella prima equazione otteniamo $a^2-a|a|+a=0$. Questa equazione dà luogo a due sistemi di equazioni:

$$\begin{cases} a^2 - a^2 + a = 0 \\ a \ge 0 \end{cases} \qquad \begin{cases} a^2 + a^2 + a = 0 \\ a \le 0 \end{cases}$$

Il primo sistema ha come unica soluzione a=0 mentre il secondo $a=-\frac{1}{2}$. Ricordando che z=a+ib otteniamo che l'equazione iniziale ha come soluzioni z=0 e $z=-\frac{1}{2}$.