Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 11 gennaio 2006

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

Domanda 1 Siano $z = \rho e^{i\vartheta}$, $w = re^{i\varphi}$ con $\rho, r, \vartheta, \varphi \in \mathbb{R}$. Allora è sempre vero che:

A)
$$|z+w| = \rho + r$$
 B) $\arg(zw) = \vartheta + \varphi$ C) $\arg(zw) = \vartheta \varphi$ D) $\arg(z+w) = \vartheta + \varphi$

Domanda 2
$$\lim_{n\to\infty}\frac{e^n-1}{2n}=$$
 A) non esiste B) 0 C) $+\infty$ D) $\frac{1}{2}$

Domanda 3 Siano (a_n) e (b_n) due successioni di numeri reali tali che $a_n > 0$, $b_n > 0$, $\forall n \in \mathbb{N}$. Allora necessariamente:

A) Se
$$a_n \leq b_n \ \forall n \in \mathbb{N}$$
 risulta $\sum_{n=0}^{\infty} a_n$ convergente

B) Se
$$a_n \leq b_n \ \forall n \in \mathbb{N}$$
 risulta $\sum_{n=0}^{\infty} b_n$ divergente

C) Se
$$\lim_{n\to\infty} \frac{a_n}{b_n} = 3$$
 allora le serie $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ convergono o divergono entrambe

D) $\sum_{n=0}^{\infty} a_n b_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right)$

Domanda 4 Per x > 0 sia $f(x) = x^{\log x}$. Allora

A)
$$f'(x) = \frac{2x^{\log x} \log x}{x}$$
 B) $f(x) = e^{\left((\log x)^{\log x}\right)}$ C) $f(x) = e^{2\log x}$ D) f non è derivabile

Domanda 5
$$\int_{-\infty}^{0} e^{-x^2} dx$$

A) vale $-\frac{\pi}{2}$ B) vale $+\infty$ C) non esiste D) esiste finito

Domanda 6 Data $f \in C^1(\mathbb{R})$ e x > 0 poniamo $F(x) = \int_0^{\log x} e^t f'(e^t) dt$. Allora risulta:

A)
$$F(x) = \int_{0}^{\log x} f'(s) ds$$

A)
$$F(x) = \int_{0}^{\log x} f'(s) ds$$
 B) $F(x) = xf(\log x) - f(0)$

С

C)
$$F(x) = f(x) - f(1)$$

C)
$$F(x) = f(x) - f(1)$$
 D) $F(x) = -\int_{\log x}^{0} f(s) ds$

Domanda 7 $e^{\log((-9)^2)} =$

A)
$$-81$$

C)
$$e^2 \log(-9)$$

B) 81 C)
$$e^2 \log(-9)$$
 D) non è definito

В

Domanda 8 $\lim_{n\to\infty} (\sin n)^2$

A) è un numero strettamente compreso tra
$$-1$$
 e 1

B) vale
$$+\infty$$

 \mathbf{C}

D) vale 1

Domanda 9 Data $f: \mathbb{R} \longrightarrow \mathbb{R}$ sia $x_0 \in \mathbb{R}$ un punto di minimo locale per f. Allora:

A)
$$\lim_{x \to 0} f(x) = f(x_0)$$

B)
$$\exists \delta > 0$$
 tale che

A)
$$\lim_{x \to x_0} f(x) = f(x_0)$$
 B) $\exists \delta > 0$ tale che $f(x) \ge f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta)$

В

C)
$$f(x) \ge f(x_0) \ \forall x \in \mathbb{R}$$
 D) $f'(x_0) = 0$

D)
$$f'(x_0) = 0$$

Domanda 10 Sia (a_n) una successione in \mathbb{R} tale che $a_n > 0$ e $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$. Allora, necessariamente:

A)
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 non converge

A)
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 non converge B) $\sum_{n=1}^{\infty} a_n$ converge assolutamente

Α

C)
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 converge

C)
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 converge D) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converge

Domanda 11 Trovare tutte le soluzioni $z \in \mathbb{C}$ dell'equazione $z^3 + 8 = 0$.

$$z_1 = 1 + i\sqrt{3}, \ z_2 = -2, \ z_3 = 1 - i\sqrt{3}$$

Domanda 12 Calcolare il limite $\lim_{n\to +\infty} \frac{\sqrt{n^3-n^2-1}-\sqrt{n^3-n^2+n}}{n-\sqrt{n^2-n}}$

0

Domanda 13 Calcolare il limite $\lim_{x\to-\infty} \frac{x^{-6}}{\log(1+e^{3x})}$

 $+\infty$

Domanda 14 Calcolare $\int 2x \arctan x \, dx$

 $(x^2+1)\arctan x - x + c$

Domanda 15 Determinare il carattere della serie $\sum_{n=1}^{\infty} (n^3 - n^2 + \log n) \arctan \frac{1}{n^4}$

diverge

Università di Pisa - Corso di Laurea in Ingegneria Civile dell'ambiente e territorio

Analisi Matematica I

Corso di Laurea in Ingegneria della Sicurezza Industriale e Nucleare

Matematica I

Pisa, 11 gennaio 2006

Esercizio 1 Studiare la funzione $f(x) = \arctan(x - x^2)$ determinandone in particolare gli estremi superiore e inferiore ed eventuali punti di massimo o minimo locali e assoluti.

Soluzione

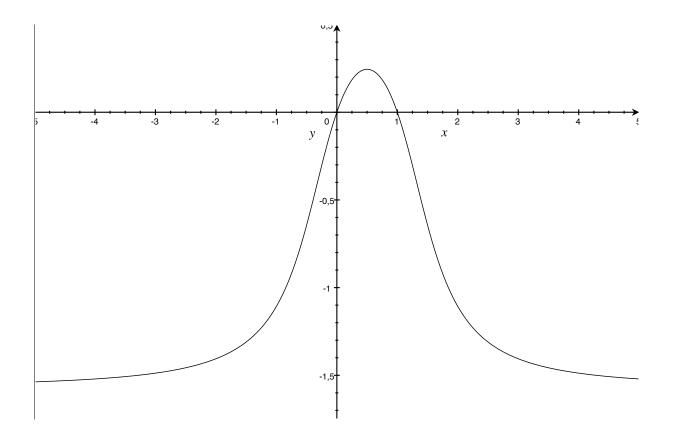
La funzione è definita in tutta la retta reale. Per l'andamento asintotico risulta:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = -\frac{\pi}{2}$$

Da questo risultato, unito al fatto che arctan $t > -\frac{\pi}{2} \ \forall t \in \mathbb{R}$ si ottiene subito che l'estremo inferiore di $f \ \grave{\mathrm{e}} \ -\frac{\pi}{2}$. La funzione $\grave{\mathrm{e}}$ derivabile in tutto il suo dominio e risulta:

$$f'(x) = \frac{1 - 2x}{1 + (x - x^2)^2}$$

Quindi $f'(x) \ge 0$ se e solo se $x \le \frac{1}{2}$. Ne segue che la funzione è crescente nella semiretta $\left(-\infty, \frac{1}{2}\right)$ mentre è decrescente nella semiretta $\left(\frac{1}{2}, +\infty\right)$. Il punto $x = \frac{1}{2}$ è quindi punto di massimo assoluto per la f. Dato che $f\left(\frac{1}{2}\right) = \arctan\frac{1}{4}$, si ha che tale valore è il massimo di f (quindi anche l'estremo superiore). Non esiste il minimo assoluto.



Esercizio 2 Calcolare la primitiva della funzione $f(x) = \frac{1}{3x(4-x)}$ che nel punto x = 5 vale 2.

Soluzione

L'integranda è una funzione razionale, cerchiamo quindi due numeri A e B tali che risulti:

$$\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x}$$

cioè:

$$\frac{(B-A)x + 4A}{x(4-x)} = \frac{1}{x(4-x)}$$

Dal principio di identità dei polinomi otteniamo il sistema lineare

$$\begin{cases} 4A = 1 \\ B - A = 0 \end{cases}$$

che ha come soluzioni $A = B = \frac{1}{4}$. Sostituendo nell'integrale si ha:

$$F(x) = \int \frac{dx}{3x(4-x)} = \frac{1}{3} \int \frac{1}{4x} + \frac{1}{4(4-x)} dx = \frac{1}{12} \int \frac{1}{x} + \frac{1}{4-x} dx = \frac{1}{12} (\log|x| - \log|4-x|) + c$$

Ricaviamo ora la costante c sapendo che la primitiva deve valere 2 nel punto x=5:

$$2 = F(5) = \frac{1}{12}\log 5 + c$$

quindi $c = 2 - \frac{1}{12} \log 5$ e la primitiva cercata risulta:

$$F(x) = \frac{1}{12} \left(\log|x| - \log|4 - x| \right) + 2 - \frac{1}{12} \log 5 = 2 + \frac{1}{12} \log \frac{|x|}{5|4 - x|}$$

Esercizio 3 Trovare le soluzioni $z \in \mathbb{C}$ dell'equazione $z^4 - z^2 + 1 = 0$.

Soluzione

Eseguendo la sostituzione $z^2=w$ si ottiene l'equazione $w^2-w+1=0$ che ha come soluzioni

$$w = \frac{1 \pm i\sqrt{3}}{2}$$

In forma esponenziale le due soluzioni sono quindi $w_1=e^{i\pi/3},\ w_2=e^{i5\pi/3}.$ Avremo quindi le due equazioni:

$$z^2 = e^{i\pi/3}, \qquad z^2 = e^{i5\pi/3}$$

che danno luogo alle quattro soluzioni:

$$z_1=e^{i\pi/6},\ z_2=e^{i7\pi/6},\ z_3=e^{i5\pi/6},\ z_4=e^{i11\pi/6}$$