Università di Pisa - Corso di Laurea in Ingegneria Aerospaziale e Nucleare

Analisi Matematica II

Pisa, 8 gennaio 2002

Rispondere alle seguenti domande inserendo solo il risultato nel riquadro. Ogni risposta esatta vale 2 punti, ogni risposta sbagliata vale -1 punti, ogni risposta mancante vale 0 punti.

Domanda 1 Calcolare
$$\int_{D} \cos(x-y) dx dy$$
 dove $D = \left\{ (x,y) \in \mathbb{R}^2 : x \ge -\frac{\pi}{2}, y \le \frac{\pi}{2}, y - x \ge 0 \right\}.$

Domanda 2 Calcolare l'integrale curviline
o $\int\limits_{\gamma}2x+3y+2\ ds\;$ dove γ è la curva semplice che ha per

supporto l'insieme $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 2, x \le 0, y \ge 0\}.$

 $2+\sqrt{2}\pi$

Domanda 3 Calcolare l'integrale $\int\limits_{\gamma} 2x\,dy$ dove γ è l'arco della curva $y=e^{2x}$ che congiunge i punti

$$(0,1)$$
 e $(1,e^2)$.

 $e^2 + 1$

Domanda 4 Trovare l'insieme di convergenza puntuale della successione di funzioni:

$$f_n(x) = (2-x)x^n.$$

 $(-1,1] \cup 2$

Domanda 5 Risolvere l'equazione differenziale $y' = -y \frac{\sin x \cos x}{1 + \cos(2x)}$.

$$y = c\sqrt[4]{1 + \cos(2x)}$$

Domanda 6 Calcolare $\lim_{(x,y)\to(0,\pi)} \frac{1}{1+\sin^2 x + \cos y}$.

 $+\infty$

Domanda 7 Dire se è differenziabile in (0,0) la funzione

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{2x^2 + y^2}} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Domanda 8 Risolvere l'equazione differenziale y''' - 3y' + 2y = 0.

$$y = c_1 e^{-2x} + c_2 e^x + c_3 x e^x$$

Domanda 9 Dire se la serie $\sum_{n=0}^{\infty} \frac{1}{2^n \sqrt{2 + (3n+1)x}}$ converge uniformemente in $[0, +\infty)$.

Domanda 10 Calcolare l'integrale $\int_D x^2 + y^2 dx dy$ dove

$$D = \{(x, y) \in \mathbb{R}^2 : x \le 1, y \le 1, x \ge 1 - y\}.$$

SI

Università di Pisa - Corso di Laurea in Ingegneria Aerospaziale e Nucleare

Analisi Matematica II

Pisa, 8 gennaio 2002

Svolgere, giustificando le risposte, uno solo dei due esercizi.

Esercizio 1

Sia
$$f(x,y) = \frac{3xy}{(x^2 + y^2)^3}$$
.

- 1. Trovare il massimo e il minimo assoluti di f sull'insieme $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}.$
- 2. Trovare i punti di massimo e di minimo relativo per f in D.

Esercizio 2

Risolvere l'equazione differenziale $y'' + 4y = \frac{1}{\cos x}$.

Soluzioni del compito del 8 gennaio 2002

Esercizio 1

1. La funzione f è continua in D che è un insieme compatto, quindi ammette massimo e minimo assoluti. La f è inoltre di classe C^1 e ne possiamo calcolare le derivate parziali:

$$\frac{\partial f}{\partial x} = \frac{3y(y^2 - 5x^2)}{(x^2 + y^2)^4}, \qquad \frac{\partial f}{\partial y} = \frac{3x(x^2 - 5y^2)}{(x^2 + y^2)^4}.$$

Il gradiente di f non si annulla mai, quindi non ci sono punti di massimo o di minimo interni a D. La frontiera di D è formata dall'unione dei supporti di due curve regolari. Parametrizziamo $x^2+y^2=1$ con la curva $\gamma(t)=\begin{pmatrix} \cos t \\ \sin t \end{pmatrix},\ t\in [0,2\pi].$ La restrizione corrispondente è $\phi(t)=(f\circ\gamma)(t)=3\cos t\sin t=\frac{3}{2}\sin(2t).$ Il massino di ϕ è $\frac{3}{2}$ mentre il minimo è $-\frac{3}{2}$. L'altra parte di frontiera è l'insieme $x^2+y^2=4$ che parametrizziamo con la curva $\alpha(t)=(f\circ\alpha)(t)=(f\circ\alpha)(t)=\frac{3\cos t\sin t}{16}=\frac{3}{32}\sin(2t).$ Il massino di ϕ è $\frac{3}{32}$ mentre il minimo è $-\frac{3}{32}$. Quindi il massimo assoluto di f su D è $\frac{3}{2}$ mentre il minimo assoluto è $-\frac{3}{2}$.

2. Dal punto precedente sappiamo che non esistono punti stazionari interni a D. I punti $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ e $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ sono punti di massimo assoluto quindi anche relativo per f. I punti $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ e $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ sono punti di minimo assoluto quindi anche relativo per f.

Gli altri possibili punti sono quelli stazionari per la restrizione ψ , quindi i punti dove si annulla $\psi'(t)$ che corrispondono a $(\sqrt{2}, \sqrt{2})$, $(-\sqrt{2}, -\sqrt{2})$, $(-\sqrt{2}, \sqrt{2})$, $(\sqrt{2}, -\sqrt{2})$.

I primi due sono punti di massimo relativo per la ψ . Consideriamo ora la restrizione "radiale" $g(t)=f(t,t),\ t\in \left[1,\sqrt{2}\right]$. Risulta $g(t)=\frac{1}{8t^4}$, quindi il punto $t=\sqrt{2}$ è di minimo per g. Ne segue che il punto $\left(\sqrt{2},\sqrt{2}\right)$ non è né di massimo né di minimo relativo per f su D. Ragionamento analogo per i restanti tre punti. Non ci sono quindi altri punti di massimo o di minimo relativo per f oltre a quelli assoluti.

Osserviamo che si potevano sfruttare le numerose simmetrie della f:

$$f(-x,y) = -f(x,y) = f(x,-y) = -f(-x,-y).$$

Esercizio 2

Risolviamo prima l'equazione omogenea associata: y'' + 4y = 0. Il suo polinomio caratteristico è $\lambda^2 + 4$ che ha le radici $\lambda_1 = -2i$, $\lambda_2 = 2i$. Quindi un sistema fondamentale di soluzioni è dato dalle funzioni

$$y_1 = \cos(2x), \qquad y_2 = \sin(2x).$$

Cerchiamo ora una soluzione particolare con il metodo della variazione delle costanti, quindi cerchiamo una funzione y_0 della forma $y_0 = v_1y_1 + v_2y_2$. Risolviamo pertanto il sistema di equazioni:

$$\begin{cases} v_1'y_1 + v_2'y_2 = 0\\ v_1'y_1' + v_2'y_2' = \frac{1}{\cos x}. \end{cases}$$

La soluzione è data da:

$$v_1' = -\sin x, \qquad v_2' = \cos x - \frac{1}{2\cos x}.$$

Integrando si ottiene (a meno di costanti additive):

$$v_1 = \cos x, \qquad v_2 = -\sin x - \frac{1}{2} \log \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right|.$$

Quindi la soluzione completa dell'equazione differenziale è:

$$y = c_1 \cos(2x) + c_2 \sin(2x) + \cos(2x) \cos x + \sin(2x) \left(-\sin x - \frac{1}{2} \log \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| \right).$$