Analisi Matematica I

Pisa, 28 giugno 2005

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

- **Domanda 1** Sia $f(x) = \frac{\sin x}{x^2}$, $x \neq 0$. Allora A) $\int_{7}^{+\infty} f(x) dx$ converge B) $\int_{3}^{200} f(x) dx$ non converge
- C) $\int_{0}^{+\infty} f(x) dx$ non esiste D) $\int_{0}^{3} |f(x)| dx$ converge

Domanda 2 La funzione $f(x) = \log\left(1 + \frac{\sin(x^2)}{2}\right)$ ha la stessa parte principale di infinitesimo, per $x \to 0$, di:

Α

A)
$$\frac{1}{2}\tan(x^2)$$
 B) $\sin(x^3)$ C) $x + \sin(x^2)$ D) $1 + \frac{\sin^2 x}{2}$

Domanda 3 Sia (a_n) una successione di numeri reali tale che $a_n \ge a_{n+1}$ e $a_n \ge 0$ per ogni $n \in \mathbb{N}$. Allora, necessariamente

- B) la successione (a_n) diverge positivamente $A) \lim_{n \to \infty} a_n = 1$
- \mathbf{C} C) esiste finito il limite di (a_n) D) $\lim_{n\to\infty} a_n = 0$

Domanda 4 Dato x < 0 risulta $\log(x^6) =$

Α A) $6\log(-x)$ B) $6\log x$ C) $-(\log x)^6$ D) non è definito

Domanda 5 Sia $z = (\sqrt{6} - 3i)^4$. Allora |z| =

В B) 15^2 C) 6^2 D) 15^4 A) 9^4

Domanda 6 Le soluzioni in \mathbb{C} dell'equazione $z^3 + 8 = 0$ sono:

- A) z = -2 con molteplicità 3
- B) z = -2 con molteplicità 1
- C) nessuna soluzione
- D) 3 soluzioni distinte

D

Domanda 7 Sia (a_n) una qualsiasi successione monotona crescente. Allora:

- A) $\sum_{n=0}^{\infty} a_n$ converge B) $\lim_{n\to\infty} a_n = +\infty$
- C) $\sum_{n=0}^{\infty} |a_n|$ diverge D) se $a_n \leq -2 \ \forall n \in \mathbb{N}$ allora $\sum_{n=0}^{\infty} a_n$ diverge

D

Domanda 8 Data $f \in C^1(\mathbb{R}^+)$ poniamo, per ogni x > 1, $F(x) = \int_{2}^{\arctan x} f'(t) dt$. Allora:

- A) $F(x) = f'(\arctan x)$ B) $F(x) = f(\arctan x) f(2)$

В

- C) F'(x) = f(x) D) $F'(x) = f(\arctan x)$

Domanda 9 Sia $f(x) = (\log x)^x$, x > 1. Allora

- A) $f'(x) = x^{\log x}$ B) $f'(x) = (\log x)^x \left(\log\log x + \frac{1}{\log x}\right)$

- C) f non è derivabile D) $f'(x) = \left(\frac{1}{x}\right)^{\log x}$

В

Domanda 10 L'insieme $\left\{x \in \mathbb{R} : 3x - \frac{1}{x} > 0\right\}$ è:

- A) superiormente limitato
- B) inferiormente limitato
- C) vuoto
- D) limitato

В

Rispondere alle seguenti 5 domande inserendo il risultato nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata o mancante vale 0.

Domanda 11 Trovare tutte le soluzioni in $\mathbb C$ dell'equazione $(3i+z)^2=-1$. $z_1=-2i,\ z_2=-4i$

$$z_1 = -2i, \ z_2 = -4i$$

Domanda 12 Calcolare, se esiste $\lim_{n\to\infty} \sqrt[n]{\frac{6^n+n^4}{n!}}$

0

Domanda 13 Stabilire il carattere della serie $\sum_{n=0}^{\infty} \frac{(\log 11)^n}{11n+2}$

diverge positivamente

Domanda 14 Dire per quali $\alpha \in \mathbb{R}$ converge l'integrale $\int_{x}^{+\infty} \frac{\arctan x}{x^{3\alpha}} dx$.

Domanda 15 Calcolare $\lim_{x \to -\infty} x^4 \log (1 + e^{2x})$.

0

Analisi Matematica I

Pisa, 28 giugno 2005

Esercizio 1 Studiare la funzione $f(x) = \sqrt{1 - 4x^2} + \left| 2x + \frac{1}{2} \right|$ trovandone in particolare gli eventuali punti di massimo e minimo locali e assoluti (oppure estremo superiore e inferiore).

Soluzione

La funzione è definita per gli $x \in \mathbb{R}$ tali che $1-4x^2 \geq 0$, quindi per $-\frac{1}{2} \leq x \leq \frac{1}{2}$. Osserviamo che f è continua, perché somma e composizione di funzioni continue, quindi sul suo insieme di definizione che è limitato e chiuso, ammette massimo e minimo assoluti per il teorema di Weierstrass. La f è anche derivabile almeno nei punti dove non si annullano il valore assoluto o l'argomento della radice. Dovremo quindi valutare la derivabilità nei punti $-\frac{1}{2}, -\frac{1}{4}, \frac{1}{2}$. La derivata di f (dove esiste) è la seguente:

$$f'(x) = \frac{-8x}{2\sqrt{1-4x^2}} + 2\operatorname{sgn}\left(2x + \frac{1}{2}\right) = \begin{cases} \frac{-4x}{\sqrt{1-4x^2}} + 2 & \operatorname{se} -\frac{1}{4} < x < \frac{1}{2} \\ \frac{-4x}{\sqrt{1-4x^2}} - 2 & \operatorname{se} -\frac{1}{2} < x < -\frac{1}{4} \end{cases}$$

Dato che f è continua nel punto $x = -\frac{1}{4}$ possiamo calcolare le derivate destra e sinistra attraverso il limite di f':

$$f'_{-}\left(-\frac{1}{4}\right) = \lim_{x \to -\frac{1}{4}^{-}} f'(x) = -2 + \frac{2}{\sqrt{3}}, \qquad f'_{+}\left(-\frac{1}{4}\right) = \lim_{x \to -\frac{1}{4}^{+}} f'(x) = 2 + \frac{2}{\sqrt{3}}$$

Le due derivate sono diverse fra loro ma finite entrambe, quindi $x = -\frac{1}{4}$ è un punto angoloso della funzione. Calcoliamo ora la derivata destra e sinistra negli estremi:

$$\lim_{x \to -\frac{1}{2}^+} f'(x) = +\infty, \qquad \lim_{x \to \frac{1}{2}^-} f'(x) = -\infty$$

quindi la f non è derivabile negli estremi del suo insieme di definizione dove il suo grafico ha tangente verticale. Studiamo il segno di f'. Risulterà $f'(x) \ge 0$ quando

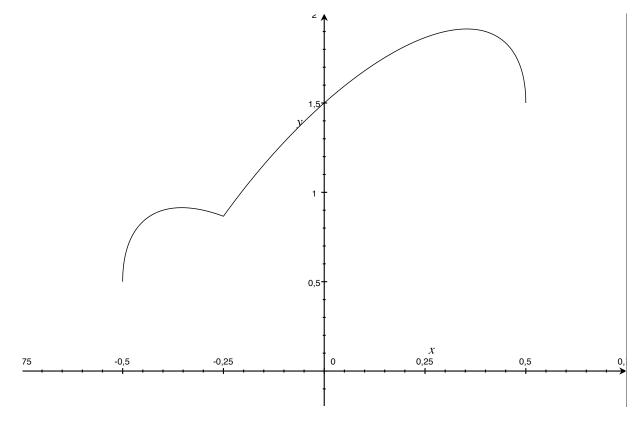
$$\begin{cases} \frac{-4x}{\sqrt{1-4x^2}} + 2 \ge 0 \\ -\frac{1}{4} < x < \frac{1}{2} \end{cases} \text{ oppure } \begin{cases} \frac{-4x}{\sqrt{1-4x^2}} - 2 \ge 0 \\ -\frac{1}{2} < x < -\frac{1}{4} \end{cases}$$

Il primo sistema di disequazioni ha come soluzione l'insieme $(-\frac{1}{4}, \frac{1}{2\sqrt{2}})$, mentre il secondo l'insieme $(-\frac{1}{2}, -\frac{1}{2\sqrt{2}})$. La f risulta quindi crescente nei due intervalli trovati e decrescente negli intervalli

 $(-\frac{1}{2\sqrt{2}},-\frac{1}{4})$ e $(\frac{1}{2\sqrt{2}},\frac{1}{2})$. I punti $-\frac{1}{2},-\frac{1}{4},\frac{1}{2}$ sono quindi di minimo locale, mentre i punti $-\frac{1}{2\sqrt{2}},\frac{1}{2\sqrt{2}}$ sono di massimo locale. Per trovare il massimo e il minimo assoluti basta valutare la f in tutti questi punti:

$$f\left(-\frac{1}{2}\right)=\frac{1}{2},\quad f\left(-\frac{1}{2\sqrt{2}}\right)=\sqrt{2}-\frac{1}{2},\quad f\left(-\frac{1}{4}\right)=\frac{\sqrt{3}}{2},\quad f\left(\frac{1}{2\sqrt{2}}\right)=\sqrt{2}+\frac{1}{2},\quad f\left(\frac{1}{2}\right)=\frac{3}{2}$$

quindi il massimo è $\sqrt{2} + \frac{1}{2}$ e il minimo è $\frac{1}{2}$.



Esercizio 2 Stabilire se esiste, ed eventualmente calcolare il limite $\lim_{x\to 0} \frac{x\sin^2 x}{(e^{(x^2)}-1)(e^x-1)}$.

Soluzione

Ricordando che, per $t \to 0$ risulta

$$\sin t = t + o(t), \qquad e^t = 1 + t + o(t)$$

si ottiene

$$\frac{x \sin^2 x}{\left(e^{(x^2)}-1\right) \left(e^x-1\right)} = \frac{x \left(x+o(x)\right)^2}{\left(1+x^2+o(x^2)-1\right) \left(1+x+o(x)-1\right)} = \frac{x \left(x^2+o(x^2)\right)}{x^3+o(x^3)} = \frac{x^3+o(x^3)}{x^3+o(x^3)} \longrightarrow 1.$$

Esercizio 3 Scrivere il polinomio di Taylor di ordine 5 nel punto $x_0=0$ della funzione

$$f(x) = \left(\log(1+x)\right)^2.$$

Soluzione

Utilizziamo lo sviluppo di Taylor del logaritmo:

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)$$

quindi, eseguendo il quadrato ed eliminando tutti i termini inifinitesimi di ordine superiore a x^5 , si ottiene:

$$(\log(1+x))^2 = x^2 + \frac{1}{4}x^4 - x^3 + \frac{2}{3}x^4 - \frac{1}{2}x^5 - \frac{1}{3}x^5 + o(x^5) = x^2 - x^3 + \frac{11}{12}x^4 - \frac{5}{6}x^5 + o(x^5)$$

quindi il polinomio cercato, che è l'unico polinomio di grado 5 che differisce da f per un infinitesimo superiore a x^5 , è:

$$P_5(x) = x^2 - x^3 + \frac{11}{12}x^4 - \frac{5}{6}x^5.$$

Analisi Matematica I

Pisa, 28 giugno 2005

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

Domanda 1 Sia
$$f(x) = \frac{\sin x}{x^2}$$
, $x \neq 0$. Allora

Domanda 1 Sia
$$f(x) = \frac{\sin x}{x^2}$$
, $x \neq 0$. Allora
A) $\int_{7}^{+\infty} f(x) dx$ converge B) $\int_{3}^{200} f(x) dx$ non converge

C)
$$\int_{1}^{+\infty} f(x) dx$$
 non esiste D) $\int_{0}^{3} |f(x)| dx$ converge

Domanda 2 Data $f \in C^1(\mathbb{R}^+)$ poniamo, per ogni x > 0, $F(x) = \int_{x \log x}^{1} f'(t) dt$. Allora:

A)
$$F(x) = f(x \log x)$$
 B) $F'(x) = -f'(x \log x)$

C)
$$F'(x) = f(x)$$
 D) $F(x) = f(1) - f(x \log x)$

Domanda 3 Sia (a_n) una successione di numeri reali tale che $a_n \ge a_{n+1}$ e $a_n \ge 0$ per ogni $n \in \mathbb{N}$. Allora, necessariamente

A)
$$\lim_{n\to\infty} a_n = 1$$
 B) la successione (a_n) diverge positivamente

C) esiste finito il limite di
$$(a_n)$$
 D) $\lim_{n\to\infty} a_n = 0$

Domanda 4 La funzione $f(x) = \log\left(1 + \frac{\sin(x^2)}{2}\right)$ ha la stessa parte principale di infinitesimo, per $x \to 0$, di:

A)
$$\frac{1}{2}\tan(x^2)$$
 B) $\sin(x^3)$ C) $x + \sin(x^2)$ D) $1 + \frac{\sin^2 x}{2}$

Domanda 5 L'insieme
$$\left\{x \in \mathbb{R}: \ 2x + \frac{1}{x} > 0\right\}$$
 è:

A

A) inferiormente limitato

B) superiormente limitato

C) limitato

D) vuoto

Domanda 6 Sia $z = (2 - \sqrt{5}i)^6$. Allora |z| =

- A) 9^6
- B) 7^6 C) 5^3 D) 9^3

D

Domanda 7 Le soluzioni in $\mathbb C$ dell'equazione $z^3+8=0$ sono:

- A) z = -2 con molteplicità 3
- B) z = -2 con molteplicità 1
- C) nessuna soluzione
- D) 3 soluzioni distinte

D

Domanda 8 Sia $f(x) = (\log x)^x$, x > 1. Allora

- A) $f'(x) = x^{\log x}$ B) $f'(x) = (\log x)^x \left(\log\log x + \frac{1}{\log x}\right)$
- C) f non è derivabile D) $f'(x) = \left(\frac{1}{x}\right)^{\log x}$

В

Domanda 9 Sia (a_n) una qualsiasi successione monotona crescente. Allora:

- A) $\sum_{n=0}^{\infty} a_n$ converge B) $\lim_{n \to \infty} a_n = +\infty$

C) $\sum_{n=0}^{\infty} |a_n|$ diverge D) se $a_n \leq -2 \ \forall n \in \mathbb{N}$ allora $\sum_{n=0}^{\infty} a_n$ diverge

D

Domanda 10 Dato x > 0 risulta $\log(-x)^4 =$

- A) $4\log(-x)$ B) $4\log x$ C) $(-\log x)^4$
- D) non è definito

В

Rispondere alle seguenti 5 domande inserendo il risultato nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata o mancante vale 0.

Domanda 11 Trovare tutte le soluzioni in \mathbb{C} dell'equazione $(z-2i)^2=-4$.

$$z_1 = 0, \ z_2 = 4i$$

Domanda 12 Stabilire il carattere della serie $\sum_{n=0}^{\infty} \frac{(\log 2)^n}{7n+2}$

converge

Domanda 13 Dire per quali $\alpha \in \mathbb{R}$ converge l'integrale $\int_{1}^{+\infty} \frac{\arctan x}{x^{3\alpha}} dx$.

 $\alpha > \frac{1}{3}$

Domanda 14 Calcolare, se esiste $\lim_{n\to\infty} \sqrt[n]{\frac{6^n+n^4}{n!}}$

0

Domanda 15 Calcolare $\lim_{x \to +\infty} x^6 \log (1 + e^{-3x})$.

0

Analisi Matematica I

Pisa, 28 giugno 2005

Esercizio 1 Scrivere il polinomio di Taylor di ordine 6 nel punto $x_0 = 0$ della funzione $f(x) = \cos^2 x$.

Soluzione

Utilizziamo lo sviluppo di Taylor del coseno:

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^6)$$

quindi, eseguendo il quadrato ed eliminando tutti i termini inifinitesimi di ordine superiore a x^6 , si ottiene:

$$\cos^2 x = 1 + \frac{x^4}{4} - x^2 + \frac{x^4}{12} - \frac{x^6}{360} - \frac{x^6}{24} + o(x^6) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + o(x^6)$$

quindi il polinomio cercato, che è l'unico polinomio di grado 6 che differisce da f per un infinitesimo superiore a x^6 , è:

$$P_6(x) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6.$$

Esercizio 2 Studiare la funzione $f(x) = \sqrt{1 - \frac{x^2}{4}} + \left| \frac{1}{2} - \frac{x}{2} \right|$ trovandone in particolare gli eventuali punti di massimo e minimo locali e assoluti (oppure estremo superiore e inferiore).

Soluzione

La funzione è definita per gli $x \in \mathbb{R}$ tali che $1 - \frac{x^2}{4} \ge 0$, quindi per $-2 \le x \le 2$. Osserviamo che f è continua, perché somma e composizione di funzioni continue, quindi sul suo insieme di definizione che è limitato e chiuso, ammette massimo e minimo assoluti per il teorema di Weierstrass. La f è anche derivabile almeno nei punti dove non si annullano il valore assoluto o l'argomento della radice. Dovremo quindi valutare la derivabilità nei punti -2, 1, 2. La derivata di f (dove esiste) è la seguente:

$$f'(x) = \frac{1}{2} \left(\frac{-2x}{2\sqrt{4 - x^2}} - \operatorname{sgn}(1 - x) \right) = \begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} - 1 \right) & \text{se } -2 < x < 1 \\ \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} + 1 \right) & \text{se } 1 < x < 2 \end{cases}$$

Dato che f è continua nel punto x=1 possiamo valutare le derivate destra e sinistra calcolando il limite di f':

$$f'_{-}(1) = \lim_{x \to -1^{-}} f'(x) = \frac{1}{2} \left(-\frac{1}{\sqrt{3}} - 1 \right), \qquad f'_{+}(1) = \lim_{x \to 1^{+}} f'(x) = \frac{1}{2} \left(1 - \frac{1}{\sqrt{3}} \right)$$

Le due derivate sono diverse fra loro ma finite entrambe, quindi x = 1 è un punto angoloso della funzione. Calcoliamo ora la derivata destra e sinistra negli estremi:

$$\lim_{x \to -2^+} f'(x) = +\infty, \qquad \lim_{x \to 2^-} f'(x) = -\infty$$

quindi la f non è derivabile negli estremi del suo insieme di definizione dove il suo grafico ha tangente verticale. Studiamo il segno di f'. Risulterà $f'(x) \ge 0$ quando

$$\begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} - 1 \right) \ge 0 \\ -2 < x < 1 \end{cases} \text{ oppure } \begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} + 1 \right) \ge 0 \\ 1 < x < 2 \end{cases}$$

Il primo sistema di disequazioni ha come soluzione l'insieme $(-2, -\sqrt{2})$, mentre il secondo l'insieme $(1, \sqrt{2})$. La f risulta quindi crescente nei due intervalli trovati e decrescente negli intervalli $(-\sqrt{2}, 1)$ e $(\sqrt{2}, 2)$. I punti -2, 1, 2 sono quindi di minimo locale, mentre i punti $-\sqrt{2}$, $\sqrt{2}$ sono di massimo locale. Per trovare il massimo e il minimo assoluti basta valutare la f in tutti questi punti:

$$f(-2) = \frac{3}{2}$$
, $f(-\sqrt{2}) = \sqrt{2} + \frac{1}{2}$, $f(1) = \frac{\sqrt{3}}{2}$, $f(\sqrt{2}) = \sqrt{2} - \frac{1}{2}$, $f(2) = \frac{1}{2}$

quindi il massimo è $\sqrt{2} + \frac{1}{2}$ e il minimo è $\frac{1}{2}$.

Esercizio 3 Stabilire se esiste, ed eventualmente calcolare il limite $\lim_{x\to 0} \frac{x\sin^2 x}{(e^{(x^2)}-1)(e^x-1)}$.

Soluzione

Ricordando che, per $t \to 0$ risulta

$$\sin t = t + o(t), \qquad e^t = 1 + t + o(t)$$

si ottiene

$$\frac{x \sin^2 x}{\left(e^{(x^2)}-1\right) \left(e^x-1\right)} = \frac{x \left(x+o(x)\right)^2}{\left(1+x^2+o(x^2)-1\right) \left(1+x+o(x)-1\right)} = \frac{x \left(x^2+o(x^2)\right)}{x^3+o(x^3)} = \frac{x^3+o(x^3)}{x^3+o(x^3)} \longrightarrow 1.$$

Analisi Matematica I

Pisa, 28 giugno 2005

Rispondere alle seguenti domande inserendo la lettera corrispondente all'unico risultato corretto nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata vale -1, ogni risposta mancante vale 0.

Domanda 1 Sia (a_n) una qualsiasi successione monotona decrescente. Allora, necessariamente:

A)
$$\sum_{n=0}^{\infty} |a_n|$$
 converge B) se $a_n \ge 1 \ \forall n \in \mathbb{N}$ allora $\sum_{n=0}^{\infty} a_n$ diverge

C)
$$\sum_{n=0}^{\infty} a_n$$
 converge D) $\lim_{n\to\infty} a_n = 0$

 \mathbf{C}

Domanda 2 Le soluzioni in \mathbb{C} dell'equazione $z^7+1=0$ sono:

- C) 7 soluzioni distinte D) nessuna soluzione

Domanda 3 Sia $f(x) = x^{\log x}$, x > 0. Allora

A)
$$f$$
 non è derivabile B) $f'(x) = \frac{2 \log x}{x} e^{(\log x)^2}$

C)
$$f'(x) = \frac{x \log x}{x}$$
 D) $f'(x) = \frac{e^{x \log x}}{x^2}$

Domanda 4 Sia $z = (\sqrt{6} - 3i)^4$. Allora |z| =

A)
$$9^4$$
 B) 15^2 C) 6^2 D) 15^4

Domanda 5 La funzione $f(x) = \log\left(1 + \frac{\sin(x^2)}{2}\right)$ ha la stessa parte principale di infinitesimo, per $x \to 0$, di:

A)
$$\frac{1}{2}\tan(x^2)$$
 B) $\sin(x^3)$ C) $x + \sin(x^2)$ D) $1 + \frac{\sin^2 x}{2}$

Domanda 6 Dato x > 0 risulta $\log(-x)^4 =$

В

- A) $4\log(-x)$ B) $4\log x$ C) $(-\log x)^4$ D) non è definito

Domanda 7 Data $f \in C^1(\mathbb{R}^+)$ poniamo, per ogni x > 1, $F(x) = \int_2^{\arctan x} f'(t) dt$. Allora:

- A) $F(x) = f'(\arctan x)$ B) $F(x) = f(\arctan x) f(2)$

В

- C) F'(x) = f(x) D) $F'(x) = f(\arctan x)$

Domanda 8 Sia $f(x) = \frac{\cos x}{x^3}$, $x \neq 0$. Allora A) $\int_0^1 f(x) dx$ converge B) $\int_2^{+\infty} f(x) dx$ non esiste

- C) $\int_{3}^{+\infty} f(x) dx$ converge D) $\int_{4}^{7} f(x) dx$ non converge

 \mathbf{C}

Domanda 9 Sia (a_n) una successione di numeri reali tale che $a_n \leq a_{n+1}$ e $a_n \geq 8$ per ogni $n \in \mathbb{N}$. Allora necessariamente

- A) $\lim_{n\to\infty} a_n = 8$ B) esiste finito il limite di (a_n)

- $C) \lim_{n \to \infty} a_n = +\infty$
- D) nessuna delle precedenti

D

Domanda 10 L'insieme $\left\{x \in \mathbb{R}: 3x - \frac{1}{x} > 0\right\}$ è:

- A) superiormente limitato
- B) inferiormente limitato
- C) vuoto
- D) limitato

В

Rispondere alle seguenti 5 domande inserendo il risultato nel riquadro. Ogni risposta esatta vale 1, ogni risposta sbagliata o mancante vale 0.

Domanda 11 Trovare tutte le soluzioni in $\mathbb C$ dell'equazione $(3i+z)^2=-1$. $z_1=-2i,\ z_2=-4i$

$$z_1 = -2i, \ z_2 = -4i$$

Domanda 12 Calcolare, se esiste $\lim_{n\to\infty} \sqrt[n]{\frac{6^n+n^4}{n!}}$

0

Domanda 13 Stabilire il carattere della serie $\sum_{n=0}^{\infty} \, \frac{(\log 11)^n}{11n+2}$

diverge positivamente

Domanda 14 Calcolare $\lim_{x \to -\infty} x^4 \log (1 + e^{2x})$.

0

Domanda 15 Dire per quali $\alpha \in \mathbb{R}$ converge l'integrale $\int_{1}^{+\infty} \frac{\arctan x}{x^{3\alpha}} dx$.

Analisi Matematica I

Pisa, 28 giugno 2005

Esercizio 1 Stabilire se esiste, ed eventualmente calcolare il limite $\lim_{x\to 0} \frac{\left(e^{\sin x}-1\right)\left(e^{(x^2)}-1\right)}{x\tan^2 x}$

Soluzione

Ricordando che, per $t \to 0$ risulta

$$\sin t = t + o(t),$$
 $e^t = 1 + t + o(t),$ $\tan t = t + o(t)$

si ottiene

$$\frac{\left(e^{\sin x} - 1\right)\left(e^{(x^2)} - 1\right)}{x\tan^2 x} = \frac{\left(1 + \sin x + o(\sin x) - 1\right)\left(1 + x^2 + o(x^2) - 1\right)}{x\left(x + o(x)\right)^2} = \frac{\left(x + o(x)\right)\left(x^2 + o(x^2)\right)}{x^3 + o(x^3)} = \frac{x^3 + o(x^3)}{x^3 + o(x^3)} \longrightarrow 1.$$

Esercizio 2 Studiare la funzione $f(x) = \sqrt{1 - \frac{x^2}{4}} + \left| \frac{1}{2} - \frac{x}{2} \right|$ trovandone in particolare gli eventuali punti di massimo e minimo locali e assoluti (oppure estremo superiore e inferiore).

Soluzione

La funzione è definita per gli $x \in \mathbb{R}$ tali che $1 - \frac{x^2}{4} \ge 0$, quindi per $-2 \le x \le 2$. Osserviamo che f è continua, perché somma e composizione di funzioni continue, quindi sul suo insieme di definizione che è limitato e chiuso, ammette massimo e minimo assoluti per il teorema di Weierstrass. La f è anche derivabile almeno nei punti dove non si annullano il valore assoluto o l'argomento della radice. Dovremo quindi valutare la derivabilità nei punti -2, 1, 2. La derivata di f (dove esiste) è la seguente:

$$f'(x) = \frac{1}{2} \left(\frac{-2x}{2\sqrt{4 - x^2}} - \operatorname{sgn}(1 - x) \right) = \begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} - 1 \right) & \text{se } -2 < x < 1 \\ \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} + 1 \right) & \text{se } 1 < x < 2 \end{cases}$$

Dato che f è continua nel punto x=1 possiamo valutare le derivate destra e sinistra calcolando il limite di f':

$$f'_{-}(1) = \lim_{x \to -1^{-}} f'(x) = \frac{1}{2} \left(-\frac{1}{\sqrt{3}} - 1 \right), \qquad f'_{+}(1) = \lim_{x \to 1^{+}} f'(x) = \frac{1}{2} \left(1 - \frac{1}{\sqrt{3}} \right)$$

Le due derivate sono diverse fra loro ma finite entrambe, quindi x = 1 è un punto angoloso della funzione. Calcoliamo ora la derivata destra e sinistra negli estremi:

$$\lim_{x \to -2^+} f'(x) = +\infty, \qquad \lim_{x \to 2^-} f'(x) = -\infty$$

quindi la f non è derivabile negli estremi del suo insieme di definizione dove il suo grafico ha tangente verticale. Studiamo il segno di f'. Risulterà $f'(x) \ge 0$ quando

$$\begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} - 1 \right) \ge 0 \\ -2 < x < 1 \end{cases} \text{ oppure } \begin{cases} \frac{1}{2} \left(\frac{-x}{\sqrt{4 - x^2}} + 1 \right) \ge 0 \\ 1 < x < 2 \end{cases}$$

Il primo sistema di disequazioni ha come soluzione l'insieme $(-2, -\sqrt{2})$, mentre il secondo l'insieme $(1, \sqrt{2})$. La f risulta quindi crescente nei due intervalli trovati e decrescente negli intervalli $(-\sqrt{2}, 1)$ e $(\sqrt{2}, 2)$. I punti -2, 1, 2 sono quindi di minimo locale, mentre i punti $-\sqrt{2}$, $\sqrt{2}$ sono di massimo locale. Per trovare il massimo e il minimo assoluti basta valutare la f in tutti questi punti:

$$f(-2) = \frac{3}{2}$$
, $f(-\sqrt{2}) = \sqrt{2} + \frac{1}{2}$, $f(1) = \frac{\sqrt{3}}{2}$, $f(\sqrt{2}) = \sqrt{2} - \frac{1}{2}$, $f(2) = \frac{1}{2}$

quindi il massimo è $\sqrt{2} + \frac{1}{2}$ e il minimo è $\frac{1}{2}$.

Esercizio 3 Scrivere il polinomio di Taylor di ordine 6 nel punto $x_0 = 0$ della funzione $f(x) = \cos^2 x$.

Soluzione

Utilizziamo lo sviluppo di Taylor del coseno:

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + o(x^6)$$

quindi, eseguendo il quadrato ed eliminando tutti i termini inifinitesimi di ordine superiore a x^6 , si ottiene:

$$\cos^2 x = 1 + \frac{x^4}{4} - x^2 + \frac{x^4}{12} - \frac{x^6}{360} - \frac{x^6}{24} + o(x^6) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6 + o(x^6)$$

quindi il polinomio cercato, che è l'unico polinomio di grado 6 che differisce da f per un infinitesimo superiore a x^6 , è:

$$P_6(x) = 1 - x^2 + \frac{1}{3}x^4 - \frac{2}{45}x^6.$$