A.A. 2021/2022 Istituzioni di Analisi Matematica

Printout of lectures

(Volume 3)

Massimo Gobbino

Contents

Lecture 47. Compact operators and symmetric operators. Strong-strong continuity for linear compact operators. Weak-strong continuity for compact symmetric linear operators. Rayleigh quotient. Variational characterization of eigenvalues/eigenvectors.	6
Lecture 48. Spectral theorem for compact symmetric linear operators. Example of a linear symmetric operator without eigenvalues	12
Lecture 49. Uniform-on-bounded-sets limit of compact operators is compact. Approximation of compact operators in Hilbert spaces. Non-linear projection in normed spaces	17
Lecture 50. From Brouwer fixed point theorem to Schauder fixed point theorem. Counterexample to Brouwer fixed point theorem in infinite dimension. Proof of Schauder theorem. Proof of existence of solutions for differential equations via Schauder fixed point theorem.	22
Lecture 51. Characterizations of continuity for linear applications between normed spaces. Pseudo-norms and Hahn-Banach theorem (analytic form). Discussion of the existence of continuous and non-continuous applications between normed spaces.	27
Lecture 52. Aligned functional. Space of linear operators between normed spaces. Norm of an operator. Topological dual of a normed space. Dual characterization of the norm. Example of proof by duality	33
Lecture 53. Definition of weak convergence (in a normed space) and weak* convergence (in its topological dual). Lower semicontinuity of the norm. Weak* compactness of balls in duals of separable normed spaces. Weak/strong separation through hyperplanes: definitions, statements, consequences (strong + convex implies weak).	39
Lecture 54. Pseudo-norm (gauge) associated to a convex set. Proof of the results concerning weak/strong separation through hyperplanes (geometric forms of Hahn-Banach theorem). Example of two closed convex sets in finite dimension that do not admit a strong separation	45
Lecture 55. Description of common sequence spaces: lp, converging sequences, sequences whose limit is zero, sequences that are eventually zero. Duality pairing between sequences. Characterization of the dual of l1 and lp	51

Lecture 56. Dual of sequences whose limit is zero, of sequences that are eventually zero, and of converging sequences. In the case of l-infinity the duality pairing with 11 is a non-surjective isometry. Elements of the dual of l-infinity that coincide with	
the limit for converging sequences	56
Lecture 57. Duality pairing between functions. Dual of Lp spaces on finite measure spaces via Radon-Nikodym theorem: well-posedness, linearity, continuity, isometry, costruction of the measure	61
Lecture 58. Conclusion of the proof of the characterization of duals of Lp spaces. Dual of Hilbert spaces: proof via orthonormal basis and via projection onto a closed convex set	67
Lecture 59. Bidual, canonical injection, and definition of reflexive space. Weak compactness of balls in reflexive spaces whose topological dual is separable. Realization of the sup in the definition of norm in the dual. Relation between the separability of a space and the separability of its dual. Paradox of Hilbert triples	73
Lecture 60. Representation theorems for duals vs weak compactness of balls in Lp. Lax-Milgram approach to existence of weak solutions for linear elliptic equations. Extenders of pointwise values as elements of the dual of L-infinity. Examples of non-uniqueness of the aligned functional	79
Lecture 61. Baire spaces: equivalent definitions and basic terminology. Complete metric spaces and locally compact topological spaces are Baire spaces. Open subsets of Baire spaces are Baire spaces. First example of application of Baire category.	84
Lecture 62. F-sigma e G-delta sets. The set of discontinuity points of a function between metric spaces is an F-sigma set. Irrational real numbers are not an F-sigma set. A function of two real variables that is separately continuous, and vanishes on a dense subset, is identically zero. Sequences that converge weakly in Hilbert and normed spaces are bounded	90
Lecture 63. There do not exist Banach spaces with countable algebraic basis. Finite dimensional subspaces of a normed space are closed. Existence of continuous functions that are nowhere differentiable. Banach-Steinhaus theorem (as an equivalence and as an alternative). The pointwise limit of linear continuous operators is linear and continuous	95
Lecture 64. Proof of both versions of Banach-Steinhaus theorem. Existence of a dense G-delta set of continuous and periodic functions whose Fourier series does not converge in a dense G-delta set of points	100
Lecture 65. Characterization of surjective mappings in terms of qualitative solvers. Existence of linear qualitative solvers for surjective linear maps. Characterization of open mappings in terms of quantitative solvers. Statement of the open mapping theorem. Corollaries: continuity of the inverse, equivalence of Banach norms, closed	105
graph theorem	105

Lecture 66. Proof of the open mapping theorem. In a normed space every vector is the sum of an absolutely converging series with values in a dense subset. Quantitative solvability on the whole space vs quantitative solvability on a dense subset. Existence of a linear quantitative solver vs existence of a topological complement. Special case in Hilbert spaces	111
Lecture 67. The pointwise limit of continuous functions is continuous in a dense G-delta set. The derivative of a differentiable function is continuous in a dense G-delta set. Unbounded operators. Multiplication operators in Hilbert spaces. The inverse of a symmetric compact operator as an unbounded multiplication operator. Powers of multiplication operators	116
Lecture 68. Classical example of unbounded operator: second derivative (or Laplacian) with homogeneous Dirichlet boundary conditions. Compactness and symmetry of the inverse in any dimension. Computation of eigenvalues and eigenvectors in the one dimensional case	121
Lecture 69 . Computation of the domain of the power 1/2 of the second derivative with Dirichlet boundary conditions in an interval. Continuity of functions in the fractional Sobolev space Hs (in an interval) with s greater than 1/2. Existence of unbounded functions in the fractional Sobolev space Hs with s less than 1/2	126
Lecture 70 . Regularity of eigenfunctions of the Laplacian, and orthogonality of their gradients, in any space dimension. In a square, traces of H1 functions coincide with functions of class H 1/2 of the section. List of important arguments that have not been addressed in the course	131

Istiturioui di Aualisi		LECTURE 4	.7
→ Compact operators → Symmetric operators → SS and WS continuity → RAYLEIGH quotient			
Def. Let X and Y be metric COMPACT if the image compact subset of Y. In terms of sequences: admits a conserving se	of every bounds	d set in X is a	relatively
Ruk Compact > continuous	Consider any	function whose	imorge
Frop. (Livean + compact = Let × and Y be normed 1) Let us assume that (1) & 18 Dinean		_	function.
(ii) f is compact. Then f is SS continuous particular			i tu
Proof.] Since & is Dinean,	convergence)	WLOG that x00 =	0.
let $\times n \rightarrow 0$. We know Assume that $\times n \neq 0$ for		uided.	

Lecture 47

Then consider $\frac{x_m}{\ x_m\ _X} = c_m$. Then $\ v_m\ = 1$ and therefore c_m is bounded $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$. Then $\ v_m\ _X = 1$ and therefore c_m $\Rightarrow c_m = c_m$
$\Rightarrow \ f(x_m)\ _Y \leq M \ x_m\ _X (\text{true for free even if } x_m = 0)$ $\Rightarrow \ f(x_m)\ _Y \Rightarrow 0$
This proves that every subsequence $f(x_{m_k})$ has a further subsequence $s.t.$ $f(x_{m_{ki}}) \to 0$. By the sub-sub lemma this implies that that $f(x_m) \to 0$.
Def. (Symmetric operator) Let H be a Hilbert space. A function f: H -> H is called Symmetric if
$\langle \varphi(v), w \rangle = \langle v, \varphi(w) \rangle \forall (v, w) \in \mathbb{H}^2$ From the TP P is surveyed a Man P is 1 with P
Exercise If ξ is symmetric, then ξ is LINEAR thint $\langle \xi(\sigma_1 + \sigma_2), \omega \rangle = \langle \sigma_1 + \sigma_2, \xi(\omega) \rangle$ $= \langle \sigma_1, \xi(\omega) \rangle + \langle \sigma_2, \xi(\omega) \rangle$ $= \langle \xi(\sigma_1), \omega \rangle + \langle \xi(\sigma_2), \omega \rangle$

Lecture 47

```
Prop. (Liu. + symm, + cpt. => weak-strong continuous)
  Let H be a Hilbert space and let &: H -> H Le a ferretion.
  Let us assume that
  (i) & 15 Qivean
   (ii) & 1s compact
    (ri) & is symmetric
    Then & 15 WS continuous, namely (if ×n is bounded and)
                      xm → xoo iu H → P(xm) → P(xoo) iu H
                             weak
  Proof Dim < \xi(x_m), \omega > = Dim < x_n, \xi(\omega) > x_n + x_n
                                                                             = < x0, \( \psi \) > \( \tau \) > \( \tau \) \( \tau \)
    This proves that & (xm) -> & (xo) weakly
    Take any subsequence { f (xnx)}. Due to compacturess, this
   admits a further subsequence
                                                     f(xn;) -> you strongly
  But we know that
                                                      ₽ (xnk:) -> ₽ (xoo)
   and therefore you = f (xon).
  The conclusion follows From the sub-sub lemma
  Ruk Oue day the same statement is true withous [xm] bounded
   and even without assuming & is symmetric.
```

Lecture 47

RAYLEIGH QUOTIENT] Let P: H -> H	
$q(\sigma) := \frac{\langle f(\sigma), \sigma \rangle}{\ \sigma\ ^2} \forall \sigma \in H \setminus \{o\}$	
Theorem (Variational characterization of eigenvalues/eigenvectors Let $\varphi: H \to H$ as above. Let us assume that)
(i) & 15 Symmetric	
(iti) & 15 compact strongly Let $V \subseteq H$ be a f -invariant closed subspace ($f(v) \in V$ for	
every $c \in V$). Then the following one true (1) There exists	
wax { q(v) : U∈ V\{0}}} and it coincides with	
sup $\{ \langle \varphi(\upsilon), \upsilon \rangle : \upsilon = 1, \upsilon \in V \}$ and with	
sup { (< €(υ), υ> (: υ ≤ 1, υ∈ V)	
(2) Consider any maximum point vo & V\{0} and let 19(00)! be the maximum value. Then	
Then	
Ruk We do not say that qué, admits mor and nein. This is true only in FINITE dimension	
Exercise Find example	

Lecture 47

Proof (1) We ceain that
$\sup_{Q(v)} \{ Q(v) : U \in V \setminus \{0\} \} = \sup_{Q(v)} \{ e \varphi(v), v : U \in V, v = 1 \}$
< sup { < f(v1, v>) : v ∈ V, v ≤ 1 }
The key point is that the sort one is an equality, because for every $w \in V$ with $ w < 1$ we find that $\frac{w}{ w }$ is a better competitor because
$ \langle e(\frac{w}{ \omega }), \frac{w}{ \omega } \rangle = \frac{1}{ \omega ^2} \langle e(w), w \rangle \geq \langle e(w), w \rangle $ $ \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega ^2 \rangle \omega ^2 \langle 1 \omega ^2 \langle 1 \omega$
[Some gison needer if m = 0]
The second important point is that the soist one is a maximum, namely
$\max \{ \{ < \varphi(v), v > \} : v \in V, \ v\ \le 1 \} $ exists
Take {Un} a sup-izing sequence. Then there exists Um, -> Um weakly
By the ws continuity we know that
$\langle \xi(\sigma_n), \sigma_n \rangle \longrightarrow \langle \xi(\sigma_n), \sigma_n \rangle$ 1 weak 1 1 Strong

Lecture 47

(2) Let vo be a maximum point for 19(0). Then vo is either max o min for 9(0) Write	
$q(v_0+t_0) = \frac{\langle e(v_0+t_0), v_0+t_0 \rangle}{\ v_0+t_0\ ^2}$ $< e(v_0), v_0 > + 2t < e(v_0), v > + t^2 < e(v_0), v >$	
1100112 + 2t < 00, 0 > + t2 110112	
$0 = q'(0) = \frac{2 < \varphi(00), 0 > 00 ^2 - 2 < 00, 0 > < \varphi(00), 00 >}{ 00 ^4}$	
AGEN	
$< \frac{2}{2}(v_0) v_0 ^2 - \frac{2}{2}(v_0), v_0 > v_0, v_0 > 0$	
$\varphi(v_0) = \frac{\langle \varphi(v_0), v_0 \rangle}{ v_0 ^2} = q(v_0)v_0$	
Questions -> Where did we use that we have [9(0)? ? -> where did we use that V is p-invariant?	

Lecture 47

Istituzioni di Analisi - LECTURE 48 Note Title 22/11/2021
SPECTRAL THEOREM (for compact operators)
Theorem let H be a separ. Hilbert space. Let $f: H \rightarrow H$ and let us assume that (i) f is linear (ii) f is compact
(iri) & is symmetric
Then the following statements are time. (1) Hadmits a Hilber basis fund made by eigenvectors of f (um) = \lambda n un \text{ m > 1}
(2) The sequence {\lambda_n} is such that
(3) For every $n \ge 1$, the eigenspace of λn has $\mp 1 \lambda 1 + \pi = 0$ unless $\lambda_n = 0$
[Proof] Step 1 Eigenvectors with different eigenvalues are orthogonal $\varphi(v) = \lambda v$ $\varphi(w) = \mu w$ $\lambda < v, w \rangle = < \lambda v, w \rangle = < \varphi(v), w \rangle = < v, \varphi(w) \rangle$ $= < v, \mu w \rangle = \mu < v, w \rangle$
~ (\(\lambda - \mu\) < \(\beta, \omega \rangle = 0\)
Step 2 If V is f-invariant, then V is again f-invariant
$w \in V^{\perp}$ and $v \in V$. Then

Lecture 48

Step 3 The idea is to consider a sequence of f-invariant subspaces
$H = V_1 \ge V_2 \ge V_3 \ge -1$
and ou each subspace we apply the variational characterization.
$V_1 = H$ as there exists U_1 and λ_2 s.t. $f(U_2) = \lambda_2 U_2$
Set $V_2 = \{ v \in H : \langle v, v_1 \rangle = 0 \}$. This is f - invariant $ (\perp of Span (v_1)) $
~> there exists or and λ_2 5.1. $f(\sigma_2) = \lambda_2 \sigma_2$
Note that $ \lambda_2 \leq \lambda_1 $ $ \uparrow $
Suppose we have defined vz,, vk. Then set
V _{k+1} = { v ∈ V : < v, vi > =0 for every i = 1,, k}
= Span (vz,, vz) and therefore f-invariant
Actually there are two cases. Show exists $k \ge 1$ such that $q(v) \equiv 0$ in V_k $q(v) \not\equiv 0$ for every $k \ge 1$.
Case 1) $q(v) = 0$ in V_k . Then $V_k = \ker(x)$

Lecture 48

9		V E V		
Th f	(v)=0 \frac{1}{2}	$\forall \in \mathcal{V}$		
Here we	asol symmetry	(think of	notation by s	so degrees in Rzy
	\$ (v+w), v+w:		_	
= < Symmetry	€(v), v> + 2 < 0	₹(v),ω>+	< ((ω), ω >	= 2<\(\rho(\rho),\omega>
0 0	for every or are		= (v) £ cm	0
If we o	because f (v) ne in this case		take Uz,	., Uz-, and we
	orthonormal bar	ris of ker ((4)	
			this is the tur Hilbert space	u a separable
		(Sen	eral fact: any	subset of a
			on we hic space	
Care 2	se obtain au ru P (vm) -	Υ,	euce [Um] s:	۴.
	not yet an or			
	we that 1> u is that >		for every	n≥1
	is not the ca		1/m/ 3 Vo >	0
_	{Um}. It is a		*	
	other hand	has a c	omosting su	०६५० .
11 ×n 07	- >m Um 2 =	λm 10m 2+	>m 11 0m 112 +	2 m m eum, um
		2 Yo	ä	D
		2 10		

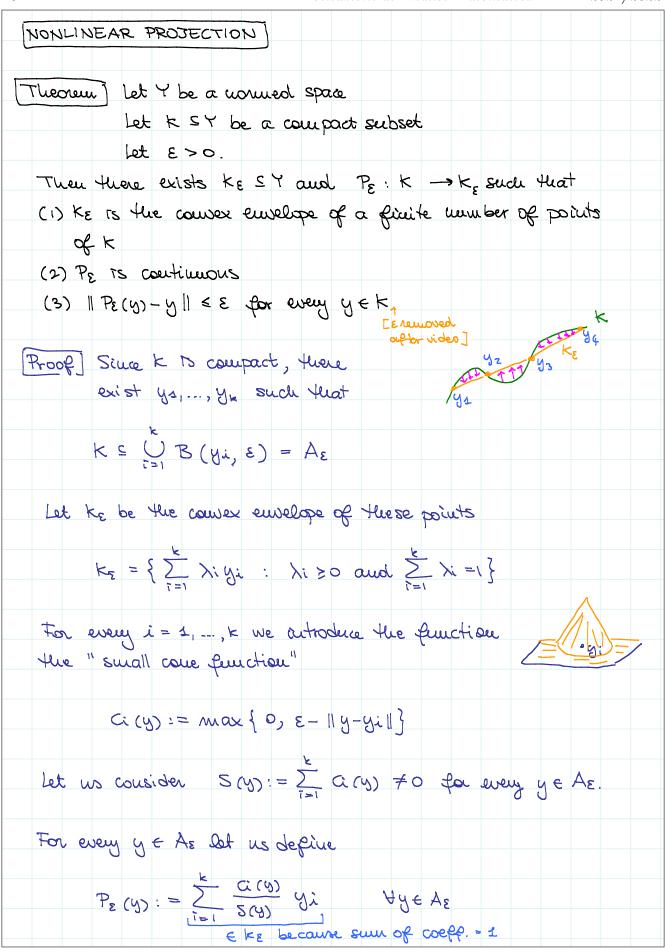
Lecture 48

1 Timour of tectures (volume 3)
[Step 4] Assume that $\lambda_m \to 0$ and consider
$V_{\infty} := V_1 \cap V_2 \cap V_3 \cap \cdots$
= Clos (5pau (vz,,vk,))
The claim is that Vos is Ker (7) and therefore it is enough to add a Hilbert basis of Ker (4).
Cleaney Vos S Vx for every x 21, and therefore
$\sup \left\{ q(\omega) : \sigma \in V_{\infty} \setminus \{0\} \right\} \leq \sup \left\{ q(\omega) : \sigma \in V_{\varepsilon} \setminus \{0\} \right\}$ $= \lambda_{\kappa} \to 0$
$\sim q(v) \equiv 0$ in V_{∞} $\sim \infty$ (as before) $f(v) \equiv 0$ in V_{∞} .
Example Let { en 3 be a Hilbert basis in H Define
2(eu) = { = = = = = = = = = = = = = = = = =
It can be verified that, if we extend of by Dineonity, the resulting operator is compact with an infinite dimensional kennel.
Example (Compactness is needed) $H = L^2((0,1))$ Consider $A: H \rightarrow H$ defined by
[Au] (x) = xu (x)

Lecture 48

[Fact 1] It 15 well - defined, linear and Lip. cont.
$\ \times u(x) - \times v(x) \ _{L^{2}}^{2} = \int_{0}^{\infty} x^{2} (u(x) - v(x))^{2} dx$
$\leq \int_{0}^{1} (u(x) - v(x))^{2} dx$
= 1 (1(x) - V (x) 12
Fact 2] It is symmetric
$\langle \Delta u, \sigma \rangle = \int \times u(x) \vee (x) dx = \int u(x) \cdot x \vee (x) dx = \langle u, \Delta \sigma \rangle$
[Fact 3] A admits no eigenvalue
Assume $\Delta u = \lambda u$ $\sim \times u(x) = \lambda u(x)$ for $\alpha.e. \times \epsilon(0,1)$ $u(x)(x-\lambda) = 0$
~ u (x) =0 almost everywhere
(Fact 4) A 15 not compact (if it were, then eigenvalues would exist)
Exercise Find {un} 5 L2 ((0,1)) bounded 5.t. un 1 = 1
but {xum(x)} has NO subseq. Heat converges STRONGLY. (NO Councily Subseq.)

Lecture 48


130000	ioni di Analisi – LE	CTURE 49
ote Title		24/11/20
10000		
APPROX	IMATION OF COMPACT OPERATORS	
_		
fop.] S	etting: X and Y are metric spaces	
	£m: × → ×	
	fos: × → Y	
Ne s		
Assum		, , , , , ,
	, COMPLETE - [Exercise: show that	this in heeded)
(ii) fm	is a compact operator for every m≥1	
ciii) fr	> for unif. on bounded subsets of	Ж,
Then I	260 18 compact.	
1 / 00-0	at B C W la and land set the	to the sense of les
	et B 5 % be any bounded set. We nee	euc to prove taken
	so (B) 75 relatively compact in 9.	
2	ruce 4 15 complete, it 15 enough to prove	that for (B) 15 totally
F	. belauva	
Idea: -	for (B) To close to for (B), which TS-	totally bounded
Details		O
	e giver E>0.	
	exists in large evoluge so that	
	$q(f_{\infty}(x), f_{\infty}(x)) \leq \frac{1}{2}E$ $\forall x \in B$	
	1	
· There	exist finitely many points y1,, y	Jk Such that
	Pm CN ∈ ∪ B (yi, ½ε) ∀x	CR
		k
· Byt	ue triangular inequality for (x) € (JB(gi, E) 4xeB.
	_ 0 _ 0 _	1

Lecture 49

		13000 dazionio de Tindecine de Canada de Canad
		be a SEPARABLE Hilbert space, and let fenj be a
Hilb	sert	banis.
let		
		Hn:= Span (e1,, en) & vedor space of dim. n
تلعا		
		+ 11 211
		$\mathcal{P}_m: \mathcal{H} \longrightarrow \mathcal{H}_m$
		the orthogonal projection.
36	×	is any metric space, and f: x -> H is any function,
Me	_ cc	au set
		Pm(x) = Pm(x(x)) HxEX
Clus		
000		0, 2, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0, 1,0,
		Pn: X → Hn (finitely din approx. of P)
Ou	estie	su: Eu which sense for -> p??
Tric	lair	auswer: pointwise convergence, namely for (x) → f(x)
		far every ×∈ ×.
		the sound it is
	_	
Kat) (د	(Approximation of compact operators in Hilbert space)
Sef	tiwo	as above.
(1)	76	2 15 compact, then fn → f uniformly on bounded
		ibsets of X
(2)		& is continuous, then on is continuous (trivial)
	_	
(2)	_	× 15 a normed space, and of 15 Dinear, then on 15
	Ωì	inear (thiral)
Pro	of.]	Let B 5 x be a bounded subset, and let E >0.
	. 0 ~	By assumption & (B) 5 H 15 rel. compact and therefore
		. O
		totally bounded, and therefore there exists
		Uz,, Uz in H such that

$\varphi(B) \subseteq \bigcup_{i=1}^{\infty} B(v_{i}, \frac{1}{2} E)$
For every i = 1,, k there exists ≥i ∈ Spour (ex,, eu,)
Such that FINITE UN COMB.
$\ \nabla x - zi \ \leq \frac{1}{2} \varepsilon$
Finally, there exists no >1 such that zie Hmo
for every i = 1,, k.
Claim: $\ \varphi(x) - \varphi_m(x) \ \le \varepsilon \forall m \ge m_0 \forall x \in \mathbb{B}$
Given x eB, Sind i such that &(x) eB (vi, \frac{1}{2}E)
and observe that
Hn Ψ
+ (x) - + (x) = + (x) - + (+ (x))
< 1.000 2.11
≥ \(\psi \) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
miges the distance
frau Hn ≤ f(x) - vi + vi - 2i
$\leq \frac{1}{2} + \frac{1}{2} = 0$
Ruk This result motivates some results "IF and ONLY IF"
such as
" f: x > H is < assumption > if and only if f can be
approximated by a sequence $f_n: X \to H_n$ satisfying
<assumption>"</assumption>
ta example "+ Dinear, continuous compact" compactness
"En livear, continuous, compact" tollows From boundeauss
if the tanger space vous frante some

Lecture 49

Lecture 49

me e	suley u	eed to c	ueck fluai	+ 11 Pε (y) -y 11 ≤	E for every yek
P _E ((y) -y	= = 1	(4) yi	- 51	
		= \\ \times \times \times \times \times	<u>C: (4)</u> (4)	:-9>	
		<	C: (4) 1 4	1 tuis is less than	3 &
		€ ∑ = 1=1	Ct (4) E	when ci (y) ≠0	
		- ع			
		- 6.	_0 _0	—	
<u>Ew K</u>		awy stat	ements Pe en Pm: H	on better Pilm The in Hilberi	•
<u>Sm.K</u>		awy stat	ements Pe	e or better Pilm	•
<u>ZwK</u>		awy stat	ements Pe en Pm: H	e or better Pilm	•
2wK		awy stat	ements Pe en Pm: H	e or better Pilm	•
2wK		awy stat	ements Pe en Pm: H	e or better Pilm	•

Lecture 49

				at Anatist Water	/
Istitw	zioui di A	<i>lualis</i> e	_	LECTURE	E 50
Note Title					24/11/2021
Fixed p	oiut theore	us from BR	OUWER +	O SCHAUDER	
Thomas	(BO) (NA)	T) at P > 0	and Out	B(0,R) be	r classed ball
1 460 0000	COROCWE	cu Rd. L		3 (0,1×) be (a crossic sair
		ب ج	3(0,R) -	3 B (0,R)	
				function.	
Then	there exist	s at least	ons x e	B(O,R) such	Heat
		€(W = X.			
Proof]	Geometry (ourses (same	algebra	ic topology is	uceded)
Corollani	(Hodi & a	d Browner H	liemou)		
		CONNEX CO.			
		be a coutien			
			U		
men (' anima is a	at Quast ou	ic fixed	. pototi	
D-01	Toka Po	2 d .4.2 c	BODD		
		$a \rightarrow b$ be			
	the convex		rue proje		
		Sec 2.			
Define		0,R) → B(0) P)		
	7.8(0, = 1 -> 0 (0	,,~)		
OS .	^	2 (7 ; -)			
X 1	•	早(Pb(x))		5 (5 5)	
APPM	Browner -	to t and o	264an >	c∈B(O,R) s	ich Hat
	× =	P(x) ED			
and -		ilso XED.			
		0	-0-		

Lecture 50

Bad news: there is no Browner theorem in infinite dimension
Example Let H be the usual separable Hilbert space with Hilbert basis $\{eu\}$. Let $(x_4, x_2,)$ denote the components of $x \in H$. Let us define
$\varphi(x) = ((1- x)^{1/2}, x_1, x_2, x_3,)$ $\forall x \in \overline{B}(0, 1)$
It is possible to check that f is continuous, and that $f: \overline{B}(0,1) \to \overline{B}(0,1)$ and actually $\ f(x)\ = 1$ for every $x \in \overline{B}(0,1)$. On the other hand, f has no fixed point
Any fixed point has to satisfy $x_1 = x_2 = x_3 =$ and therefore $x = 0$, but $f(0) \neq 0$ unique vector with all equal components
SCHAUDER FIXED POINT THEOREM
Setting: Y 2 C 2 K hormed convex set space convex set P: C -> K Continuous function
Then of admits at least one fixed point (of course in K).
Idea: approximate & with function on defined in space with finite dimension, when we can apply Browner

	15000430000 40 11000030 111400004 11.11. 2021
Proof Apply	y the noulinear projection lemma with ε:= π.
We	ebtain en
	Pm: K -> Km
	course envelope of a finite
	humber of points of K
Observe the	at Km S C because C is convex, and therefore
we can de	Piue la
	¿n: kn → ku
as	
	$f_{m}(x) = P_{m}(f(x))$
	ec ek
We obsence	that for is continuous and Kn is contained on a
	with finite dimension Yn = Span of the points
	was emplope is kn
	that kn is comex and compact, and from
Bronner n	e declua that there exists xn EKn EC s.t.
	Em (xm) = xm.
Consider {	€ (xm)} ⊆ K and therefore ym → y∞ ∈ K
Claim	0 00 4.500 1.500 0
cialin : 90	o is a fixed point of f.
Before we t	rove that ×mx > you:
11 ×m - 400	1 = 1 2m (xu,) - 400 1
	1 = 1 Pn(xuk) - you 1
	fixed point
	t t
	< 11 +m= (xuz) - + (xuz) 1 + 11 + (xuz) - you)
	u -> 0
	11 Pmk (f(xuk)) - f(xuk)11
	S because of the property of The projection The pro

Lecture 50

A+	Huis	tuíoq	
	£ (%=	$) = \begin{cases} (\lim_{k \to +\infty} x_{n_k}) = \lim_{k \to +\infty} f(x_{n_k}) \\ - 0 - 0 - 0 - 0 - 0 \end{cases}$	= Dim Awr = A00
Clo	issical	application) PEANO'S theorem for diff	. equations
Stat	ement	Let d≥1 be an onteger Let to∈R, uo∈R ^d	
		Let \$6 >0 and \$20 \\ Let \$9: [to-80, to+80] \times B(u0, 20), -	» Rd Continuon
		Cousider the Cauchy John	
		u'(t) = \$ (t, u(t))	
		let	
		M:= wax { \$ (t,u) : (t,u) \in R}	
		and let	
		5, ≤ 50 5, 4 ≤ 20 Then there exists at least one sol	
		$u: [to-\delta_1, to+\delta_1] \rightarrow \mathbb{B}(u_0, t_0)$	(6)
	wenal s		Ordens
8	1 1	problems "à la Tonelli"	Aualisi 2"
As	usual	, a solution is a fixed point of the vol	IERRA operator
	[D(u)](t):= uo + f & (s, u(s))ds \ \tag{t}	ε [to -δ, to +δ]

Lecture 50

Fun	rioual setting	
4	:= { continuous functions u. [to-5,, to+5,] -> Rd]	
	normed vector space (sup norm)	
	was well speed coop wow.	
_		
	:= { cont. femotions u: [to-5, to+5,] -> B (no, ro)}	
	course set	
	:= { functions in C that are Lip. cont. with constant ≤ M}	
	compact set because of Ascoli-Arzela	
We	gust need to prove that $\Phi: C \longrightarrow K$	
	here we need the definition of M and condition 5, M & re	ລົ
	need also that \$ is continuous wit the hour of y	
	me pecause integrals pass to the limit wit uniform	
	wergera).	
20	nauder -> at least one fixed point.	

Settin	-		Y are 1					wenthi	nd works
Quest	ious:		4 : ×						
			キ:× : キ:×						ud f≠o
Auswe	n 3	YES, b	ow two	ueed (CHOIC	OIXA S	M CCA	``	
Proof	CA =	exis	rence of						asis)
Let 9 and	Xí}i€ exteu	I be	such a Diveani	basis.	Defi	ue fo	xi) = yi	elimen	ts of Y
PROP	(7-8	hades	of con	Huuity	for	LINEAR	MAPS)	
Let T	= : × -	-> Y b	e a Qi	near w	ap.				
			ing one		saleu	t			
			ially co		ıs				
(:::)	f (w	eny ba	11 iu×)	27 100	elouu				
	_		outieus out iu		~-0				
			rs bou		ìu. Y				
	_		HITZ CO						

Lecture 51

100000000000
$[Roof]$ Trivial: $(i) \Rightarrow (i')$, $(ii) \Rightarrow (iii) \Rightarrow (iii)$
(vii) => all the rest
Stanolanol: (i) () (general fact in metric spaces)
(i') => (iii') Apply E/8 cout. in x=0 with E=1.
we find 5 >0 such that f (Bx (0, 5)) ≤ By (0,1)
By Diversity
$P(B_{\times}(0,1)) = P(\overline{B}_{\times}(0,\delta)) \subseteq \overline{B}_{Y}(0,1)$
Qinearity
(1) => (vii) As above there exists \$ >0 such that
$\varphi\left(\overline{B}_{\times}(0,1)\right) \subseteq \frac{1}{5}\overline{B}_{Y}(0,1)$
Francisco V and the series of
For every $x \in X$ with $x \neq 0$ consider $\frac{x}{\ x\ _X} \in B_x(0,1)$ then
$ \begin{array}{ccc} + (x) &= 11 \times 11 \times + \left(\frac{x}{11 \times 11}\right) \\ & \text{Orizonally} \end{array} $
and therefore
I suppose
$\ \varphi(x)\ _{Y} = \ x\ _{X} \ \varphi\left(\frac{x}{\ x\ }\right)\ _{Y} \leq \frac{1}{5} \ x\ _{X}.$
€ By (0, ±)
By Diversity
11 \$ (x2) - \$ (x1) 11 = 11 \$ (x2-x1) 11 < \frac{1}{6} x2-2011 x.
oorip. coustant

Lecture 51

mioui oj i	ectures (volume 3)
Auswer	. 3 YES if dru (X) = +00 and we accept C.A.
Proof	Consider Y = R. We construct &: X > R linear and
	NOT continuous.
	Let {xn} = X be livearly ivolep. Vectors (can assume 1/x1/1/x=
	CA => we can complete them to Hamel basis
	Define $f(x_m) = m$ for every $m \ge 1$
	f (rest of the basis) = what we want (for ex.0)
	and extend by Dineanity.
	The image of Bx (0,1) is unbounded.
	_ 0 _ 0 _ 0
D0P.	(PSEUDO - NORM)
Let X	be a vector SPACE. À pseudo-vorm is a function
	$p: X \to \mathbb{R}$
with	two properties
	subadditivity)
21,7	2
(); \	
((()	positively homogeneous)
	$p(yx) = yb(x) \qquad \forall x \in X \forall y > 0$
Ruck	Tue one us sign conslitions

Lecture 51

Theorem (HAHN-BANACH, analytic form)
Let X be a vector space. Let p be a pseudo-vorm ou X.
Let $E \subseteq X$ be a vector subspace. Let $f : E \rightarrow \mathbb{R}$ be a
Divear map such that
$f(x) \leq p(x)$ $\forall x \in E$
Then there exists $\hat{\phi}: X \to \mathbb{R}$ linear such that
$\hat{\varphi}(\alpha) = \varphi(\alpha)$ $\forall x \in E$
$\hat{\xi}(x) \leq p(x) \forall x \in X$
Proof let & denote the set of extensions of f. More precisely
an element of y is a pair (F,g) such that
ESF subspace Diu map ou F
$g(x) = f(x) \forall x \in E + g(x) \leq p(x) \forall x \in F$
€ y is ususupty (+ contains (E, €))
• 3 rs partially endered by tuchusion (F1,g1) ≤ (F2,g2) if
$F_1 S F_2$ and $g_2(2e) = g_1(x) \forall x \in F_1$
• If (Fi, gi) ie I rs a totally ordered subset of I
not necessarily countable
then it admits an upper bound in I defined as
$\hat{F} := \bigcup_{i \in I} F_i$ $\hat{g}(x) = g_i(x)$ if $x \in F_i$
[check that this is a well defined element of y]

Lecture 51

20R	N LE	MMA	(= A	3 a	etimb	a wax	· lawi	gamen	ct.	
Assu	uue His	it is	uot we	the co	ase, us	t. Cla	x0 € > Rx0,			
Is i	t pos	ssi ble	2 7	ne ha	we to	defive				
	9			(cx) p		¥ & €	R			
We		_		_		such	r way	Huat		
	9 ((v) +	dg (xo) ≤	p (01	-dxo)	A	veF	Yde IR	
There	e au	- 4h	el Car	æs						
			easy g(o) { 1) (U+d7	(0)			
				4) ≤ (www.	$\times P(\frac{a}{a})$	+×0)			
77	urefe	ne w	ner	ud	9 (8+	×0) ≤	P (y+	(ox	∀y∈F	
o d	40 /	us 0	1 = -B	, with	B>1	رس ر	g (v-	Bx0):	< p(U-BX0))
		\$ 9) (5 -	×0) :	s ps p	(<u>v</u> - x	s)			
		9(2 - Xo) < p	(2-x)	¥2 ∈ F	-		

Lecture 51

The two	constitions are	
	$g(y) + g(x_0) \leq p(y+x_0)$ $\forall y \in F$	
	$g(z) - g(x_0) \leq P(z-x_0)$ $\forall z \in \overline{T}$	
9 (=	z)- $p(z-x_0) \leq g(x_0) \leq p(y+x_0)-g(y_0) \forall (y,z) \in F^2$	•
We can &	find g(xo) if and only if	
	?	
9 (=	$z) - p(z-x_0) \le p(y+x_0) - g(y)$ $\forall (y,z) \in z^2$	
Cramely		
	g(z)+g(y) & p(y+x0)+p(z-x0) \(\frac{1}{2}\)(y,z) &= 2	
0 (0)		
9 (4)	$+g(y) = g(z+y) \leq p(z+y)$	
	g livear estimate true ou F	
	ou F = p(z-x0+y+x0)	
	(ox ty) q+(ox-5) q >	
	1	
	p 13 subadolitise	
This give	es a contradiction, so that F = X.	
	0 0	

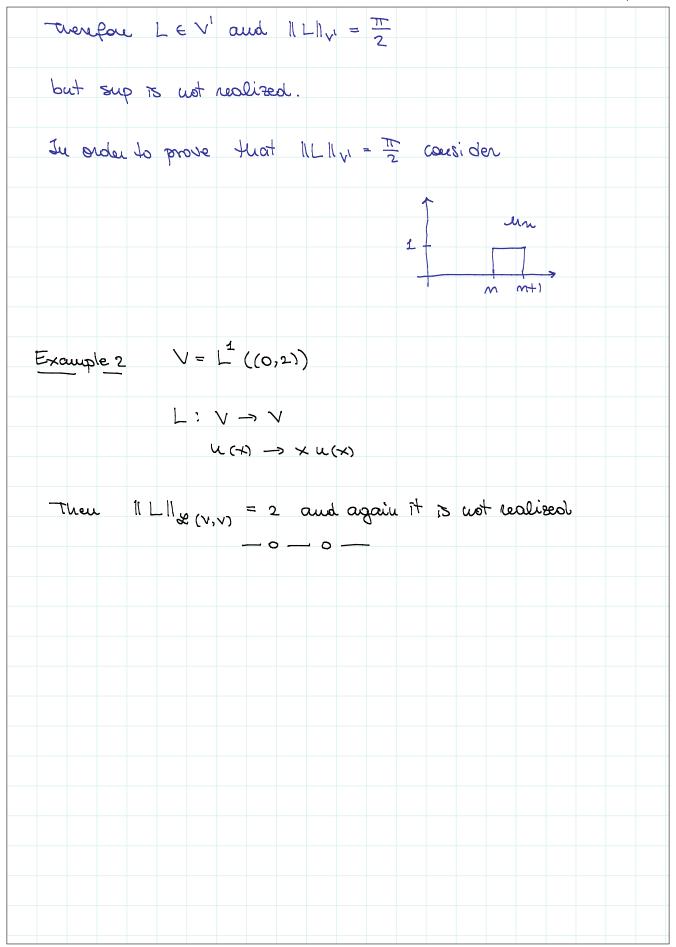
Lecture 51

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	,		
		t vo eV be any	
		L'Diveau such 4	MOV.
and (06)	= 11 05 11/		
	< 11 0-11v	+/156 \/	
[+ 50]		006 0.	
Consider the (7	Seudo) - Norm	D(U) = 11011.	
	`	2 vo =0, then \$?=0)
and consider :			
	(00) = : (00)	0	
Let us check +			
		l every U∈E	
namely if U=		O	
21100	1 < 112001	Y d ∈ iR	
which 15 trivial	١.		
HB => We can	extend & to	V ru seich a v	vay that
£ (v)	$\leq p(v) = 1/v$	·IIV AREA	
he weed that			
18(0)	1 < p(v) = 110	-11√ Aa∈∧	
If f(v)≥0 te			
if \$(n) <0 <	then		
		b(-n) = 11-0111 =	- 11011
	-0 - 0 -		
		such of au Al	-IGNED
FUNCTIONAL OF	00.		

Lecture 52

Auswer	(2) If Vaud Ware normed vector spacer, then
	there exists a nontrivial $f: V \rightarrow W$
	that is linear and continuous
Proof]	$V \longrightarrow R \longrightarrow W$
	aliqued Just map 1 to any wo to in W
	Runctional
	of any voto
SPACE	OF CONTINUOUS LINEAR OPERATORS
Defu	Let Vauol W be normed spaces.
-	we call & (V, w) the space of linear and continuous
	functions f: V -> W.
	For every $\varphi \in \mathcal{X}(v, w)$ we set
	117112(v,w) := sup { 117(v) w : ve V and 11v11, < 1}
	" (& (v, W)
Prop.	Notations as above. Then & (V,W) is a vector space
· ·	and 114112 (v,w) is a norm in & (v,w), such that
	and the "& (v,w) is a contact the vo (v, w),
	112(07)1/2 ≤ 112112 . 110112 YUEV
	11 \$ (0,11) M € 11 \$ 11 \$ (1,11) Y U + V
	Man
	Moreover, if W is complete (Banach), then also
	& (v, w) is complete (Banach).
D 0	
	Standard: vector space + noun + inequality
	check the completeness when W is complete.
Let {:	Em} 5 & (V, W) be any Couchy sequence, wit the
operat	or worm

Lecture 52


Thep 1 For every fixed $v \in V$ we have that $\{p_n(v)\}\ is a$ Cauchy sequence in W
$\ \xi_n(\sigma) - \xi_m(\sigma) \ _{W} = \ (\xi_n - \xi_m)(\sigma) \ _{W}$
≤ [1 fn - fu 1/2 (v, w) · 1/0 / 1/2 ≤ E 7 f u and m are large
Step 2 From Step 2 we deduce that there exists foo: V -> W such that
It is easy to see that
• l'is livear (pointwise livet of live functions) • l's continuous (pointwise livet of equi-lip functions 15 Lip court. The seq. & find its equi-lip because Courly seq. are always bounded and the norm in & (v, w) is the Lip. constant).
Step 3 We have to prove that $f_m \rightarrow f_\infty$ wit the name of $\mathcal{E}(v,w)$.
11 (fm-fo) (v7) ≤ € Y v ∈ V with Nolly ≤ 1
If n is large enough. Since it is a Cauchy sequence, we know that $\ f_m - f_m\ _{\mathcal{L}(V,W)} \le f_0$ every $n \ge n_0$, $m \ge n_0$, variely
11 Pm (v) - Qu (v) ≤ E

Lecture 52

Delu	(TOPOLOG	FICAL DUAL	_			
		rued space		o dual V ¹	of Vis	the
		imous fu				
		Banach spa)
	ue nom			O .		
	11211/1:	= sup { f	٤ (١٥٠٠) : الر	r11~ ≤ 1}		
	•	1 , , ,				
Prop	(Dual cho	macterizatio	u of the	(una)		
			J			
Let V	be a wow	ned space.	Then for	every or	e V it is to	ue thai
				7		
1	UN = 8	up{ \$(0)	: 8 E V) and 114	N >1 ≤ 1 }	
	= u	uax { \$ (σ)	\ .	~	}	
Proof	>	17001 5	11211211	U-11 v ≤ 11 C	711 _V	
			€			
< A	liqued fe	uctional re	sodizes the	wwixow	٨,	
		_	~ 0 — 0 ~			
Simple	application	n of brook	2 by dua	lity		
				4		
Cousi	der (arb)	s R and	f: (a,b)	$\rightarrow \mathbb{R}^{\circ}$.	They	
	h	11 (2			
	11 J & (t))dt \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 11 f (+7 11 d	t		
(Stan	dand resur	It with the	e staubland	l hours		
1.						
How		he result w		geneut won	m '/	
	11 (x,0)	11 = (x6+4	5) 6			

Lecture 52

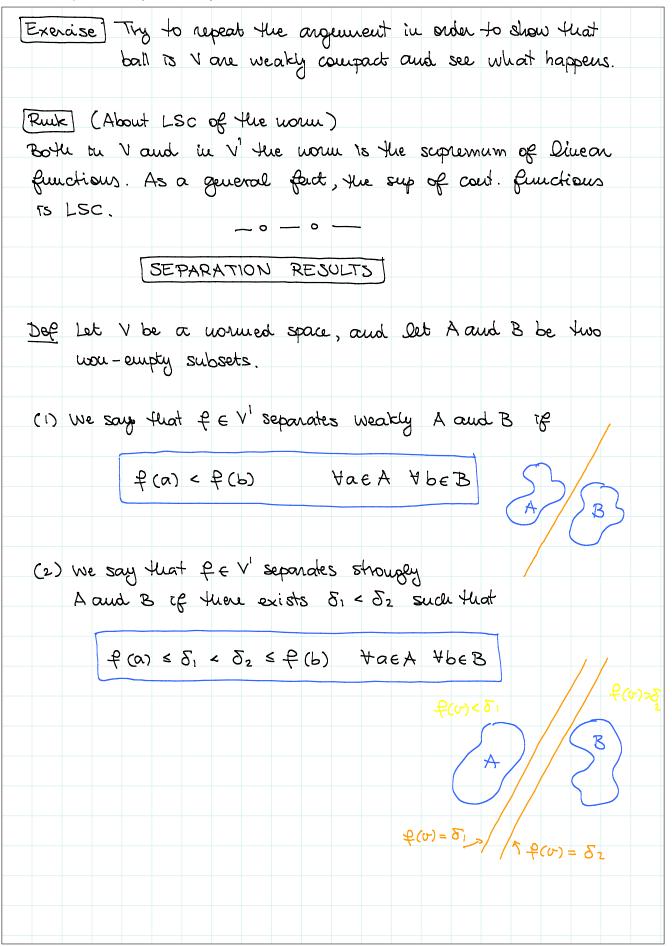
L $\left(\int_{a}^{b} \varphi(t) dt\right) = \int_{a}^{b} L(\varphi(t)) dt$ and therefore L $\left(\int_{a}^{b} \varphi(t) dt\right) = \int_{a}^{b} L(\varphi(t)) dt$ $\leq \int_{a}^{b} L(\varphi(t)) dt$	
and threefore $ \left L\left(\int_{a}^{b} \varphi(t) dt\right) \right = \left \int_{a}^{b} L\left(\varphi(t)\right) dt \right $ $ \leq \int_{a}^{b} \left L\left(\varphi(t)\right) \right dt $ $ \leq \int_{a}^{b} \left L\left(\varphi(t)\right dt $ $ \leq \int_{a}^{b} \left L\left(\varphi(t)\right) \right dt $ $ \leq \int_{a}^{b} \left L\left(\varphi(t)\right dt $ $ \leq \int_{a}^{b}$	
Scalar function $ \begin{cases} & \leq \int L(\varphi(t)) dt \\ & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ Scalar function $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \begin{cases} & \leq \int L \int_{V_{1}} L(\varphi(t)) dt \end{cases} $ $ \end{cases} $ We take the supremum as L varies in V' with L _{V_{1}} L _{V	
Scalar function \[\leq \int \leftrice \leftr	
$\leq \int \ L\ _{V} \cdot \ \varphi(t)\ _{V} dt$ $\leq \int \ \varphi(t)\ _{V} dt \text{if } \ L\ _{V} \leq d$ We take the supremum as L varies in V' with $\ L\ _{V} \leq 1$ and in the LHS we obtain the norm. $= 2 - 2$ $= 2 - 2$ $= 2 - 2$ $= 2 - 2$	
We take the supremum as L voices in V' with $ L _{V'} \le 1$ and in the LHS we obtain the norm. Example $V = L^{2}((0, +\infty))$	
We take the supremum as L voices in V' with $ L _{V'} \le 1$ and in the LHS we obtain the norm. Example $V = L^{2}((0, +\infty))$	<u>o</u> lu
and in the LHS we obtain the norm. $-0-0$ Example $V = L^{2}((0, +\infty))$	
and in the LHS we obtain the norm. $-0-0$ Example $V = L^{2}((0, +\infty))$	
$= -0 - 0$ $= \times \text{ample} V = L^{\frac{1}{2}}((0, +\infty))$	
Defoue L: V - R as	
100	
L(u) = J u(x) anctau x dx	
Con prove: L'is Dinean and continuous because	
Com prove 15 mans mas court mous sections	
$ L(u) \leq \frac{\pi}{2} u _{V}$	

Lecture 52

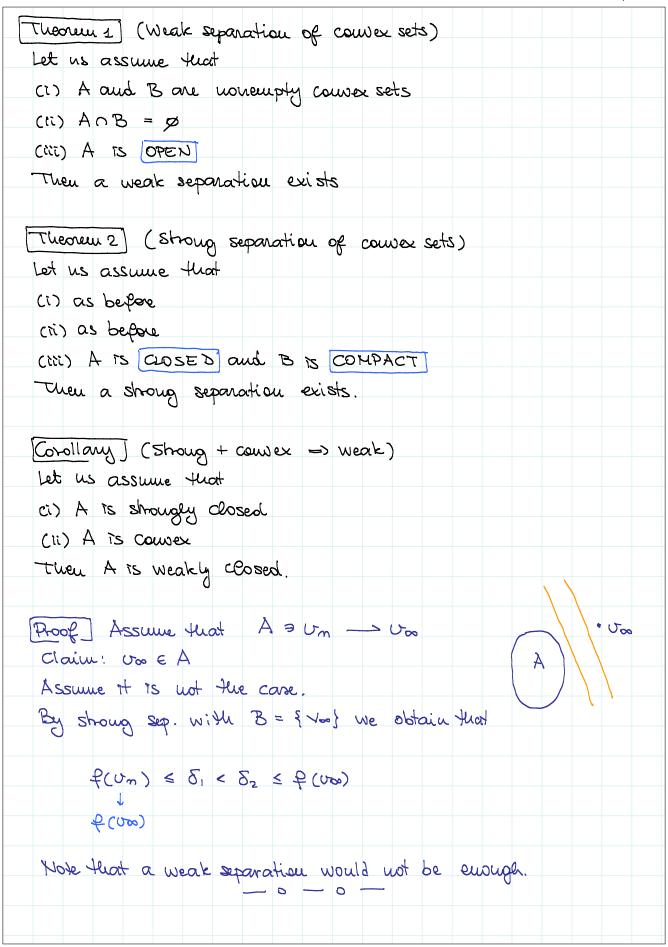
Note Titl					1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				29/11/202
										. the topol	ogical	omal.
(1)	T.E.	} Um	3 5		d v							
Č	۵			ω _ω	(7	wear	ey vu	L V			
	7			£ (Um) ->	£ (1)	(m)	A	l€e v	1		
					courser							
						Guara						
(2)	1f	ξ ξ π	, չ ⊆	v' au	nd fo	∝ ∈ V	, we	2 San	that			
	V			4~	<u>*</u>	2 00	We	arely:	t iu	λ_1		
,	¥.											
				for cu	·) ->	£~	(v)	7	40E/)		
					coins	engen	e of	num	bers			
Ruk	. \	Neak	<i>x</i>	somo	spence	. 27 .	actu	orlly op	iwtuso	se cour, of	2 fund	ctious.
Rmk			_							weak cour	ergence	_ as
	7	new î	onsl	y def	ived	iu H	lilber	t spa	ces.			
3 - 1			\	(T)	()		/	2 314 -	07			
Bovsi	c p	rober	ببرو				7	- Fue	Liuit			
					Live	U		-1-				
					Strou	_			ں حــ			
				•					weak			
				(S)				,	· leun			
						7						

Lecture 53

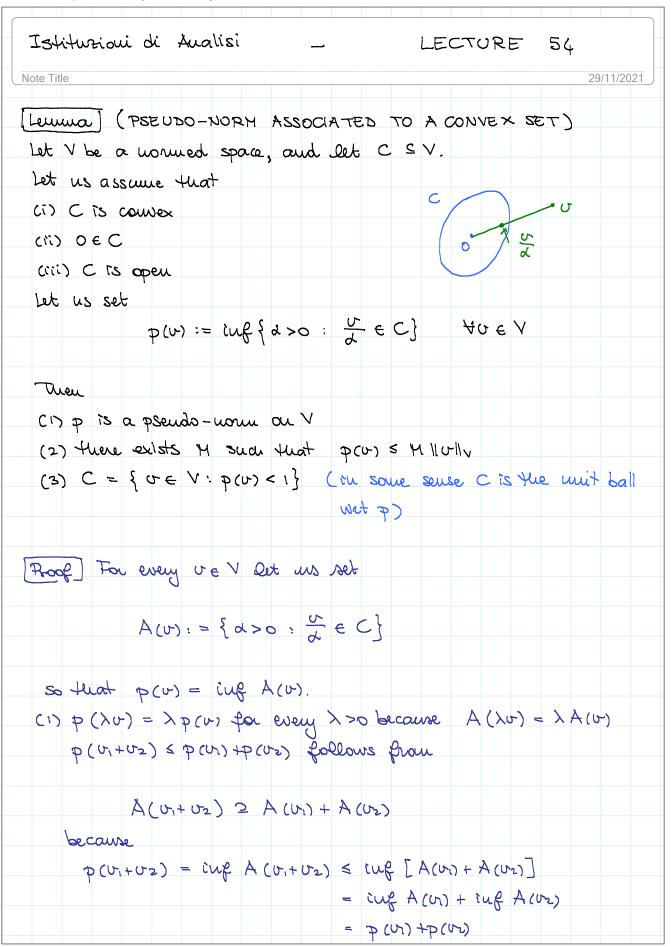
Proof of uniqueness Assume that $v_m = 0$ and $v_m = 0$ and $v_m = 0$ and $v_m = 0$ for $v_m = 0$ fo	
Then for every $f \in V'$ $f(v_m) \rightarrow f(v_\infty)$ $f(v_m) \rightarrow f(v_\infty)$ and have $f(v_\infty - v_\infty) = 0$ $\forall f \in V'$ Now use $f = aligned$ functional of $v_\infty - v_\infty$ (we need HB and therefore CA) Theorem (LSC of the norm) Assume $v_m \rightarrow v_\infty$ weakly in V $f_m \rightarrow f_\infty$ weakly $f_m = v_m + v_\infty$ Diming $f_m = v_m + v_\infty + v_\infty + v_\infty + v_\infty + v_\infty$ Diming $f_m = v_\infty + v_\infty$	Proof of uniqueness Assume that un -> vo and
Then for every $f \in V'$ $f(v_m) \rightarrow f(v_\infty)$ $f(v_m) \rightarrow f(v_\infty)$ and have $f(v_\infty - v_\infty) = 0$ $\forall f \in V'$ Now use $f = aligned$ functional of $v_\infty - v_\infty$ (we need HB and therefore CA) Theorem (LSC of the norm) Assume $v_m \rightarrow v_\infty$ weakly in V $f_m \rightarrow f_\infty$ weakly $f_m = v_m + v_\infty$ Diming $f_m = v_m + v_\infty + v_\infty + v_\infty + v_\infty + v_\infty$ Diming $f_m = v_\infty + v_\infty$	Um -> Um
f (vm) → f (vo) \$\frac{1}{2}(vm) → \frac{1}{2}(vm)\$ and have \$\frac{1}{2}(vm) = 0 \ \ \frac{1}{2}e\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
\$\frac{\phi}{\chi\chi} \rightarrow \frac{\phi}{\chi\chi\chi} = 0 \ \ \frac{\phi}{\epsilon} \\ \text{Now use} \tau \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
and home $f(v_0 - \hat{v}_0) = 0$ $\forall f \in V'$ Now use $f = aligned functional of v_0 - \hat{v}_0 (we need f(v_0) = av_0) Theorem (LSC of the norm) Assume v_0 - v_0 weakly in V f(v_0) = v_0 weakly f(v_0) = v_0 Then v_0 = v_0 weakly f(v_0) = v_0 Limitef f(v_0) = v_0 Dim f(v_0) = v_0 $	
Theorem (LSC of the norm) Assume on — vo weakly in V Image: In the limit of limit of the limit	
Theorem (LSC of the norm) Assume on — vo weakly in V Image: In the limit of limit of the limit	Now use & = aliqued functional of vor-vos (we used HB and
Theorem (LSC of the norm) Assume un _ voo weakly in v In _ foo weakly + in v' Then Diming Vm v > Voo v m> too Diming Pm v > Poo v m> too Diming Pm v > Poo v m> too Diming Pm v > Poo v m> too P(voo) = lime P(vm) < P v · liming vm v m> too P(voo) = lime P(vm) < P v · liming vm v m> too Provided that P v < 1 Now consider & = aliqued & functional of voo and obtain voo v in the LHS.	
Assume on vo weakly in v fm fo weakly + in v' Then Diming vm v > vo v m> +oo Diming pm v > po v m> +oo Diming pm v > po v m> +oo v vm = vm v and therefore v vm v = vm v vm v = vm v v v v v v v v	
Then Diming	Theorem (LSC of the norm)
Then Diming	Assume un - vo weakly in v
Diwing	fm → foo weakly + iu V'
Diwing 11 fm 11/1 > 11 foo 11/1 Diw V By definition f (vm) < 11 f 1/1 · 11 vm 11/2 and therefore f (voo) = lime f (vm) < 11 f 1/1 · liming 11 vm 11/2 m> +00 Liming 11 vm 11/2 provided that 11 f 1/1 < 1 Now consider f = aligned functional of voo and obtain voo 11/2 in the LHS.	
Dim V By definition f(vm) < 11 f 1 v	Dimine 1 m 1/2 ≥ 1/20 1/2
and therefore $ \varphi(voo) = \lim_{m \to +\infty} \varphi(vm) \leq \varphi _{\gamma'} \cdot \lim_{m \to +\infty} v_m _{\gamma}$ $ \varphi(voo) = \lim_{m \to +\infty} \varphi(vm) \leq _{\gamma'} \cdot \lim_{m \to +\infty} _{\gamma} $ $ \varphi(voo) = \lim_{m \to +\infty} _{\gamma'} \cdot \lim_{m \to +\infty} _{\gamma'} $ $ \varphi(voo) = \lim_{m \to +\infty} $ $ \varphi(voo) = \lim_{m \to +\infty} $	
and therefore $ \varphi(voo) = \lim_{m \to +\infty} \varphi(vm) \leq \varphi _{\gamma'} \cdot \lim_{m \to +\infty} v_m _{\gamma}$ $ \varphi(voo) = \lim_{m \to +\infty} \varphi(vm) \leq _{\gamma'} \cdot \lim_{m \to +\infty} _{\gamma} $ $ \varphi(voo) = \lim_{m \to +\infty} _{\gamma'} \cdot \lim_{m \to +\infty} _{\gamma'} $ $ \varphi(voo) = \lim_{m \to +\infty} $ $ \varphi(voo) = \lim_{m \to +\infty} $	Dim [V] By definition f(vm) & 11 & 11 vm/1/
\$\left(voo) = \left(vm) \left(vm) \left(vm) \left(\frac{1}{2} \left(vm)) \left(\frac{1}{2} \lef	
E Diving 11 mll, m-> +00 provided that 11 pl, 1 < 1 Now consider p = aliqued functional of vo and obtain 11 vo 11, in the LHS. V' Observe that 2m (v) < 11 pm 1, 1 v 1, 2 11 pm 1, 1	≤ 1
provided that $ \varphi _{V^{1}} \leq 1$ Now consider $\varphi = \text{aligned } \varphi$ functional of v_{∞} and obtain $ v_{\infty} _{V}$ in the LHS. $ v_{\infty} _{V}$ in the LHS. $ v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}}$	\(\(\tau_{\sigma} \) = \(\text{lim} \) \(\text{\sigma} \) \
provided that $ \varphi _{V^{1}} \leq 1$ Now consider $\varphi = \text{aligned } \varphi$ functional of v_{∞} and obtain $ v_{\infty} _{V}$ in the LHS. $ v_{\infty} _{V}$ in the LHS. $ v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}} = v_{\infty} _{V^{1}}$	€ Diving 11 mlly
Now cousider $f = \text{aligned } \text{functional } \text{of } v_{\infty} \text{ and obtain}$ $ v_{\infty} _{V} \text{ in the LHS.}$ $ V' \text{ Observe that } f_{\infty}(v) \leq f_{\infty} _{V} \cdot v _{V} \leq f_{\infty} _{V} $	m-> too
	provided that 11/21/v1 < 1
	Now cousider & = aliqued functional of vo and obtain
	[V] Observe that 2m (v) ≤ 11 2m 11 v1 · 11 v 11 v ≤ 11 2m 11 v1

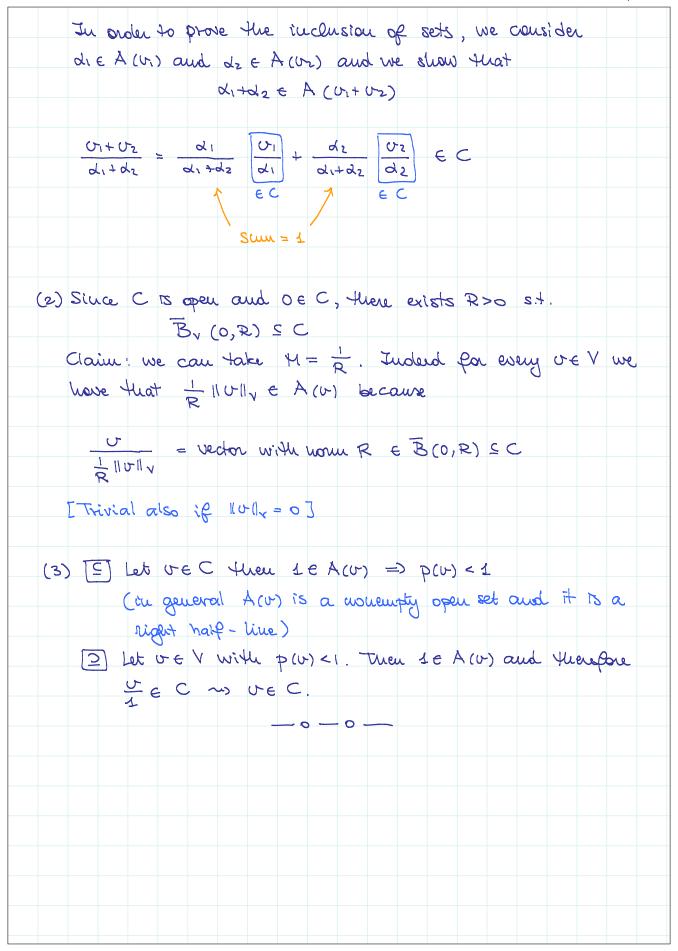

Lecture 53

	Therefore for every $v \in V$ with $ v _{V} \leq 1$ it turns out that
	foo (v) = line for (v) ≤ lining for v n > +00
1	vow consider the sup of LHS among all such or.
	onem (weak * compactness of balls)
	V be a normed space, and let V' be the top. dual.
	(fm) 5 V be a BOUNDED sequence.
	en there exists
	for weakly * in V'.
Proc	[We follow the same road map as in Hilbert spaces.
Let	us choose a countaine deuse set D S V.
Step	of There exists me -> too such that
	fne (v) has a limit ∀v∈D
	tak (0) vos or acturi voe D
let	us D = { d1, d2, d3, }. Observe that
	[Pm (d,) ≤ 1 Pm 1 v · 1 d, 1 v
	K M
~~	o existence of cow. subsequence
	en me consider de ED and me obtain a fentuer subsequence
	we conclude by the usual diagonal argument
(CI)	2) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(Ste	p^2 We show that $f_{m_k}(v)$ -> something $\forall v \in V$
	the same subsequence that IS good for D


Lecture 53

It is enough to prove that { $f_{n_k}(v)$ } is a Cauchy seq. of unmbers.
$ f_{m_k}(v) - f_{m_k}(v) \leq f_{m_k}(v) - f_{m_k}(d) $
+ [fnk (d) - fne (d)] 2
+ fna (d) - fna(v) (3)
3 and 3 are small if d is close enough to u, 3 is small if R and k are longe enough.
Tormally: → we one given ε>0 → fix d∈ D such that M d-v , ≤ \(\frac{1}{4} \) ε so that
$ \mathcal{L}_{m}(v) - \mathcal{L}_{u}(d) \leq \mathcal{L}_{m} _{V^{1}} \cdot v - d _{V} \leq \frac{1}{4} \varepsilon$
→ oure that $d \in D$ has been fixed, we choose $Ro \in N$ such that $@$ is $\leq \frac{1}{4} E$ for every $k \geq Ro$, $R \geq Ro$ (possible because $\{f_{n_e}(d)\}$ is a Cauchy seq.)
[Step 3] At the end of Step 2 we know that
lim forme (v) = something = : for (v) \ \formatter \text{\$V \in V\$}
We need that for EV! This is easy -> for is linear (pointwise limit of linear functions) -> for is continuous (pointwise limit of M-lip, cont. funct.) 0 0


Lecture 53

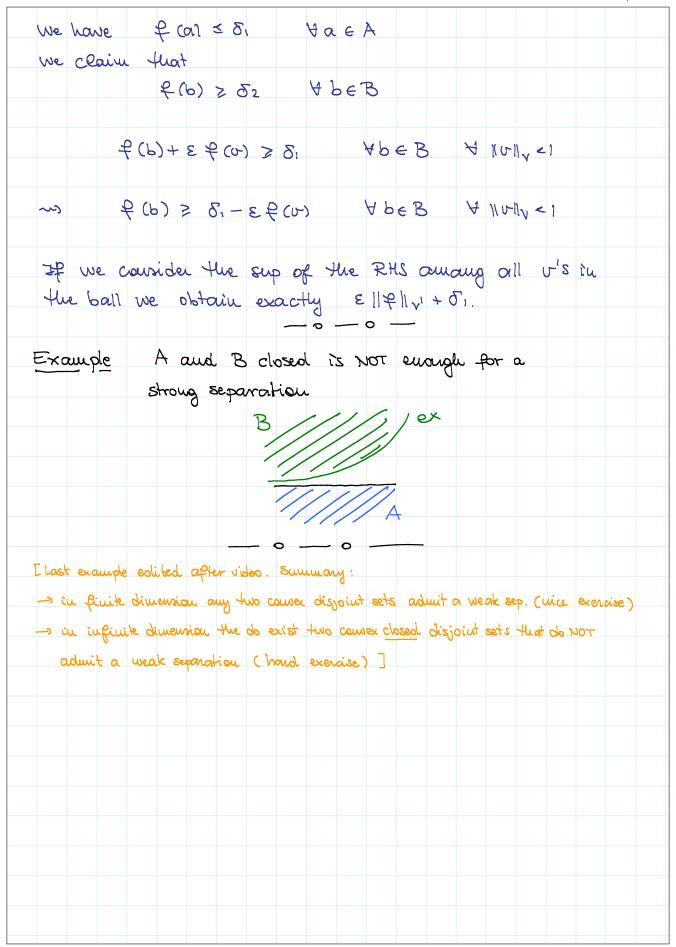

Lecture 53

Lecture 53

Lecture 54

Lecture 54

Tribleau of recourse (volume o)
Prop.] Let C = V and let vo e V.
Assume that
Ci) C is an OPEN consex set and OEC
(n) vo & C
Then there exists $f \in V'$ that separates weakly C and vo
[Proof] We consider E:= Span (vo) and the function
$\varphi: E \to \mathbb{R}$ defined as
\$ (dvo) :- d ∀ d ∈ TR
We observe that & 12 linear and
\$\(\alpha\varphi_0\) \leq \(\text{p}\) \(\alpha\varphi_0\) \(\text{deR}\)
2
Juderd, the inequality TS trivial when a ≤0 and if a>0
it is equivalent to 1 & p(vo)
and this is the because of (3) of the Leurna.
HB => we can extend & to & V -> IR.
We can't that this is the required separation.
Judeid $\varphi(v) \leq D(v) < 1 = \varphi(v_0)$ $\forall v \in C$
$f(n) \leq b(n) < 7 = f(n)$
La Carlo
We need to prove that & is continuous wit 11 other.
By statement (2) of the previous Denma we know that
Q(v) ≤ p(v) ≤ M 11011, Yv∈ V
This is ox if & (a) >0. Otherwise
[2(m) = -2(m) = 2(-0) ≤p(-0) ≤ M11-011v = M1011v


Lecture 54

D - 2	Χ.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	c V	2 1.1	11 6	.,				
		aiu C	. = V	una.	OF	V ,				
	me >								1.	
CiD	Z7 \	comex	apeu	and	none	upty.	(crow	0 13	not mec	. au C)
(ii)	Uo K	C								
The	n ten	n exi	sts a	weak	sepan	ation				
					'					
Dana	7	a		E (0.01:	S: Ja.			
1 600	2 ,	ake au	7 ~ °		2000		-100			
-	<u> </u>									
	≃ : ر	C-w	0		00:	= 00	- Wo			
						_		•		
Appl	y the	e previo	ous pr	opositu	ou to	S Co	and	ĉ au	us sim	plify
& cw	_	,								, 0
			-	-0 -	0 —	-				
Do		(A) 7 - A .	61.10	DATIO		1st ~	νου. · · · · · · · · · · · · · · · · · · ·	~~ ~	ופת פ	
1.600	- 0+	WEAN	C SET	124 (10		(101 (yeou. P	Jam U	رمانا	
A'B	com)ex	$\mathcal{G} \cap \mathcal{A}$, = Ø		es A	aben	=>	weak	Sep .
Juta	oduce	C :	= A	-B =	· { a-	b ; a	е A, b	€ B}		
		e tha								
		come		I PAGE	ea ct					
								Δ		
		, ,			Tran	Secret 0	us of			
		C (1	, ,
By	pressi	ous pr	op. We	. cau	sepa	nate	o from	иC,	and o	btail
4 €	. ₁ 2	4.								
		₽ (c	1 < 2	(0)		A	c € C			
		f (a−b		VI.						
Lin.		`			,	1	a e A	HL.	13	
LALAI	nery	4				4	W C A	v o ∈	0	
00000			7 (a) <	(p)						
			_	- 0 -	- 0					
			_	-0-	- 0					

Lecture 54

PROOF	OF STRONG SEPARATION
A,B C	ousex sets, AnB, A closed and B compact was strong separation
Idea:	enlarge are of them a little bit
For ev	ery $\varepsilon > 0$ we set $B_{\varepsilon} := \bigcup_{b \in \mathbb{B}} B(b, \varepsilon)$ apen ball
Claim	. An BE = Ø if E is small enough
	ent is not the case. Then AnBi, & p for every in means that there exist
	$a_n = b_m + \frac{1}{m} U_n$ $f = A \in B U_m _{V} \le 1$
	o Subsequences by -> box because B is compact. Then also an -> box A because A is closed
but	$A \cap B = \emptyset$!!
Since	BE is open, there exists $f \in V'$ such that
Now S	et $\delta_1 := \sup \{ \varphi(\alpha) : \alpha \in A \}$ $\delta_2 := \delta_1 + \varepsilon \ \varphi\ _{V^1}$

Lecture 54

Lecture 54

Istaturioui di	Analisi	_	LECTURE	55
SEQUENCE SPAC	es) Notatia	л ж = {жi	}; z seq. of 1	real numbers.
<u>Definition</u>				
· We say that se e	139 utiw PE	[1, too) if		
$\ \mathbf{x}\ _{\mathcal{Q}^{p}}^{p} := \sum_{i=1}^{\infty}$	[xi]° < +∞			
· We say that re	Q [®] if			
112 2 = suf) ﴿ [عذا : مَا ﴾ إ) < +∞		
· we say that x	cec ip li	m xi exists		
· We say that 2	eate Div	100 Xi = 0		
· We say that ?	ce coo if xi	=0 eventually	(for i Conge	ewough)
We use the horm	Q∞ also iu c,	Co, Coo.		
Ruck Of course	C00 E C0 E	c <u>c</u> Q [∞]		
Ruk The spaces				spaces
The space coo is				ate the
elementary proof usual result that				

Lecture 55

	13000 a 2000 a 1110 a 110 a
	DUALITY PAIRING
Griven Invo	sequences x and y we define
	$J(y)](x) := \sum_{i=1}^{\infty} x_i y_i$
The suits c	owenges under suitable assumptions
Topological	dual of la
Brutal stat	rement: $(l^{1})' = l^{\infty}$ (the top. dual of l' is l^{∞})
Theorem	The duality pairing induces a map
	$\mathcal{I}: \mathcal{Q}^{\infty} \longrightarrow (\mathcal{Q}^{1})^{1}$
which is → well-	defined, Dinear, condinuous
→ ou 150	METRY (and hence injective)
→ swyect	tive.
Proof For	every y e la me consider
	$\times \longrightarrow [J(y)](x) = \sum_{i=1}^{\infty} x_i y_i \qquad \forall x \in \mathcal{Q}^{\frac{1}{2}}$
Step 1 2	$\frac{1}{1} xiyi \le y _{200} \sum_{i=1}^{\infty} xi = y _{200} x _{21}$
	s that J(y) ∈ (l²) because it is clearly Divean. inequality prover that
n	J(v) @4), ≤ y en

Lecture 55

bec	aure				
	[[CW) [(24) := su	b { [[2(0)] (x	1 : x e Q 1 , 11 x 11 ,	21 ≤ 1}
Step	2 We	claim that	11 J (6) 110	2171 = 11411200	
	Jefiuitio u that			n every $\varepsilon > 0$ H	uere exists t≥1
		18×1 ≥ 1	8 1200 - E		
Dopiu	.e	×::={ *	(gu (yx)	if i=k otherwise	
Cheu	L .				
11 y 11	- ε	= NF =	Ax . 3, dn (Ax,) = [J(y)](x) <	الع (س) الروعي المجالي غ
Since	2 13	anbitrany, Y	u's proves th	at 11y11200 ≤ 113	(b) 1 (e')
Step 3	enem me ca	Laim Huat ! Le (Q1)' H	J is sunject en exists	ive, namely y ∈ l° sud +	uat
		r (x) = [2		$\forall \times \in \mathbb{Q}^{1}$	
Ju or	der to o	define y we	set yi	:= L(ei)	, 0 ,
lat (is died	= that y ∈ S	2.00	746 7	
	1 4;	< 1 L1(Q1)	· ei e1	∀i ≥1	

Lecture 55

Let us check (x). Define
$\widehat{L}(x) := [J(w)J(x) \forall x \in \mathbb{Q}^{1}$
Observe that L and \hat{L} are elements of $(Q^{1})'$, and coincide if $x = e_{i}$ is they coincide on $Clos(Span(e_{i}))$, but this span $\bar{l}s$ dense in l^{1}
Theorem (Theorem) (The dual of Q^{p} is $Q^{p'}$ where $\frac{1}{p} + \frac{1}{p!} = 1$ if $p \in (1, +\infty)$)
The duality pairing defines a map $J: \mathbb{Q}^{p^1} \longrightarrow (\mathbb{Q}^p)^1$ with the usual three properties
Proof Step 1) J is well-defined and continuous because
$ [[] (y)] (x) \leq \sum_{i=1}^{\infty} x_i \cdot y_i \leq y _{\mathbb{Q}^p}, \cdot x _{\mathbb{Q}^p}$
If we take the sup of LHS among all x ∈ QP with 11×11ep ≤ 1 we obtain
J(8) (QP) 1 ≤ 1 y QP1
Step 2 We obtain the opposite inequality. Given $y \in \mathbb{Q}^{P'}$ define $x \mapsto y = y = y = y = y = y = y = y = y = y$
First claim: $x \in \mathbb{Q}^7$
$\sum_{i=1}^{\infty} x_i ^p = \sum_{i=1}^{\infty} y_i ^{p'p-p} = \sum_{i=1}^{\infty} y_i ^{p'} = y_i ^{p'}$ $p'p-p \stackrel{?}{=} p \iff pp = p+p' \iff l = \frac{1}{p'} + \frac{1}{p}$

Lecture 55

Sec	ud claim: 11 3 (8) 11 (27) = 11 y 11 e7'	
ll á	$ P'_{27} = \sum_{i=1}^{\infty} y_i ^{q_i} = \sum_{i=1}^{\infty} \times_i y_i = [J(y)](x)$	
	≤ J (y) _{QP)} , × _Q p	
	= 11 7 (4) 11 QP), 11 911 PP	
36	ve simplify 11 y 11 ep. we obtain the required inequaty	
	3 $J: \mathbb{Q}^{p'} \to (\mathbb{Q}^p)'$ is surjective	
We	any $L \in (2^p)'$ and $define$ $y_i := L(ei)$ (nec. cond.) need to prove that $y \in 2^{p'}$ and $J(y) = L$.	
	the first fact we argue as in step 2	
) i=1	$ y_i ^{p'} = \sum_{i=1}^{p} y_i ^{p'-1} \operatorname{sign}(y_i) y_i = \sum_{i=1}^{p} z_i L(e_i)$	
	$= L\left(\sum_{i=1}^{N} ziei\right) \leq \ L\ _{(\mathbb{Q}^{p})^{1}} \left\{\sum_{i=1}^{N} zi ^{p}\right\}^{1/p}$	
	$= \ L \ _{\mathbb{Q}^p \mathcal{I}} \cdot \left\{ \sum_{i=1}^{n} y_i ^{p_i} \right\}^{1/p}$	
If	se simplify and we let N -> 700 we obtain that	
	11 811 epi ≤ 11 L 11 (ep).	
	oudusion follows as in the previous case: Land J(y)	
	wo elements of $(QP)'$ and they coincide on ei for $i \ge 1$. Since $P < +\infty$, the span of all ei's is dense in QP	-

Istiturioù di A	ualisi		LECTURE	56
TOUR IN THE DUAL	OF 200			
Let us cousider the	duality pairiu	g [J(b)](x):	= \sum_{i=1}^{00} xiyi	
Step 1) It defines a linear and a		$\rightarrow (0^{\infty})'$ that	15 well -defi	ued,
	_ ×', · \y; ≤	1181122 11 × 1120		
which proves it is w	ell-defined (ang 112(2)	11@001 = 11811e	,1
Step 2] J 15 am 15	OHETRY, aud	therefore inje	ctive	
Given $y \in L^{2}$, defi	ue xe 2° wi	th xi = sign	(yi). Then	
11 8 11 es = = 1 1 yil	= \sum_{7>1} \times \times \times_1	= [J(v)](×)	<] J(y) (2°°)1.	1× e∞
[one should discuss	y = 0 separate	ey J		
Step 3 Let's try to	prove surjec	livily		
Given $L \in (\mathbb{Q}^{\infty})^1$ Claim: $y \in \mathbb{Q}^4$ and		ie y by yi	== L(ei) (ue	c. coud.)
$\sum_{i=1}^{N} y_i = \sum_{i=1}^{N} sig$	u (yi) yi =	∑ Zi L(ei) = L _(e∞) · ;	$= \left \left(\sum_{i=1}^{N} z_i e_i \right) \right $ $= \left \sum_{i=1}^{N} z_i e_i \right \left \sum_{i=1}^{N} z_i e_i \right $	

Lecture 56

	have proved that $y \in Q^{\frac{1}{2}}$.	
	the previous cases we know that L and J(y) wincide	
iu Cl	os (Span(ei)), which is NOT loo, BUT co.	
Actually	, we have almost proved the following	
MISLEA	DING THEOREM The duality pairing defines a map	
	$J: \mathcal{Q}^4 \to (G_0)'$	
with H	ue usual three properties	
we we	d to modify the argument in Sep 2, because we need	J
	and not in 2°.	
	y e l'and N >1 define	
	$(x_{i})_{i} := \begin{cases} 0 & \text{if } i > N+1 \end{cases}$	
Theu		
711,000		
2	14:1 = \frac{7}{12:1} \(\text{y} \cdot (\text{x} \n) \cdot = \left[\(\text{J} \cdot (\text{y}) \right] \((\text{x} \n) \) \left \(\text{J} \cdot (\text{y}) \right] \((\text{x} \n) \)	
121	13(1) = 5 de (xp) (- [) (8)] (xp) = 1 2(8) 11 (60) 11 xh11 c	0
V 21.2		
Letting	N -> 100 We dotain 1 J (8) (Co) 1 > 11 y 11e1	
Mop.	$Coo' = Co' = Q^2$	
Proof	Consider any element of coo'. It is a linear cout. f	íma
	$L: Coo \longrightarrow \mathbb{R}$	
Cout. =	=> Lip => unip. cont. => it can be extended in a	
	unique way to L: co ->	R
	which remains lip and Di	

Lecture 56

			41.11. 2021/20.
Very brutal	statement:	(C) = Q1	
105- 1-4-4-1	sl-taa.t	(c)' = l' (), [P 01
TISS PRUTO	statement;		xirs (y, z) with yelfoud zeR
			11 (4, 2) 11 = 11 y 11 ex + 12)
			~> (Z, y1, y2, y3, ···)
Theorem	The duality	pairing	
Γ-,	.7	2	
[] (4	, ya)) (x) :=	\[\sum_{i=1} \times iy \cdot \text{y} \cdot	lim xi
2	IR.		2-2 100
defines a	map 3:.	$\ell^{1} \oplus_{A} \mathbb{R} \rightarrow c^{1}$	with the usual three
properties			
Proof SI	ep1 As us	sual use obtain	11 J (y, y0) 2, < 11 y 2 + 1 y 0
	0.5	4 D B 1-0	
Step 2	"	1 Dz R define	
	()	sigu (vi)	if ish
	(Xn); = <	siqu (ya)	1+1 & i & 3)
with this	choice as b	efore We obtain,	the opposite inequality
(please c	heck the det	ails)	
Sin- 2		5) 1.00	Pind (11 11) 5 0 5 P
		$L = 3(y, y_{\infty})$	find (y, yo) € l+ + R
7	o this and i	ne set yi =	L(ei)
		Ŋ∞ : =	$L(ei)$ $L(eo) - \sum_{i=1}^{\infty} L(ei)$
			(4,4,1,)

Lecture 56

As in the locars we can prove that $y \in l^{2}$, and therefore also y_{∞} is well-defined. Finally we have to check that L and $J(y_{1}y_{\infty})$ coincide in C . They coincide if $X = l_{\infty}$ We observe that l_{∞} and l_{∞} span a dense subset of C . WHAT ABOUT THE DUAL OF l_{∞} It contains $J(y_{0})$ for every $y \in l_{\infty}^{2}$, and were precisely we proved that $J: l_{\infty}^{2} \to (l_{\infty}^{\infty})'$ is an injective isometry. BUT IT IS NOT SURJECTIVE let us find $L \in (l_{\infty}^{\infty})'$ which is not in the image of J . Consider $L: C \to \mathbb{R}$ defined as $L(x) := l_{\infty} l_{\infty} x_{0}$ Thanks to HB we can extend L to some $L: l_{\infty} \to \mathbb{R}$. Fact I L cannot be represented as $J(y_{0})$ for some $y \in l_{\infty}^{4}$. Assume that $y_{1} \neq 0$ for some $i \geq 1$. If X and X coincide everywhen but not in position i , then $[J(y_{0})](x_{0}) \neq [J(y_{0})](x_{0})$. On the other hand, both X and X can have the same L when L is an L coincide L and L and L coincide L and L contains the first L and L coincide L and L and L coincide L and	intituation of tectures (votante of
Finally we have to check that L and $J(y,y,y)$ coincide in C . They coincide if $X=C$. We observe that C is and C span a dense subset of C . WHAT ABOUT THE DUAL OF C if an injective isometry. We proved that C is an injective isometry. BUT IT IS NOT SURJECTIVE let us find C (C) which is not in the image of C . Consider C is C in C in C in C in C . Thanks to H3 we can extend C to some C is C in C . Fact of C cannot be represented as C (C) for some C in C . Assume that C is for some C in	
in c. For some they coincide in ei They coincide if $x = e_{\infty}$ We observe that ei's and e_{∞} span a dense subset of c. WHAT ABOUT THE DUAL OF l^{∞} It contains $J(y)$ for every $y \in l'$, and more precisely we proved that $J: l^{2} \rightarrow (l^{\infty})'$ is an injective isometry. BUT IT IS NOT SURJECTIVE let us find $L \in (l^{\infty})'$ which is not in the image of J . Consider $L: c \rightarrow R$ defined as $L(x):= \lim_{i \rightarrow \infty} x_{i}$ Thanks to HB we can extend L to some $\hat{L}: l^{\infty} \rightarrow R$. Fact I \hat{L} cannot be represented as $J(y)$ for some $y \in l^{2}$. Assume that $y_{i} \neq 0$ for some $i \geq 1$ if x and \hat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](x)$. On the other hand, both x and \hat{x} can have the same \hat{l} .	
Thanks to HB we can extend L to some L. L. Councide and extended L to some L. L. Councide and continuous with the more of L. Thanks to HB we can extend L to some L. L. Councide everywhere but not in position i, then [J(y)] can be some L. (20) Councide Let and a continuous but hat J. L. Assume that J. L. Assume that J. L. Assume that J. L. Assume that J. Acouncide the some J. L. Councide and J. L. Councide everywhere but not in position i, then [J(y)] can the same L. (x) - Dim xi L. Councide everywhere but not in position i, then [J(y)] can the same L. Councide L. Councide the other hand, both x and x can have the same L. Dimit at a, and therefore the same L.	
Thanks to HB we can extend L to some $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$. Assume that $y_1 \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](x) \neq [J(y)](x)$. On the other hand, both x and \widehat{x} can have the same $\widehat{L}: \mathbb{C}^{\infty} \to \mathbb{R}$.	iu c.
We observe that ei's and end span a dense subset of C . WHAT ABOUT THE DUAL OF L^{∞} It contains $J(y)$ for every $y \in L^{4}$, and more precisely we proved that $J: L^{4} \rightarrow (L^{\infty})^{4}$ is an injective isometry. BUT IT IS NOT SURJECTIVE Let us find $L \in (L^{\infty})^{4}$ which is not in the image of J . Consider $L: C \rightarrow \mathbb{R}$ defined as $L(x):=\lim_{i \rightarrow +\infty} x_{i}$ Thanks to HB we can extend L to some $\widehat{L}: L^{\infty} \rightarrow \mathbb{R}$. Fixet \widehat{L} cannot be represented as $J(y)$ for some $y \in L^{4}$. Assume that $y_{1} \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both x and \widehat{x} can have the same L .	
We observe that ei's and end span a dense subset of C . WHAT ABOUT THE DUAL OF L^{∞} It contains $J(y)$ for every $y \in L^{4}$, and more precisely we proved that $J: L^{4} \rightarrow (L^{\infty})^{4}$ is an injective isometry. BUT IT IS NOT SURJECTIVE Let us find $L \in (L^{\infty})^{4}$ which is not in the image of J . Consider $L: C \rightarrow \mathbb{R}$ defined as $L(x):=\lim_{i \rightarrow +\infty} x_{i}$ Thanks to HB we can extend L to some $\widehat{L}: L^{\infty} \rightarrow \mathbb{R}$. Fixet \widehat{L} cannot be represented as $J(y)$ for some $y \in L^{4}$. Assume that $y_{1} \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both x and \widehat{x} can have the same L .	-> They coincide if x = em
$y \in L^2$, and wore precisely we proved that $J: L^2 \to (L^\infty)'$ is an injective isometry. BUT IT IS NOT SURJECTIVE Let us find $L \in (L^\infty)'$ which is not in the image of J . Consider $L: C \to \mathbb{R}$ defined as $L(x):=\lim_{i\to +\infty} x_i$ Thanks to H3 we can extend L to some $\widehat{L}: L^\infty \to \mathbb{R}$. Fact I L cannot be represented as $J(v)$ for some $y \in L^2$. Assume that $y_i \neq 0$ for some $i \geq 1$. If x and x coincide everywhere but not in position i , then $[J(v)](x) \neq [J(v)](x)$ On the other hand, both x and x can have the same L will at x , and therefore the same L .	
$y \in L^2$, and wore precisely we proved that $J: L^2 \to (L^\infty)'$ is an injective isometry. BUT IT IS NOT SURJECTIVE Let us find $L \in (L^\infty)'$ which is not in the image of J . Consider $L: C \to \mathbb{R}$ defined as $L(x):=\lim_{i\to +\infty} x_i$ Thanks to H3 we can extend L to some $\widehat{L}: L^\infty \to \mathbb{R}$. Fact I L cannot be represented as $J(v)$ for some $y \in L^2$. Assume that $y_i \neq 0$ for some $i \geq 1$. If x and x coincide everywhere but not in position i , then $[J(v)](x) \neq [J(v)](x)$ On the other hand, both x and x can have the same L will at x , and therefore the same L .	WHAT ABOUT THE DUAL OF 200 It contains J(4) Box even
we proved that $J: \mathbb{Q}^{2} \to (\mathbb{Q}^{\infty})^{l}$ is an injective ISOMETRY. BUT IT IS NOT SURJECTIVE Let us find $L \in (\mathbb{Q}^{\infty})^{l}$ which is not in the image of J . Consider $L: C \to \mathbb{R}$ defined as $L: (\times) := 0$ lime $\times i$ is too the linear and continuous with the horn of \mathbb{Q}^{∞} . Thanks to HB we can extend L to some $\widehat{L}: \mathbb{Q}^{\infty} \to \mathbb{R}$. Fact I \widehat{L} cannot be represented as $J(y)$ for some $y \in \mathbb{Q}^{1}$. Assume that $y_{i} \neq 0$ for some $i \geq 1$. If $x = 1$ and $x = 1$ coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](x)$. On the other hand, both $x = 1$ and $x = 1$ can have the same $x = 1$ limit at $x = 1$, and therefore the same $x = 1$.	
BUT IT IS NOT SURJECTIVE Let us find $L \in (\mathbb{Q}^{\infty})^{1}$ which is not in the things of J . Consider $L: C \to \mathbb{R}$ defined as $L(x):= \lim_{i \to +\infty} x_{i}$ This map is linear and continuous with the norm of L^{∞} . Thanks to HB we can extend L to some $\widehat{L}: \mathbb{Q}^{\infty} \to \mathbb{R}$. Fact \widehat{I} \widehat{L} cannot be represented as $J(y)$ for some $y \in \mathbb{Q}^{1}$. Assume that $y_{1} \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both x and \widehat{x} can have the same \widehat{L} which is and therefore the same \widehat{L} .	
Cousider L: $C \rightarrow \mathbb{R}$ defined as L(x):= $\lim_{i \rightarrow +\infty} x_i$ Thanks to HB we can extend L to some $\widehat{L}: \mathcal{L}^{\infty} \rightarrow \mathbb{R}$. Fact \widehat{L} Cannot be represented as $J(y)$ for some $y \in \mathcal{L}^{1}$. Assume that $y_1 \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both x and \widehat{x} can have the same \widehat{L} .	we proved that $J: \mathbb{Q}^2 \to (\mathbb{Q}^{\infty})^1$ is an injective ISOMETRY.
Cousider L: $C \rightarrow \mathbb{R}$ defined as L(x):= $\lim_{i \rightarrow +\infty} x_i$ Thanks to HB we can extend L to some $\widehat{L}: \mathcal{L}^{\infty} \rightarrow \mathbb{R}$. Fact \widehat{L} Cannot be represented as $J(y)$ for some $y \in \mathcal{L}^{1}$. Assume that $y_1 \neq 0$ for some $i \geq 1$. If x and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both x and \widehat{x} can have the same \widehat{L} .	BUT IT IS NOT SURJECTIVE Let us find L e (Q°) which is
Cousider $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Thanks to HB we can extend $L: C \to \mathbb{R}$. Fact $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Fact $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Fact $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Assume that $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Assume that $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Assume that $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. Assume that $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. On the other hand, both $L: C \to \mathbb{R}$ defined as $L: C \to \mathbb{R}$. On the other hand, both $L: C \to \mathbb{R}$ due to $L: C \to \mathbb{R}$.	
Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in \mathcal{Q}^1$. Assume that $y_i \neq 0$ for some $i \geq 1$. If $x = 0$ and $\hat{x} = 0$ coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both $x = 0$ and $\hat{x} = 0$ can have the same \hat{L} .	
Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in \mathcal{Q}^1$. Assume that $y_i \neq 0$ for some $i \geq 1$. If $x = 0$ and $\hat{x} = 0$ coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both $x = 0$ and $\hat{x} = 0$ can have the same \hat{L} .	
Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Thanks to HB we can extend L to some $\hat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in \mathcal{Q}^1$. Assume that $y_i \neq 0$ for some $i \geq 1$. If $x = 0$ and $\hat{x} = 0$ coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both $x = 0$ and $\hat{x} = 0$ can have the same \hat{L} .	Cousider L: C -> IR defined as
This map is linear and continuous with the norm of L^{∞} . Thanks to HB we can extend L to some $\hat{L}: L^{\infty} \to \mathbb{R}$. Fact \underline{L} Council be represented as $J(y)$ for some $y \in Q^{\underline{L}}$. Assume that $y_i \neq 0$ for some $i \geq 1$. If x and \hat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\hat{x})$. On the other hand, both x and \hat{x} can have the same \hat{L} .	
This map is linear and continuous with the norm of L^{∞} . Thanks to HB we can extend L to some $\hat{L}: L^{\infty} \to \mathbb{R}$. Fact \underline{L} Council be represented as $J(y)$ for some $y \in Q^{\underline{L}}$. Assume that $y_i \neq 0$ for some $i \geq 1$. If x and \hat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\hat{x})$. On the other hand, both x and \hat{x} can have the same \hat{L} .	$\Gamma(X) := 2\pi m \times i$
Thanks to HB we can extend L to some $\widehat{L}: \mathcal{L}^{\infty} \to \mathbb{R}$. Fact \underline{I} \widehat{L} cannot be represented as $J(y)$ for some $y \in \mathcal{Q}^{\underline{I}}$. Assume that $y_i \neq 0$ for some $i \geq 1$. If $x \in \mathbb{Z}$ and \widehat{x} coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\widehat{x})$. On the other hand, both $x \in \mathbb{Z}$ and \widehat{x} can have the same \widehat{L} .	
Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in Q^{1}$. Assume that $y_{i} \neq 0$ for some $i \geq 1$. If \times and $\hat{\times}$ coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\hat{\times})$. On the other hand, both \times and $\hat{\times}$ can have the same \hat{L} .	This map is linear and continuous wet the horn of 200
Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in Q^{1}$. Assume that $y_{i} \neq 0$ for some $i \geq 1$. If \times and $\hat{\times}$ coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\hat{\times})$. On the other hand, both \times and $\hat{\times}$ can have the same \hat{L} .	
Fact 1 \hat{L} cannot be represented as $J(y)$ for some $y \in Q^{1}$. Assume that $y_{i} \neq 0$ for some $i \geq 1$. If \times and $\hat{\times}$ coincide everywhere but not in position i , then $[J(y)](x) \neq [J(y)](\hat{\times})$. On the other hand, both \times and $\hat{\times}$ can have the same \hat{L} .	Thouse to MB we can extend I to some I low D
Assume that $y_i \neq 0$ for some $i \geq 1$. If x and \hat{x} coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both x and \hat{x} can have the same \hat{L} .	THAT IS WE CAN EXTENSE IN THE TOTAL IN THE T
Assume that $y_i \neq 0$ for some $i \geq 1$. If x and \hat{x} coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both x and \hat{x} can have the same \hat{L} .	
Assume that $y_i \neq 0$ for some $i \geq 1$. If x and \hat{x} coincide everywhere but not in position i , then $[J(y)J(x) \neq [J(y)J(\hat{x})]$. On the other hand, both x and \hat{x} can have the same \hat{L} .	Fact 1) L cannot be noncessented as J(n) for some y & Q1.
everywhere but not in position i, then $[J(y)](x) \neq [J(y)](\hat{x})$ On the other hand, both x and \hat{x} can have the same Dimit at ∞ , and therefore the same \hat{L} .	
everywhere but not in position i, then $[J(y)](x) \neq [J(y)](\hat{x})$ On the other hand, both x and \hat{x} can have the same Dimit at ∞ , and therefore the same \hat{L} .	
everywhere but not in position i, then $[J(y)](x) \neq [J(y)](\hat{x})$ On the other hand, both x and \hat{x} can have the same Dimit at ∞ , and therefore the same \hat{L} .	Assume that y, ≠0 for some i≥1. If x and \$ coincide
On the other hand, both \times and \hat{x} can have the same \hat{L} .	
Dimit at so, and therefore the same Î.	
	Ou the other hand, both x and x can have the same
	Direct at so, and therefore the same I.
Alternative proof: consider Î (ei).	
Alternative proof: consider L(ei).	
	Alternative proof: consider L(ei).

Fact 2) Î 15 NOT the liming on limsup (they linear)	are NOT
Fact 3 For every x e lo it turns out that	
liminf x: \(\int\) \(\int\) \(\int\) \(\int\) \(\int\)	
For example consider $x_0 = 7, 9, 7, 9, 7, 9,$	
From the proof of HB we know that	
L(2)-112-x011 ≤ L(x0) ≤ 11 y+x011200 - L(8)	4y € C 4 ₹ € C
Cousider $y = 0, 0, 0, \dots$ $\sim \hat{L}(\infty) \leq 9$	
Consider $z = 9, 9, 9, 9, \dots$ \sim $\hat{L}(\infty) > 9-2=7$	
Fact 4) V d & [7,9] there exists an extender [`w;44
$\hat{L}(x_0) = d \qquad !!$	

Lecture 56

Istituzioni di Analisi -	LECTURE 57
Dual of LP spaces	
Setting: (x,m,u) is a measure space,	nauely
· M is a o-algebra of subsets · u: m → [0,+00] is a measure (countable	y adolitive ou disjoint subsets)
LP(x,m,u) usual LP space with p e[s	L,+∞J.
Model carse: when the measure is finite	u (%) < +∞
PADON-NIKODYM THEOREM Let u be a { Let $v: m \rightarrow R$ be a signed measure (-
Let us assume that v is absolutely couting	wous with, namely
∀ A e m μ(A) = 0 => γ(A) = 0).
Then there exists $g \in L^{\frac{1}{2}}(x, m, \mu)$ such	tuat
v (A) = S g cxidu YAE	m.
DUALITY PAIRING BETWEEN FUNCTIONS	
[J(g)](f):= } g(x) f(x) d/n	
well-defined under sentable assumption	us ou fautg.

Lecture 57

13.11. SOST SOS
Quick statement: the dual of LP 75 LP' where $\frac{1}{P} + \frac{1}{P!} = 1$
tf p∈[±,+∞)
Ju the sequel we assume that u (x) < +00.
Fact 1) For every $p \in [1, +\infty]$ the duality pairing defines a map
$J: L^{2'} \longrightarrow (L^{2})' \qquad g \longrightarrow J(g)$
that is linear, well-defined, and continuous
Proof] Liveanity is clean.
[3(8)](2) = [3(2)](2) = [3
This proves that J (g) 15 well-defined as an element of (LP)
and the how satisfies
11 7 CB) 11 (Tb); < 11 & 11 Tb,
sup of LHS among all p's in LP with 11 Pl_P ≤ 1
Ruck we did not exploit that u (x) < +00 and the argument
works even for $p=1$ and $p=+\infty$.
[Fact 2] For every $p \in [1,+\infty]$, the duolity pairing is an isometry
namely
11 2 (2) 11 ((2) 2 11 (2) 11 (2)

Lecture 57

Proof) We distinguish 3 cases
$p=+\infty$ Given $g \in L^{1}$ we claim that $ J(g_{1}) _{L^{\infty}}$, $\geq g _{L^{1}}$ We define
$\varphi(x) := \text{Sign}(\varphi(x)) \in L^{\infty}(X)$ and observe that
11911_1 = S 1910110x = S g(x) sign (9(x))
= \(\gamma \cong \frac{1}{2}
= [J(9)](4)
< 112(0)11((L∞), 11 € 11 € 11 € 11 € 11 € 11 € 11 € 11
$[p=1]$ Given $g \in L^{\infty}(X)$ we claim that $ J(g) _{(L^{\frac{1}{2}})^{1}} \ge g _{L^{\infty}}$
For every $\varepsilon > 0$ there exists a measurable set $A \varepsilon \subseteq X \otimes A$.
$ g(x) \ge g _{\infty} - \varepsilon$ $\forall x \in A_{\varepsilon}$ and wear $(A_{\varepsilon}) > 0$
WLOG We can assume $g(x) \ge g _{L^{\infty}} - \varepsilon$ (the other case is analogous)
Now we observe flust
$(11911_{\infty} - \epsilon)$ wear $(A\epsilon) \leq \int g(x) dx = \int g(x) 1_{A\epsilon}(x) dx$
$= [J(9)](A_{E}) \leq J(9) _{(L^{2})} \cdot A_{E} _{L^{2}} = J(9) _{(L^{2})} \cdot A_{E} _{L^{2}}$

Lecture 57

Now is	ewough to simply mean (AE) and then let $E \to 0^+$.
p ∈ (1, +∞)	J Given ge L? we claim that 11 J (2) 11 (19) > 11 g 11 201
We define	\$(x):= g(x) p'-1 sign (g(x))
we need	that f∈ L³ but, as in the case of sequences,
S 18(x)	$Pd\mu = \int g(x) ^{p(p'-1)}d\mu = \int g(x) ^{p'}d\mu$ $\uparrow \times$ $P(P'-1)=P'$
Now we a	observe that
5 1gxx11	$\frac{1}{2}g = \int_{\infty}^{\infty} g(x) f(x) dy = [2(3)](4)$
	< 11 5 (8) 11 (LP), · 11 € 11 LP
	€ 2 (2) (L3) {
If we siu	iplify we obtain the conclusion
	in we did not use that u (x) < +00 and the purent works also for p=1 and p = +00.
Fad 3 J	$P \in [1, +\infty)$, then the duality pairing is surjective.
	? \rightarrow IR be a continuous Diven functional. to find $g \in L^{p'}$ s.t.
	$\Gamma(4) = [2(3)](4) \qquad A \in \Gamma_b$

Lecture 57

3.1	et us	, set			ELP	because	meas (4) < +00
		∨ (A	():=	L (.	(۱۸		AVEW
Claim	: >	rs a	sique:	d we	asmi	, iu 🖔	and v is abs. cont. with
					~	trivial	
		- ~			table.	additi	vity. Let {Ak}kz, be a
							its of m.
		Ao s	ا (ا	٨ì.			
Chen	we u	eed 4	liat	V	(A00)	= \frac{1-1}{\infty}	V (Ai). But
ン (A	· (· (· (· (· (· (· (· (· (· (L (:	$\mathbb{1}_{A_{\infty}}$				there we need that
		0.		/	le .	\	1 O Ai - 1 Am CULP
	п	n-> +x	р <u>Г</u>		∐	;)	and this is true only
Ais dis	- Tuick	liu n->+00		\[\sum_{\text{i=1}}^{\text{m}}	11 Ai)	
	=	liu m-> +00	<u>~</u>	L (1/Ai)		
	= .	liu n-> +00	<u></u>	v (A	ni)		
	<i>b</i>	× 1 = 1	(Ai)				
3.2	By 1	RN 4	reve t	exists	s g e	L ¹ Suc	le that

Lecture 57

		V	(A)) =	L	(1);	,)	= (#	. 9	(*) •	سرلح	-2.	S **	વુ ૯	o 1	۴) ۴	Jelv	٨.	
- Che		laii	u	is ·	Huã	+ (3 E	Lħ											
44	Hi	s p	uio	٢	L	au	ud	٦ ((9)	are	. 4u	ω	ىملە	mer	cts	of	(LŦ) 1	
Huo	<u>x</u> +	coi	uci	de	ou	ᆀ	A)	the	ref	ore									Hue
Spo	m	W	id	٢	5	P - -		P •			_								

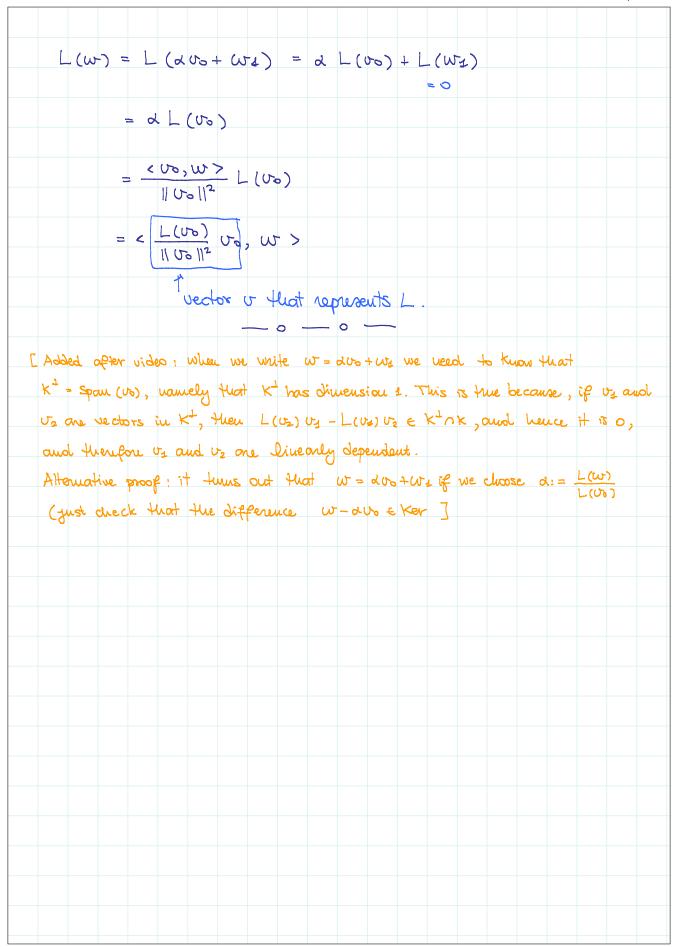
Lecture 57

Istitutioni di Analisi	<u> </u>	LECTURE 58
Given $L \in (L^p)'$ we found	g e L ¹ such	U at
$L(1_A) = \int_A g(x) dx$	= [](9)]	(41 ₄)
Claim: $g \in L^{p'}$ (which is better	er flour L ¹ b	ecouse u (X) < +00)
[p=1] ve claim 19 100 =	11 (12)	
Assume this is not the case. mean $(AE) > 0$ s.t.	Then there	exists As with
3+ (E1) 11 11 5 (XX) B1	8 Axe	
Wrog we can assume the same of 19 cm. Now we observe		e) lu the LHS rustend
(11 L11 ((2)1 + E) meas (AE) ≤ S	g co du	
= [3	(8)] (1)	
3	(4 ₅₄ L)	
≤ [(]	-11 (La) · 11 1/4	E 1/13
= 11 L	- ll (Lizz) · mea	(3A) a
If we simplify, we obtain a	contradiction	A .

Lecture 58

p ∈ (1,+00)	We know that L and $J(g)$ coincide on \mathcal{L}_A and $g \in L^{\frac{1}{2}}$.
	This implies that they coincide in L°(X)
	(here we use that the span of II, is dense in
Griven g (x)	Oct us cousider a truncation
	(n if gow > n
9m	$(x) := \begin{cases} g(x) & \text{if } g(x) \ge n \\ -n \le g(x) \le n \end{cases}$ $(x) := \begin{cases} g(x) \le -n \le g(x) \le -n \end{cases}$
	(-n if g(x) ≤-n
	P'-1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
and let u	s set $f(x) := g_m(x) ^{p'-1} \cdot \text{sign}(g_m(x)) \in L^{\infty}$ sign(g(x))
SIgm cm)	du = 5 gm (x) P-1 sign (gm (x)) · gm (x) du
*	x
	= 5 gm (x) P'-1 sign (g(x)) gm (x) du
	sign (8(x1) - 9 (x)
	≤ S fm (x) g (x) du
	= [J(g)](fn) Since J(g) = L on L [∞]
	= L (4m)
	€ 11 L11 (P), 11 Pm 11 LP
	= 11 L11 (LP) { [gm (x)[P] du} /p

Lecture 58


If We	simplify we obtain that
	11 8m 11 Fb, ≤ 11 F11 (12),
We let	t n -> +00 and obtain that g ₁ p, € L (1p).
	g From u (x) < +00 and 6 - finite measure, namely
. 21 X	the charactury union of Subsets * with m (*) < +00.
5/ep 1] Consider L: LP (X) -> R linear and continuous
	By restriction it defines $L_k: L^p(X_k) \to \mathbb{R}$
	By the previous result
	$L_{k}(\xi) = \int_{X_{k}} g_{k}(x) \xi(x) d\mu \qquad \forall \xi \in L^{p}(X_{k})$
Step 2] If $x_k \leq x_k$, then $g_k(+) = g_k(x)$ for every $x \in x_k$
(# 15	some kind of FLCV)
and	turefore me can défine
	8 Cx) = 8 x (x) 18 x 6 % x
Slop 3	we observe that
Carp _	3 44E 00000E 14011
	9 11 13 (XE) - 11 8 E 11 LP (XE) = 11 LE 11 (LP (XE))1
	≤ L (LP(x))
and	this tuplies that $g \in L^{p'}(X)$, we conclude that
2(0) and L coincide on LP (X).

Lecture 58

HILBERT SPACES Short version: (H) = H
Duality pairing $[J(v)](w) := \langle v, w \rangle \forall (v, w) \in \mathbb{H}^2$
Theorem The duality pairing defines a map
$H \ni \sigma \longrightarrow J(\sigma) \in H'$
which has the usual properties -> well-defined, linear, continuous -> resometry -> surjective.
Proof of first two parts
$ [[(\omega)] (\omega) = \langle (\omega), (\omega) \rangle \leq (\omega) _{H} (\omega _{H})$
This proves that 113 cost = 11 v11 H
In order to prove the opposite inequality we choose w:= v
$\ (\sigma) \ _{H}^{2} = \langle \sigma, \omega \rangle = [J(\sigma)](\omega) \leq \ J(\sigma) \ _{H} \cdot \ \sigma \ _{H} = \ J(\sigma) \ _{H} \cdot \ \sigma \ _{H}$
If we simplify we conclude (consider also v=0)
Proof #1 of surjectivity Assume that H is separable and Det {en} be a Hilbert basis (if H is not separable the same argument works with a general Hilbert basis {ei}ieI)

Lecture 58

			se livean d ve H			5003		
000			= < 0, w			J		
ه م ا					νω-ε			
Let	m so	t						
		∀ : =	X=1 \((e)	ik) ek				
				K				
Ass	une +	hat b	rs well -	defined	. Then	L(w)	and <0	·, w >
coin	rcide	cu ez	Cor ever	y kzi	, and	Herefor	e ile H.	
			obsene	_				
~					04			
\sum	. Uk	= \(\sum_{\text{-}} \)	UK L (ex	= 1	_ (\(\sum_{\text{\subset}}	UKEK)	
k=1		K=1			K=1			
				€ \	L11	I DE UZ	0-11	
				= 11	1 11	{ \sum_{k=1}^{m} \operatorname{\square}{\square}	2 } 1/2	
				_ n	LII H.	\ K=1	k S	
	. 1.	0 1						
We	simply	ry and	we let	W -> +	∞ ,			
							_	
Proc	£ #2	of sury	ectivity]	let K	: = Ke1	r (L).	7f K = +	1, flier
					١,	. I etu		
Assi	une H	uat K=	≠ H. Let	U0≠0	be au	y vecto	n iu K	(nere
we	use ,	that M	1 = K @	K+)				
Eve	y w	H can	be writ	eu as	w =	200+	WI With	1 d∈ R
	0). What					
				•				
	211	(T- \ =	d 11 12 112	. T < (1)	-1 (F- >	~~ ~	= < 00, w	>
	- W	, 00/	5. 11.0011	- W	11		= < 00, 00	2
01		1			0			
0000	we th	al						

Lecture 58

Istrifusioui Note Title	di Aualisi	—	LECTURE 5	06/12/2021
REFLEXIVE SP	ACES			
Defu Let V be	a normed	space. The CA	NONICAL INTECTION is	the map
	J : V →	(V') ¹		
defined by	Duality P	owing between	Vaud VI	
7	·(ʊ)] () :=	f (v)	AREN AGEN,	
Prop. Jisa	Divear 1501	IETRY (and i	u pouticulou injective).	
Proof. Livear	rs trivial. 1	Ne claim that	-	
1 3	5 (v) (v')' =	11017	A n e N	
[<u>{</u>] [20	= ((4) [(v)	[₽(v)] ≤ v	Ny. 11 = 11 y	
Consider the	sup of LH	s as fraise	s in By. (0,1).	
3 For every	UEV there	exists $f \in V'$	with 1181121 ≤ 1 Such	Huat
1101/ = [[3(4)](4)	€ 11.J(v) 11.6	v'7' · 11 & 11 v1	
		functional.	4	
		_ 0 _ 0 _		

Lecture 59

Defu The spaced V TS called REFLEXIVE if J is surjective
Runk If V 15 reflexive, then V 15 150 metric and 180 morphic to (V'), and in particular is a Banach space.
Achtung! The are weird examples of spaces where V is isometric and isomorphic to (V'), but the isomorphis is NOT the canonical injection. These spaces are NOT reflexive.
Theorem (weak compactness of balls in reflexive spaces) Let V be a normed spaces, and let (vn) be a sequence in V. Let us assume that
(i) {Un) 12 bounded (ii) V is reflexive (iii) V' 15 separable (the price to pay in order to use sequences)
Then there exists $v_{m_k} \longrightarrow v_{\infty}$ weakly in V.
[Proof] Usual argument [Step 1] Let us satisfy a countable deuse subset {fn} of V'.
[Step 1] Let us softsfy a countable deuse subset $\{f_m\}$ of V' . Here precisely, there exists U_{m_k} such that $\lim_{k\to+\infty} f_i(U_{m_k}) = \text{something}$ for every $i \in \mathbb{N}$
Evsual diagonal argument after observing that
\\ \(\(\tau_n \) \\ \ \ \ \ \ \ \ \ \ \ \ \

Lecture 59

1 Timbout of recourse (Volume o)
Step 2) We show that
lieu $f(U_{mk}) = something \forall f \in V'$
K-> +00
the SAME subsequence that
satisfies ffm3 mz
[We use that { & (vm x) } is a Country sequence]
[Step 3] Let L(4) denote the limit that we sound in Step 2.
It is possible to see that
· L rs Divear
• L: V' → R 18 coentinuous
L(2) = Dive & (vmx) \le 12 v . vmx v
k = too bounded
This means that $L \in (V')'$ and therefore $L = J(voo)$ for
Some no € V.
This proves that
0: 9 (1) - [7 (2) - [7 (2) - 9 (2)]
$\lim_{k \to +\infty} f(v_{m_k}) = L(f) = [2(v_{\infty})](f) = f(v_{\infty})$
Corollary Assume that V is a reflexive space with V separable.
Then for every $f \in V'$ it turns out that
11911 v' = max { [((v)) : ve V and 11011v ≤ 1 }
and not only 50p
Proof Let {Un} be a sep-izing sequence. It admits a weakly cow.
Subsequence or vo, and finally Added after vides: proof \$\tau(\pi\infty) - \text{Dim} \tau \tau(\pi\infty) = \tau \tau \tau \$Separable. Consider the separable. Consider the aligned functional of for the continuous of the continuou
weak com 1 k-> 700 definition of on aliqued functional of f
Cu (V1) 14 75 3 (someth

Ruck V separable ≠> V' separable
[For example Li and li are separable, but Lo and lo are not separable]
Prop. (The conserve is true: V'separable => V is separable) we arrange that V is a normed space.
Proof Step 1 V' separable => cuit sphere of V' is separable (any subset of a separable metric space is separable, because a metric space is sep. => it admits a countable basic)
Let { £m} >, be a countable deuse subset in this sphere.
Since 11 Pmlly = 1, there exists on EV such that
$ U_m _{\gamma} \le 1$ and $ f(U_m) _{\geq \frac{1}{2}} + f(U_m) _{\leq 1} \le \frac{1}{2}$
Let W:= Clos (Span (v2,, vm,). We claim that W=V. [If YES, then the FINITE lin. comb. of v1,, vm, with coeff. in Q are a countable dense subset of V]
Then there exists $g \in V'$ such that
$g(z) = 1$ $g(w) = 0$ $\forall w \in W$ $\text{Please check the last page}$ of the Dectare. $\text{Note that the extension satisfies } g _{V} = 1$

Lecture 59

But	now g e unit sphere in V' and therefore there elists	
Λ?	.1 Such	
	11 g - fm 11 v, 5 1/4	
Ou	the other hand	
	$\frac{1}{2} \leq f_m(v_m) = f_m(v_m) - g(v_m) + g(v_m)$	
	O because Um ∈ W	
	< 1 €n-9 v · 1 0 m v ≤ ½	
	≤ <u>†</u> .	
THE	PARADOX OF HILBERT TRIPLES	
	sider $H := L^2((0,1))$ and $V := H^2((0,1))$.	
	, are Hilbert spaces and VEH.	
	ider $f \in H'$. So $f : H \rightarrow \mathbb{R}$ is livear and cout. in H .	
The	restriction of f to V TS Diveau and coud. Wet to V	
beca		
	12(0) ≤ coust. 11011H ≤ coust. 11011v	
TW	s wears that there exist a map	
	$\mathcal{H}' \longrightarrow V'$	
	.d. is injective (if $f(\sigma) = 0$ for every $\sigma \in V$, then $f(\sigma)$	= 0
fo	every $v \in \mathcal{H}$ because V is deuse).	
Tu	other words	
	$V \subseteq H = H' \subseteq V' = V$	
	dual of Hilbert spaces	

[This part was added after video]
General fact \ V wormed space, W & V CLOSED Subspace with W \ V.
Then there exists $g \in V'$ such that $ g _{V'} = 1$ and $g(w) = 0$ for every $w \in W$.
Proof Let us assume that B'(vo, ro) & V.W. It is enough to find ge V'
with g(vo) = 1 and g(w) = 0 for every w & W. This function g does not
satisfy necessarily 11911, = 1, but a suitable multiple does.
Consider E := W D Rvo, and define g ! E -> R by
g(w+avo) = a YdeR YweW.
Claim: His function satisfies
g(w+avo) \leq \frac{1}{20} \left w+dvoll \text{ \text{\tinv{\text{\tinte\text{\tint{\tinte\tint{\text{\text{\text{\text{\text{\text{\tin\text{\texi{\text{\texi}\tiex{\tint{\tex{\text{\text{\text{\text{\text{\texi}\tiex{\tiin}\tiinte\t
and therefore HB provides an extension with the same property.
Maid to the Name of Na
and the state of t
$g(\omega + \alpha v_0) = \alpha = \alpha \frac{n_0}{n_0} \le \frac{1}{n_0} \alpha \operatorname{dist}(v_0, -\frac{\omega}{\alpha})$
= 10 d 11 vo + a 11
= 1 11 200 + 601
160

Lecture 59

Istitusioni di Analisi —	LECTURE 60
Weak consergence tu L? spaces	
Balls in L^{P} with $p \in (1, +\infty)$ (en at least for classical measure spo	olpocuts excluded) are weakly compact,
Proof 1 17 15 reflexive for p in	His rauge
compact.	of (LP')' which is weakly * It weak * cownengence in (LP')'
{ + m 3 c L P	
Proof 3 Let us work by hands. Want to prove (*).	Take a Sequence {fn} 3 s LP bounded
Step 1 Up to Subsequences (*) 75	true for every $g \in D \subseteq L^{p'}$ countable downse subset
Step 2 Up to the same subsequence	
Sfing -> L(g)	A8 € T _J ,
Step 3 We know that L(g) E(LP) (LP1) = LP and this requires	

Lecture 60

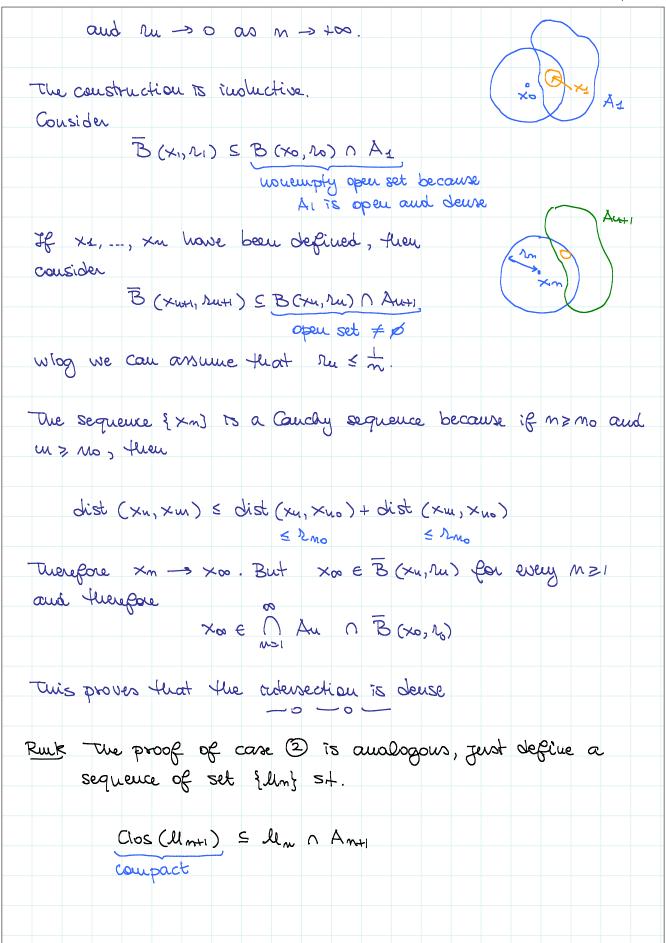
[LAX-MILGRAM] Simple version.
For every $f \in L^2((0,1))$ there exists a unique $u \in H'_o((0,1))$
such that
ii = q
in the sense that
$\int \dot{u} \dot{\varphi} dx = -\int \varphi \varphi \qquad \forall \varphi \in C_c^{\infty}((0,1)) \tag{(*)}$
aud also tu H'o ((0, 1))
Proof 1] Variational formulation
$\underset{\sim}{\text{min}} \left\{ \int_{0}^{\infty} \left[\frac{1}{2} \dot{u}^{2} + \rho(x) u \right] dx : u \in H'_{0}((0,1)) \right\}$
Direct method => existence ELE in the 1st int. form ->
u satisfies (x).
Proof 2 Define $F(x) = \int_{0}^{x} f(t) dt$ and
$\hat{F}(x) := \hat{S}F(t)dt + ax+b$
then adjust the constants a and b so that F ∈ H's ((0,1)).
Proof 3 À la LAX-MILGRAM.
Cousider H:= Ho ((0,1)). Cousider
<< u, v >>, := 5 û û dx
This is a scalar product:
-> bilivear is trivial -> positive de Bivile or due to boundary conditions
→ positive definite or due to boundary conditions → completeness is an exercise. If fund is a Cauchy seq. in H
then { in } is a Couchy seq, i'm L2 ((0,1)) and

Lecture 60

Eun 3 75 At this or	bounded în L® ((0 ∞ V ← mil trioc	strouneu iu L	and un ->	Upo
uniform	y (at least up to	subsequences).		
At this	point vo = un o a le sequence un com	ud by the se	b-serb lemma	
Now cous	ider L: H -> IR	defined by		
	L(0):=-5 & (20	(x) dx		
Clearly L	is Divean. Is L c	continuous in H	, We weed	
L(v)		101/2 ((0,11)		
Poi	€ \$ L2 ((0,11)).	Coust . 11 0 11 22 ((c	0,11)	
	LEH' and any of product, usually t			las
	L(v) = << u, v >>	, Н		
- j e u	$L(\sigma) = \langle x, \sigma \rangle$ $= \int u \dot{\sigma}$	40	€ Ho ((0,17)	
as require	ol o .	_ 0 —		

Example	Strange elements		
POINTWIS	SE VALUES		
C°([-	-1,1]) = u(x) -====================================) L(u)	
The line	an wap defined a	bove is cout wit -	the norm of Lo. Sunction on Lo. ((-1,1))!
24 rs pos	ssible to see that	there is no ge	E L2 ((-1,11)) 5.7.
	$\int_{-1}^{\infty} g(x) u(x) dx =$		€ C ⁴ ([-1, 1])
[Cousid	er eur (x) as tu t	lie figure _	
Ruk If we	we cousider the st define, given L	and and proof that $L \in (L^{\infty})^{\perp}$, the in	t works for p = + 00 easure
	∨(A):= L	(4x) AY (ueasurable
			Y ADDITIVE but NOT r Roudon - Nikodym.
Example	Nou-miqueners	of the aliqued f	Punofisual.
Cousider	V = R2 with th	ie 1-uouu	((1,0)
	11 (2,5) 11 = 1 ×1	+ [8]	

Lecture 60


Cousid	a U = (1,0). Which are the aliqued functionals of o	
They	one of the form $f(x,y) = ax + by$	
What	rs 11 & 11/v1? We have to compute	
	$\max \{ \{ (x,y) . \ (x,y) \ _{1} \le 1 \} = \max \{ a , b \} $	
120	(x, y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	< wax { al, 161}. (1×1+141)	
	11 (2, 10) 11,	
Given	a and b, we can choose x and y in such a way the	Lat
we ho	ve equalites.	
So we	need that	
	lav [a , b] ≤ 1	
→ 0	$P(1,0) = (1,0) _{V} = 1$	
74.040	are cuficitely many possibilities! & (x,y) = x+by	
301000	are cuficitely many possibilities! + (x,y) = x+by	

Istituzioui di Analisi —	LECTURE 61
Note Title	09/12/2021
BAIRE SPACES	
[Prop] Let X be a topological space. The following properties are equivalent	
ci) If {Ai}iz, 18 a sequence of OPEN DENS Ai IS DENSE	st subsets, then
(ii) If { Ci }i, is a sequence of CLOSED Substituted them Of Ci has EMPTY interior	
7=1	
(iti) If {a}izi is a seq. of closed subsets	Such Heat
$\operatorname{Jut}\left(\overset{\circ}{\bigcup} c_{i} \right) \neq \emptyset$	
than there exists io>1 s.t. Jut (Go)	≠ Ø
[P. 0] (2) (2) (2) (4) (4) (2) (4)	5.4
[Proof] (i) (=> (ii) cousider the complement (II) (=> (iii) counterpositive (A => B	
Defu A Baire spare is a top. space that sate	tisfies any of the

Lecture 61

Further notations A subset Y = X is called · NOWHERE DENSE if Jut (Clos(Y)) = Ø (very very small from the topological point of view) · MEAGER or FIRST CATEGORY if it is the countable union of nowhere deuse subsets (small from the top. point of view) · RESIDUAL If X14 is weagen. Ruk Ju a Baire space a meager set has empty interior Ruck In any space the countable union of meager sets is again meager _0 _0 -THREE MAIN CLASSES OF BAIRE SPACES 3 COMPLETE METRIC SPACES 2 LOCALLY COMPACT TOP. SPACES (maybe HAUSSDORF) (3) OPEN SUBSETS OF BAIRE SPACE Theorem? (Baile Category theorem) If × 75 a complete metric space, then X is a Baire space. Proof we use the characterization (i) So let {Ai}i>, be a sequence of deuse open sets. we prove that the cutersection is dense, namely every ball B(x, r) intersects the intersection. Idea: we construct a sequence of balls B (xm, ru) such that B(xo, ro) = B(x, r) and then B(xuti, ruti) & B(xn, rn) (Anti

Lecture 61

Lecture 61

Runk The idea for 3 is the following. Let Y = X be an
open set. Let { Ai jûz, be a seq. of open deuse subsets
of Y. Then
$\hat{A}_{i} := A_{i} \cup (\times \setminus Clos (Y))$
are open deux subsets of x, and therefore
σ Λ. – Ο Λ. (Χ) Cl σ (Χ)
$\bigcap_{i=1}^{\infty} \widehat{A}_{i} = \bigcap_{i=1}^{\infty} A_{i} \cup (\times \setminus Clos(Y))$
is deuse in X, but this is possible only if the first
intersection is deuse in Y.
_ 0 - 0 -
Jukresting exercise -> Prove that a closed subset of a Baire
space is a Baile space
-> Find a counterexample (H is false)
-> Realize that the restricted topology
rs always difficult to understand.
Ruck - Any open subset of a Banach space is a Baire space
(open set in Baire space)
-> Any closed subset of a Banach space is a Baire space (It is again a complete metric space)
-> Any closed subset of a loc. comp. top. space is a
Baire space (1+ 15 again a loc. comp. top. space)
-> R, Z, N are Baire spaces (complète métric spaces)
71 15
-> Or 15 not a Baire spaces } exercises
→ RIQ are a Baire space 5

Lecture 61

150000000000 W 111000000 W W 11.11. SOSI/ SOSS
BAIRE POINT 1
Let $f:(o,+\infty) \longrightarrow \mathbb{R}$ be a continuous function.
Let us assume that for every x>0 there exists
lim & (mx) = l e R (always the same)
Then lim & (x) = 2
Proof] For every E >0 we know that
1 f (mx) - 2 < E for M LARGE ENOUGH, QUALITATIVE
Let us rubroduce
$C_{k} := \{ \times > 0 : \notin (m \times) - \ell \leq \epsilon \forall m \geq k \}$ QUANTITATIVE
= ({ x > 0 ·, \napprox (mx) - 2 ≤ E }
closed subset of (0,+00)
By assumption $\overset{\infty}{\cup}$ $C_k = (0, +\infty)$
Baire lemma => \exists Ko s.t. Cko has usually cuterion, namely (a,b) \subseteq Cko for some cuterval (a,b) , namely
$ \mathcal{L}(nx) - \mathcal{L} \leq \varepsilon$ $\forall n \geq \kappa_0 \forall x \in (a_1b)$ or equivalently
1 p (y) - 2 ≤ ε

Lecture 61

We	06 sevi	se 4	lat						
	140	(4) - 2	2 \ ≤ ε		∀ 5 .	this	(ma, union a	outaius	
						ma	(n+1) a	,	
The	cuter	vals	stant	40 00	ulap o	eo2 2s	u as		
C	m+1)a	, < m1	o ~	» a	< m (frue	b-a) for m	ange ei	iouge	
vico.		1		١.		1	0		
	Januar		u x.	. The	case v	vien	l mig	ght de	benol
	Jouran			. The	case v	vhere	l mig	ght de	peuol
	Jowan			. The	case v	vien.	l wig	ght de	peuol
				LYLLE	case v	Nhen	l wig	ght de	peuol
				LYLLE	case v	Nher	l wig	ght de	peuol
				LYLLE	Case V	Nhen	l wig	ght de	peuol
				LYLLE	Case V	Nhen	L wig	ght de	peuol
				LYLLE	Case V	NULL	L wig	ght de	peuol

Lecture 61

Istituzioui di	Ánalisi	<u> </u>	LECTURE	•
Note Title				09/12/2021
BAIRE POINT 2) I	ulidu is disc	cist a function outineous in x		
Ruck There DOES discontinuon			IR which is	
Defu Let X be a • au Fo set if formée sum =	H 18 the a	ountable union	of closed sub	
· a Go set of GEBIET Lemma 1 Let X be				
Then the set of	e discontinuity		ausilu (uetric space
$[Proof]$ Let us def $D_{\varepsilon} := \{ \times \varepsilon \times : $,z) EB (x,r) s.t.	dy (\$(8),\$ (2)	} ≥ € }
It is possible to a discontinuity point		DE B exc 8>0 10 10 10 10 10 10 10 10 10	actly the set	ok
More important, Ds ×n → ×0 in ×				٦, ٦٤

Lecture 62

Printout of lectures (Volume 3)	91
For me Dange enough	
$\mathcal{B}(x_n, \frac{n}{2}) \subseteq \mathcal{B}(x_\infty, \lambda)$	
contains two points y and z with dy (f(8), f(2)) ≥ E	
Lemma 2] R/Q is not a Fe subset of R.	
Proof] Assume that	
$R \setminus R = \bigcup_{m \in I} C_m$ f closed subsets	
wen sut (a) & tut (12102) = 6 for every 121.	
you observe that	
$R = \bigcup_{m=1}^{\infty} C_m \cup \bigcup_{q \in Q} \{q\}$	
vie have written PR as a countable union	
of closed subsets with emply interior.	
BAIRE POINT 3 Let q: R2 -> R. Let us assume that	
(1) & 15 separately continuous in the two variables, normally	
y ∈ R x → f (x,y) is coul. wrt x	
Yx∈R y → \$ (x,y) is cout. writ y	
(i) there exists D S 122 deuse s.t.	
$\varphi(x,y)=0$ $\forall(x,y)\in\mathcal{D}$	
Then $f(x,y) = 0$ for every $(x,y) \in \mathbb{R}^2$.	

Lecture 62

Ruk This is simple if D = 122, but in general it might
happen that the ordersection of D with every Dine
// to the axes contains at most point.
[Froof] Let us assume it is not true whom & (xo, yo) >0
38>0 st. \$(x,y0)>0 for every
$x \in (x_0 - \delta, x_0 + \delta)$
(Yough)
For every such x, there exists r(x) such that
€ (x,y) >0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
We need N(x) to be in some sense and and with x.
Let us make H QUANTITATIVE.
Assume that & (xo, yo) > 4a.
Assure Heat
$\varphi(x,y_0) \geq 2\alpha$ $\forall x \in [x_0-\delta, x_0+\delta]$
Define
$C_k := \{x \in [x_0 - \delta, x_0 + \delta] : P(x,y) \ge a \forall y \in [y_0 - \frac{1}{k}, y_0 + \frac{1}{k}]\}$ $QUANTITATIVE$
The union of Ci's is [xo-8, xo+5]. They are closed. Indeed
assume that
$C_{k} \ni \times_{m} \longrightarrow \times_{m}$
Tray for every $y \in [y_0 - \frac{1}{k}, y_0 + \frac{1}{k}]$ it turns out that
$f(x_{\infty}, y) = \lim_{x \to +\infty} f(x_{\infty}, y) \ge a$ coul. wit x
Baix Demua => $\exists k_0 \ge 1 \le t$. $C_{k_0} \ge \text{tribulal}(c,d)$ and $(c,d) \times (y_0 - \frac{t}{k_0}, y_0 + \frac{t}{k_0})$ entersects D .

Lecture 62

1 Timout of tectures (volume 5)
BAIRE POINT 4
Theorem (Hilbert version) Let H be a Hilbert space.
let us assume that um - vo weakly in H.
Then { Um} 75 bounded
13666 (0,47 12 00 000000
Proof For every UEH we know that < Um, U> -> < Uso, U>
and the particular
< Um, U > 15 bounded
QUALITATIVE
Define
CL:= {veH: < vm, v> ≤ k \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CETTOETT. [TOR,O > Z X OME IN
20
$= \bigcap_{m=1} \{ \cup \in H : \langle \cup_m, \cup \rangle \le k \}$ $= \bigcap_{m=1} \{ \cup \in H : \langle \cup_m, \cup \rangle \le k \}$
M=1
closed set
X LI ST 10
Again H is the union of the closed sets Ck, and therefore
there exists
B(wo, ro) & Cko
Claim.
$ \langle v_m, w \rangle \leq \frac{2k_0}{R_0}$ $\forall m \geq 1$ $\forall w \in \overline{B}(0, 1)$
70
Fuderd $w = \frac{1}{r_0} (r_0 w + w_0) - \frac{1}{r_0} w_0$
70 T
€B(wo, No)
and therefore
< vm, w > ≤ 1 < vm, row + wo> + 1 < vm, wo>
$ \langle Um, W \rangle \leq \frac{1}{No} \langle Um, NoW + Wo \rangle + \frac{1}{No} \langle Um, Wo \rangle $ $\leq Ko$
S KO S KO
which proves the claim.

Lecture 62

				1		Um		
Now	17 18	enoné	gle to	set	ω : =	11 001	E B (0, 1	Just do Saus (
	14	, - 11	, 2k	5	¥			
	f,	O m ll	No		4 m	21		
	—		- 1	_0_		<u>.</u>		
Kuck							d spaces,	Y
	Um		000	weakly	iu V	=>	\$ 5m3 12	bounded
Proof.		-						
			1					
C	1e:= {	18€	V :	1800) < K	}		
		<i>2</i> 0						
	V	= ()	Ck	and	Ge	is clo	sed	
	Ξ	B, (-	fo, ro	2 (_ko			
Claim	2	1 :	\$ (Um)	$\left \leq \frac{2k}{N} \right $	9	AWSI	A6 €	B, (0,1)
				70	9			
		£ =	1 ()	+ fa	₽o) —	1- 80		
				B _V	Po, 20)			
Couch	ude 1	t ka	aking	4 =	alique	ed Luu	ctional c	e un.
		0	٥	~ 0	_ 0 -	0		0

Lecture 62

Istit	urioui di Aualisi – LECTURE 63	
Note Title		13/12/2021
BAIRE	POINT 5] There do NOT exist a Banach space with COUNTABLE ALGEBRAIC basis.	
	Let us avonue that vs,, vm, is a countable borsi	. 2.
	Ck:= Span (V1,, Vk) + Finite dim. vector subs (>> closed)	pace
Baire	Again $V = \bigcirc C_k$ whole space category => there exists C_k with Fut C_k $\neq \emptyset$,	
uame	ely $B_{\nu}(x_0, r_0) \subseteq C_{\kappa_0}$. is not possible because	
Sor	E suall would be in Cko, which is impossible.	
Lemma	Let V be a normed space, and let W & V be a sub with finite dimension. Then W 75 closed.	space
_	1 Let ws,, wn be a basis of w.	
	orm # 1: restriction of the norm of V from # 2: write $W \in W$ as $C_1 W_1 + + C_m W_m$ and $ W = (C_1^2 + + C_m^2)^{1/2}$	defiue
	ral fact: any two norms on a finite dim vector spe equivalent. This is enough to conclude because	rce

Lecture 63

wit to the first norm, therefore it is a Canchy seq. with respect to the second norm, but w is complete unt norm #2, and therefore it is complete unt worm # 2. Proof # 2] Assume that Uz -> voo is a sequence with oz EW Jor every k >1. Claim: vo E W. For every KZI write UK = C+ W3 + - .. + C+ Wm We hope that $C_i^{k} \longrightarrow C_i^{\infty}$ as $k \to +\infty$, at least up to subsequeucus. This is trivial if {Cijez are bounded for every i = 1, ..., n. Assume it is not the cone. whog assume that |C= | > |Ci| por every k and i and |C= > too Then be cause they are bounded) and in this way we have a nontrivial Din comb. of way ..., wa which is 0. BAIRE POINT 6 Theorem There exist a continuous function P: R -> IR that is not differentiable at every x ER. Proof Consider V = space of continuous and bounded functions with the uniform worm (Loo). This is a complete metric space.

Lecture 63

Clanu	: the set of elements of V that one diff. in at
	learst one point are a countable union of
	closed sets with empty interior.
	This implies that there are "many" counterexamples.
×E	$o \in \mathbb{R}$ s.t. $\lim_{\Delta \to 0} \frac{\varphi(xo+\Delta) - \varphi(xo)}{\Delta} = \varphi'(xo) \in \mathbb{R}$
	LITATIVE! quantitative quantitative position limit
Ck:	= { P ∈ V :] ×0 ∈ [-x,k] ∀R ∈ [-½,½]
	[\(\(\chi_{\chi}}\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi}\tinm\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi_{\chi_{\chi_{\chi_{\chi\tiny{\chi}\ti}\chi_{\chi\tinm\chi_{\chi}\chi\ti}\chi_{\chi\tinm\chi\tin_{\chi\tiny{\chi\tiny{\chi\tiny{\chi\tin\tinm\chi\tin{\chi\tiny{\chi}\tinm\chi\tin{\chi\tiny{\chi\tiny\tin\tinpty\tiny\tin_{\chi\tiny{\chi\tiny\tiny\tin\tin_{\chi\tiny\tiny\tin\tin_{\chi\tiny\tiny\tiny\tin_{\chi\tin\tiny\tiny\tin_{\tiny\tin\tin\tiny\tiny\tin_{\chi\tin\ti}\tii\tin\tinp\tin_{\chi\tii\tin}\tin\tinp\tii\tin}\tinp\tin_{\chi\tin}\tinpty\tin_{\chin\
	quantitative bound
	on the derivative
	et of NON counterexamples 18 Ck. : Jut (a) = Ø.
cialin	. Luc (G2) = y2.
Assume	e it is not empty, namely $\exists B_v(f_0, r_0) \subseteq C_{k_0}$
Step 1	We can assume, up to reducing so, that to is rather
	soupoth, for example Lip. cont., or even of class C22.
	(just regularise &)
	C6C*)
Step 2	Cousider (p(x) as in the figure
	observe that, if we set
	2 2
Pm 1	$(x) := \frac{m}{n} \left(6 \left(w_3 x \right) \right)$
flien 1	Por every $x \in \mathbb{R}$ it turns out that $ \begin{array}{ccc} \text{Dim} & \frac{\varphi_n(x+\Omega) - (\varphi_n(x))}{\Omega} & = \pm n & \text{(depending on } x) \end{array} $
	Dim (n(x+2)-(en(x) = +m (depending on x)

Lecture 63

Define	+m (x) = +o (x) +	
	center of	sinall in V if n is large enouge
	the ball	18 saige enough
=> Pm € (Cko if n is longe	euouga.
On the other	er hand	
(m (x+&)	- (en (x)) = (en (x))	2) - 2m (x) _ 20 (x+02) - 2m (x;)
Q.		Q Q
tends to	+ nu Bounder	L by ko Bounded by the lip
	7	[ko, ko] court of to
100 100-1	diada la + Ci a	· consed gots wat weight com
		e closed sets unt uniform com.
	t for -> for un	up.
Assume that		
1 +	$\frac{1}{2}$ $\frac{1}$	[≤K[R] YR∈[-+, +]
	dépards on m	
Since ×n	[-k, K], up to 8	subsequeuces ×m → ×∞ ∈ [-k,k]
and due 1	o mif. com. no	can pass to the limit (double lim
and obtain	-	
1	£00 (x00+8) − £00 (x00) < k R \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0 0	
BAIRE POIN	T 7 BANACH - ST	EINHAUS THEOREM
Setting: V	15 a Bauach space], W is a normed space,
	is au iudex set.	
		consider a livear map
		300 01 200000 0104
	Li: V -> W	
	L, , V — 3 (V	
to		
74	at is also coutium	ww

Lecture 63

Stat											. . 0-	ı.							
てんき	۶ ۲	01101	Ni W	_් ව `	tmo	H	icts	ov.	ر و	gui.	JOUQ	шТ							
C1) ((Q	uali	tati	\\e	bou	udi	ed u	లు)										
	A	υE	V		<u> </u>	sup E I	11	Li	(₍	l) w	2	+ 0	9						
(2)	(0	Mai	uti t	ativ	e l	00U	ude	du	ew))									
	ヨ	₩ €	: 1R	s:	+ .	ļ	.l Li	(U)	11/2	≤	M	lιυ	11~						
(Llu	is t	s e	quì	sale	wt	40		Se:	P 1	ا ا	11∞	(٧,١	w)	< +	∞)			
Sta	4011	1014	- 2	Ī (ΑΉ	20.1.	ali v	\o \											
The				_					ave	at	teru	ofi.	૭ ૯ .						
(2)	· (Que	<u>u</u> li	tati	ive	امط	mq	edi	Less)									
CI)	, –	Ther	૧ ૯	ع ثع	ts.	a	Go	- 6	eus	e S	subs	seti	Α	٦	V	Sud	, \	liat	
			,	sup :eI	IJ	ندا	(ড?	ااس	=	τ∞		+	1 v (ŧΑ					
(Co	rdlo	my.] L	et	مسا	n '	V -	→ >	W	be	a	ક્લ્વ	nen	رف ر	of	Qìu	. c	seul.	
		_ 0 .			ator										0				
										v) La					Ī	ଚଚନ	y	უ ← `	٧.
Pro	of									hati ip.					M	=> q	`wa	atito	alive
		000	wo	vou	בג ואי		_	~yw		0 -		orcu		3 ·					

Lecture 63

ote Title	iturioui di Aualisi – LECTURE 64	12/202
Proof of	35, equivalence version (2) => (1) is trivial, so we pr	sse
	the conven	
Huo.	YITE V SUD 11 1 (17)11	
<u> </u>	Yue V Sup Il Licuilly < too	
<u>rh</u> :	YUEY ILLICONIW & MILVILV	
	rudep. of i	
Ck	== { U ∈ V : Vie I Li(U) ≤ K }	
	= ({ v e V : Li(v) ≤ k }	
	= ∩ { U ∈ V : Li(U) ≤ k } i∈ I closed set because Li 15 cout.	
	CLOSED SET SECTIONS LA 18 COURT.	
By ass	sumption O Ce = V. Baire Demuna => 3 Br (vo, ro)	<u> </u>
Claim	$B_{V}(0,1) \subseteq C_{2\kappa_0}$	
Couside	r UE By (0,1) and write It as	
	(r - 1 ((ro + no (r) - 1) r	
	$U = \frac{1}{100} \left(U_0 + 10U \right) - \frac{1}{100} U_0$	
	€ Bv (00, 20)	
and 4	rendon	
N Li	$v \parallel_{W} \leq \frac{1}{N_{0}} \parallel \text{Li} \left(v_{0} + 2 v_{0} v_{0} \right) \parallel_{W} + \frac{1}{N_{0}} \parallel \text{Li} v_{0} \parallel_{W} \leq \frac{2k_{0}}{N_{0}} \parallel_{W}$	
	100 ≤ k0 1100 ≤ k0	
/No co-	iclude because 11 Lill & (v, w) is the sep of LHS for	
33E W	1 (0,1).	

Lecture 64

Proof of BS, alternative version Assume that (2) is false, where
(2) B J A S V YOEA SUD 1 Li (U) 1 W = +00
Ce gense
subset
We observe that
$\left\{ v \in V : \sup_{\hat{i} \in I} \ Li(v) \ _{W} = +\infty \right\} = \bigcap_{k=1}^{\infty} \left\{ v \in V : \sup_{\hat{i} \in I} \ Li(v) \ _{W} > k \right\}$
open set Ak
This ruplies that the LHS is always a Go set. If Ak is
deux for every k, then the LHS is dourse
If (2) is false, then Are is not dense for some to ≥1,
and therefore V'Azo has honempty interior
Cko i've the previous proof
BAIRE POINT 7-bis Failure of pointwise com. of Formier series
of continuous functions.
[light version] Let V be the space of 211-periodic continuous
functions f: R -> R with the sup norm.
Then there exists $f \in V$ 5.t. the Fourier series of
€ does not comerge în x=0.
[Strong version] There exists a Go deuse subset y = V
such that for every $f \in \mathcal{F}$ the F. series of f does not
converge in a Go deure set of points (depending on f)
in the sense that partial sense are
407 bounded

Lecture 64

Proof of light version | Let us define

$$5^{\sharp}_{m}(x) := \sum_{n=0}^{\infty} d_{n} \cos(nx) + \sum_{n=1}^{\infty} p_{n} \sin(nx)$$

Franklee for it and p_{n}

Consider the sequence of operators $L_{m} : V \to \mathbb{R}$ defined as

 $L_{m}(p) := S^{\sharp}_{m}(0) = \sum_{n=0}^{\infty} d_{n} = \frac{1}{2\pi} \int p(x) dx + \frac{1}{\pi} \sum_{n=1}^{\infty} \int p(x) \cos(nx) dx$

If the sinis conseques in $x = 0$ for every $p \in V$, then L_{m}

To quoditatively bounded.

This implies a quantitative bound, namely

 $|L_{m}(p)| \le |M| |p||_{L^{m}}$

On the other hand, L_{m} can be represented as

 $L_{m}(p) = \int D_{m}(t) |p(t)| dt$
 $\int D_{m}(t) |p(t)| dt$

Thicklet terms

Where $D_{m}(t) := \frac{\sin ((mt \frac{1}{2})t)}{\sin ((mt \frac{1}{2})t)}$

Where $D_{m}(t) := \frac{\sin ((mt \frac{1}{2})t)}{\sin ((mt \frac{1}{2})t)}$

Then $(p) := \frac{\sin ((mt \frac{1}{2})t)}{\sin ((mt \frac{1}{2})t)}$

Claim: we have equality and $||D_{m}||_{L^{2}} \to +\infty$ so $n \to +\infty$.

In order to show = we would like to choose $p(t) = \sin (D_{m}(t))$ but we need $p(t) = \cos (D_{m}(t))$ with continuous functions and we

Lecture 64

Trittout of tectures (volume 3)
pass to the Divit by dominated convergence.
GENERAL FACT If $g \in L^{\frac{1}{2}}((a,b))$, then the hour of the operator
L(4):= S +(+) g (+) dt
75 9 L2 ((a,b)) both of the domain of La ((a,b)), and of the domain of C° ([a,b]).
The computation of 11 Dn 11, 12 18 au exercise
$\int_{-\infty}^{2\pi} \left \operatorname{scu}\left(m+\frac{1}{2}\right) t \right dt \ge 2 \int_{-\infty}^{2\pi} \left \operatorname{scu}\left(m+\frac{1}{2}\right) t \right dt$
$ \begin{array}{c c} 2\pi & \operatorname{scu}(m+\frac{1}{2})t \\ 5 & \operatorname{scu}(m+\frac{1}{2})t \\ 6 & \operatorname{scu}(m+\frac{1}{2})t \end{array} $ $ \begin{array}{c c} 5\pi & \operatorname{scu}(m+\frac{1}{2})t \\ 5\pi & \operatorname{scu}(m+\frac{1}{2})t \end{array} $
$= 2 \int \frac{1 \sin(y)}{y} dy$
$(n+\frac{1}{2})t=y$ $(u+\frac{1}{2})dt=dy$ $2\int_{0}^{+\infty} \frac{ \sin(u) }{y}dy=+\infty$
Proof of strong version From BS in attenuative version we know
that there exists a donse Go set in V
sude that
[Sm (o)]
15 unbounded for every & in this set.
Ju the same way we obtain a
Jeuse Gro set Is in V such that
15m (×) is unbounded for every × ∈ D
(Here we use that countable int. of dourse Go sets is again a dourse Go set)

Lecture 64

50 G	For every $f \in \mathcal{Y}$ and $x \in \mathbb{Q}$	(Sn (x)) 15 aubounoled.
Js H	un bounded for more values	of x? YES! It is unboundle
	Go set of points x (which :	
GENE	ERAL FACT Let (pn: (a,b)-	-> R be cout. functions.
Then		
		- + 20 }
	{ x ∈ (a,b): sup (em (x))	
.		
15 0	Go set	
.		
Judes	ed it can be written as	
	8	
		m(x) \ > k }
	open set	
	9,55	
Alten	while proof: the sup of coul.	functions is LSC and
the s	set where it is too is the jut	ersection of the sets where
it 15	>k, and these one open sets	because the complement
	it is < k is closed.	
	_ 0 _ 0 -	

Lecture 64

Ishiturioui di Aualisi - LECTURE 65 Note Title 15/12/2021
BAIRE POINT 8 Open mapping theorem and related issues
General problem Given $f: V \to W$, and given $w \in W$, solve the equation $f(v) = w$
Defin Setting as above. (1) A QUALITATIVE SOLVER is a function S: W -> V such that [Added after video] P(S(W)) = W + W & W solution of P(v) = W
(2) A QUANTITATIVE SOLVER IS a Solven that satisfies
FINER S.L. II S(w) II V = M II W II W & W = W
(3) A quantitative solver on a dense subset 75 a function
$\hat{S}: \hat{D} \to V$, where \hat{D} TS deuse tu W and
$\varphi(\hat{S}(w)) = w \forall w \in \hat{D}$
J ĤER S.t. Ŝ(w) , \(\tilde{\theta} \) \(\theta \)
Questions Existence of Q1 a solver Q2 a Dinear solver
(Q3) a quantitative solver

Lecture 65

Auswer to Q1) Let $f: V \rightarrow W$ be a function set set
Then a solver exists if and only if f is surgedive
Proof Well-know set theoretic fact (5 is a one-sided inverse of f).
Auswer to QZ Let $f: V \rightarrow W$ be a linear map.
Then a linear solver exists if and only if f is surjective.
Proof] → Choose an algebraic basis {wi}i∈I of W → For every i∈I, choose vi∈V s.t. f(vi) = wi → Define S(wi) = vi
-> Extend S to W by Dineanity -> Check that it works.
[Auswer to Q3] Is contained in three statements.
Prop1 (Characterization of quantitative solvers)
Let $\varphi: V \to W$ be a linear map (we do NOT need continuity)
Then the following are equivalent.
(1) Existence of a quantitative solver (not nec. linear)
(2) & is OPEN (namely & (open subset of V) = open in W)
(3) $\exists R > 0 \text{ s.t. } \notin (B_{V}(0,R)) \ge B_{W}(0,1). \text{ (exchange stat.)}$
Ruck. What we actually prove is that
(1) ← (3)
(2) € (3)

Lecture 65

1 Timout of tectures (volume 5)	107
(Prop 2) (Weaker chanacterization)	
Assume P: V -> W linear and continuous	
BANACH NORHED	
Then the following are equivalent.	
(1) Existence of a quantitative solver	
(2) " " " ou a deuse subset	
(3) 3 R>0 5.1. Closw (& (By (0,R))) 2 By (0,1)	
Ruk what we adually prove is that	
(1) (2) ((2) is the exchange statement)	
(2) ⇔ (3)	
Theorem (Open mapping Hum)	
Assume that $\varphi: V \rightarrow W$ is Dinear and continuous	
BANACH BANACH	
Then the following facts are equivalent.	
(1) & is OPEN (which in turn is equivalent to the existence	
of a quantitative solver)	
(2) f TS surjective.	
The open mapping has three corollaries.	
COROLLARY 1) (Continuity of the inverse function)	
Assume that $f: V \rightarrow W$ is linear, continuous and invertible	6
	5
BANACH BANACH	
Then the curerse function is linear and continuous.	
Proof] Liveansly 15 a general fact.	
The continuity of the inverse is equivalent to f being	
open.	

Lecture 65

COROLLARY 2 (Equivalence of norms)
Let V be a vedor space, and let 11-11, and 11-11, be two
worms in V.
Assume that
(i) V is a Banadi space wit both norms
(IT) fluere exists MERS.t.
110112 SMIUIL YOEV
Then
∃ M s.t. IIUII1 € M IIU2II VUEV
(and therefore the two norms are equivalent)
Proof. Consider Id: V2 -> V2. This map is linear, comb.
and twentible because of citi
Therefore, also the current is continuous, and hence
Lip. cout.,
[COROLLARY 3] (Closed graph theorem)
Assume that $f: V \rightarrow W$ is linear
BANACH BANACH
Then & 15 consisuous of and only of the graph of & 15
a closed subset of V×W.
Proof The nontrivial implication is closed graph => cout.
Cousider two worms on V:
$\ \nabla\ _{2} = \ \nabla\ _{V} + \ \varphi(\sigma)\ _{W}$
It is clear that $ v _1 \leq v _2$ for every $v \in V$.
Claim: V is a Banach space with norm 2.
Assume & Om 3 is a Couchy seq. Wit morning. This implies that
Evry is a Cauchy seq. wit would and Excom) is a cauchy seq. on W.

Lecture 65

1 Tillion of tectures (volume 3)	109
Therefore Um -> Um EV	
P(vm) → woo ∈ W	
But (vo, woo) & graph of & (because graph is closed)	
and therefore wa = & (va).	
At this point un -> vo also wit worm 2.	
Now the two norms are equivalent, namely	
11011 + 11 8 2007 11 W = 1 11011V	
which implies that & is continuous.	
Runk If f: X -> Y If 15 NOT TRUE Had	
métric spaces	
& is cout. (=> graph is closed	
-0-0-	
Proof of Prop 1	
(1) => (3) Claim & (By (0, M)) 2 By (0,1)	
constant of quantitative solver	
If we Bw (0,1), then take v:= S(w) so that f(v)=w	
and 11011, = 115/w>11, < M 110/11 < M	
(3) => (1). Take w \(W \). Consider \(\frac{\omega}{2 \omega _W} \) \(\in \mathbb{B}_W \) (0,1)	
=> 3 U & B, (0, R) s.t. & (v) = w 211w/w	
Now define $S(w) := 2 \ w \ _{W} \cdot v$ and observe that	
1 S(w) 1 ≤ 2 11 U 11 w . 11 w 11 w	
2R	

Lecture 65

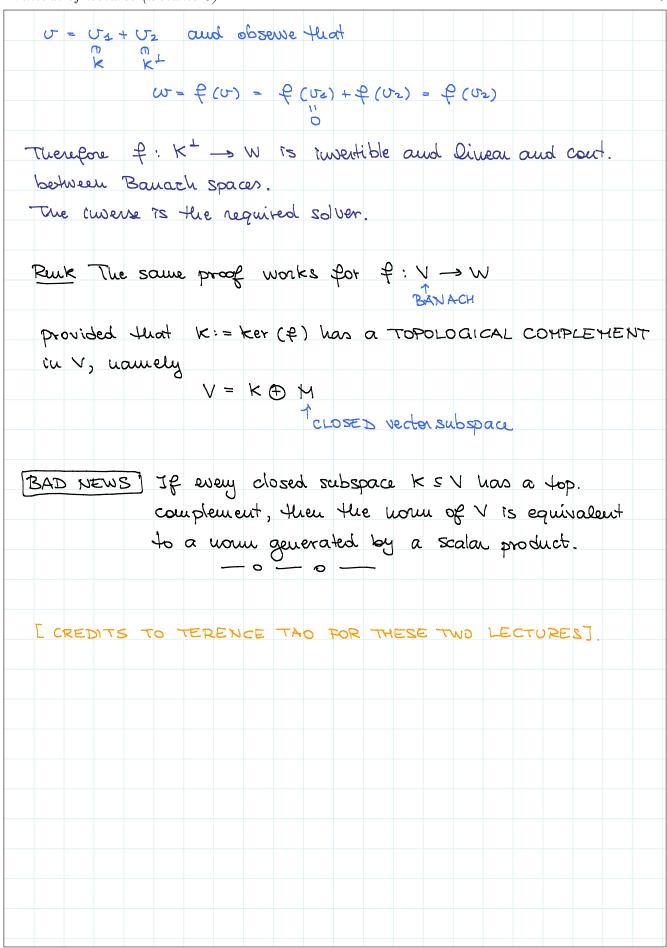
			11.11. 2021/2
$(2) \Rightarrow (3)$	If f is open,	then & (B	(0,1)) 2 Bw (0,20)
	for same ro>		
	By Diveanity		
	3		
	P (P (0 L))		
	€ (B _V (0, 1/2))		
	1,45	Lo	ionected after video]
$(3) \Rightarrow (2)$	JG & (B, (0, F	1)) 2 Bw (0	,1) then
₽ (B,	(x0,20)) 2 B~	1 (& (xo), Ro	
h			
\$ (x0+	10 By (0,1) = P	(xo) + 20 & (B	n(0,R))
		R	
	2.2	(xo) + 100 BW	(0,1)
		R	
	= 'R.	(f (x0), ro)	
	50	1 (+(x0), K)	, <u></u>
		_ 0 _	

Lecture 65

130.Cm	aou, ox	Aualisi		•	LECTURE	0
ote Title						15/12/202
mod of	opeu. War	ping thun	(1) => (27 easy	because	
		rautitative) s				
J.	35 (q)	auth range) s		surger		
	<u> </u>		(22.05	D 2 25		2000 000
2) =, (-		satisfied, u	innerg
1.		S.A. Closw			Bw (0,1).	
Mere we	use 4	hat W is 2	sauach.	Cousider		
Ck 2	= Closw	(P(Bv(0, K	27)			
			60			
Siue f	is sury	ective, then	U C	= W		
			D - 1			
Bou've c	ategory	=> 3 ko	s.4. 1	Bw (wo, 1	o) S Cko	
	0 0					
Claim	Bullo	1) C (2ko	١			
		No	JUR			
Take a	W UTG	Bw (0,1) au	انحب لی			
· · · · · ·	c	15 W (0,1) W				
	1		1 , ,			
ω =	70 (W	0+20W)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	\mathcal{B}_{V}	(wo, 20)	Bn (w	,107		
By assu	unption	3 & (On	n) -> (wo+ow	Um ∈ Bv	
		€ € E	m) ->	w	ûn E Br	(0, ko)
Now ob	sevve					
2(-	10 Um	10 (m) ->	w			
	€ By (0)	200)				

Lecture 66

$[Prop 2]$ (1) \Rightarrow (2) Trivial
(2) => (3) Let D the set where the quantitative solver is
defined. Let $w \in B_{W}(0,1)$ and let $w_{m} \rightarrow w$
For u large enough w_n < 1. Consider v_n := \$ (w_n)
By definition $f(v_n) = w_n \rightarrow w$ and
$ \sigma_m = \hat{S}(\omega_m) \leq \hat{M} \omega_m _{W} \leq \hat{M} = R$
Therefore Clos (7 (Br (0,R))) 2 Bu (0,1).
(3) => (2) Observe that Clos (& (Br (0,21)) 2 Bw (0,1).
Obseve also that (3) implies that the image of is
deuse au W. Let D' deus le the image.
Now we define a solver in D. Let $\omega \in D$. Then
Twilly & Twage of & Bw (0,1)
110011111
=> $\exists \ \sigma \in \mathbb{B}_{V}(0,R) \ \text{s.t.} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
\$(w):= 11 w 1 w. U and observe that it works with
$ \hat{S}(w) _{\gamma} = v _{\gamma} \cdot w _{w}$
$\ \hat{S}(w)\ _{V} = \ v\ _{V} \cdot \ w\ _{W}$ $\leq R$
(2) => (1) relies ou a Lemma (UP TO NOW WE DID NOT USE
THAT V 18 BANACH AND THAT
[Addedafter vides: NORHED is everyf.]
Lewwa] Let W be a Banadi space, and let D SN be a
douse subset. Then for every weW there exists {wm} &D
such that
09
$\sum_{i=1}^{\infty} w_i = w \text{and} \sum_{i=1}^{\infty} w_i _{w} \leq 2 w _{w}$


Lecture 66

Ruck we can replace 2 in the don't inequality with any constant >1.
Proof Choose W1 ED S.t. 11 W - W1 1W & 1 11 W IW
$ \omega_1 _{W} \leq \omega _{W} + \omega_1 - \omega _{W} \leq \omega _{W} + \frac{1}{2} \omega _{W}$ $\uparrow \text{generous}$
Choose $w_2 \in D$ s.t $ w-w_2-w_2 _W \leq \frac{1}{16} w _W$
Obseve that
$ w_2 _W \le ww_2 _W + w_2+w_2-w _W \le \frac{1}{16} w _W$
and so on at step k we choose wx & D s.t.
$\ \omega - \omega_{k} - \ldots - \omega_{k} \ _{W} \leq \frac{1}{2^{k+2}} \ \omega \ _{W} \qquad (*)$
and observe that
$ w_{k} _{W} \leq w - w_{1} w_{k-1} _{W} + w_{k} + w_{k-1} + + w_{3} - w _{W} \leq \frac{1}{2^{k}} w _{W}$ $\leq \frac{1}{2^{k+1}} w _{W}$
Observe that (x) implies that $w = \sum_{r=1}^{\infty} w_r$ and
$\sum_{i=1}^{\infty} w_i = w_i _{w_i} + \sum_{i=2}^{\infty} w_i $
$\leq \ w\ _{W} + \frac{1}{2}\ w\ _{W} + \ w\ _{W} \sum_{i=2}^{\infty} \frac{1}{2^{i}}$
11 w 11w

Lecture 66

111 Isotowasom w innaces machine in 11.11. 2021/2022
Proof of (2) => (1) Let D 5 W be the deuse subset where the
quantitative solver is defined.
Goal: extend S to the whole space W.
Take any $w \in W$. Consider { w_m } $\leq D$ as in the Demina.
Cousider Um: = S (wm) and define
$U := \sum_{m \geq 1}^{\infty} \hat{S}(w_m)$
Is it well defined? Yes, because
$\sum_{w=1}^{\infty} \ \hat{S}(w_m) \ _{V} \leq \tilde{M} \sum_{w=1}^{\infty} \ w_m\ _{W} \leq \tilde{M} \cdot 2\ w\ _{W}$
(Absolute com. => com. because V is Banadi)
$f(\sigma) = f\left(\sum_{n=1}^{\infty} \tilde{S}(\omega_n)\right) = \sum_{n=1}^{\infty} f\left(\tilde{S}(\omega_n)\right) = \sum_{n=1}^{\infty} \omega_n = \omega.$
ANSWER TO Q4
Theorem Assume f: H -> W 15 Divear and continuous
Assume f 15 surjective.
Then a quantitative Dinear solver exists (and therefore also continuous)
$[Proof]$ Let $K := \ker(f)$. Observe that $H = K \oplus K^{\perp}$ orthogonal
Simple facts: Kt 15 closed (and therefore a Hilbert space) \$\phi: \text{K}^{\pm} \rightarrow \text{V} \text{ 15 closed (and therefore and sugestive}\$
Given $\omega \in W$ there exists $v \in H$ s.t. $f(v) = \omega$. But

Lecture 66

Lecture 66

10	Istituzioni di Analisi Malemalica – A.A. 2021/202
Istituv	ioui di Aualisi – LECTURE 67
Note Title	18/12/2021
BAIRE P	POINT 9 Pointwise limit of cont. fundious
	SD 25
T). •	let X he a coast == watio (Rain sacratic augustu)
Messeur	Let X be a COMPLETE métric (Baire space 15 probably enough)
	Let Y be a metric space
	Let fn: x -> Y be a sequence of cout. function.
	Let for: X -> Y be the pointwise limit, namely
	$f_n(x) \rightarrow f_\infty(x) \forall x \in X$
Τ, ρ	
	or rs continuous in a Go dense set, namely the set of
disc. poi	cuts of for is an Fo-set with empty interior.
Proof (The proof of the three hested open sets)
ph a d	eneral fact the discontinuity points of for one
	00
	$\bigcup_{x \in I} D_{\xi} = \bigcup_{x \in I} D_{1/k}$
where	
	= 5 × 6 × . H = 0 7 (1,2) < B (× 1) 5 1 . (P (x) P = x) > 5 }
	= { x ∈ X : X ≥ > 0 } (y, 2) € B (x, x) B = (\$\(\pi\)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	oseol sets
Claim.	Jut (DE) = & for every E>0.
Assume	by contradiction that it is not the carse. ASDE
	there exists A. S DEO
	open set ≠ø
Ne 0680	ruse that Ao 15 a Baixe space.
For eve	y kz1 we consider
Cu 1 =	· { x ∈ Ao : dq (fm (x), fm (x)) ≤ 1/4 €o ∀n ≥ k, ∀m ≥ k}
_	= Nek { x ∈ Ao : dy (fn (x), fu (x)) ≤ \frac{1}{4} \xi_0 \rangle \tau \tau \tau \tau \tau \tau \tau \tau
	m3 k

Lecture 67

1
Douestion: why we do not define
Ck:= {x & Ao: dy (fn (x), foo (x)) < \frac{1}{L} & 1
We observe that C_k is a closed set for every $k \ge 1$ and $\bigcup_{k=1}^{\infty} C_k = A_0$
and in addition
dy (fm (x), for (x)) & 1/2 Eo + m > K + x E Ck
pase to the limit as m → + ∞
Baire category => 3 As 5 Ck1
Now consider fr. It is a cont. function, and therefore
JA2 SA1 S.t. the oscillation of fx, Cx1 ruside A2
$75 \leq \frac{1}{4} \epsilon_0$
Now for every y and z in Az we hove that
dar (for (y), for (≥)) ≤ dar (for (y), fer (y)) ≤ \(\frac{1}{4}\)\(\epsilon\)
$+d\gamma\left(\xi_{k_1}(z),\xi_{\infty}(z)\right) \leq \frac{1}{4}\varepsilon_0$
€ 3/4 € δ
but on the other we know that LHS ≥ E.
Corollary Assume that &: R -> R is differentiable at each x & R
Then f'(x) is confinment in a Go dense set.
Proof Just observe that & (x) is the pointwise limit of
fa (x):= T(xTn)=T(x) A continuous function
$f_{\alpha}(x) := \frac{f(x+R) - f(x)}{\rho} $

Lecture 67

	Istituzioni ai Analisi Matematica – A.A. 2021/
	UNBOUNDED OPERATORS (in HILBERT SPACES)
	et H be a Hilbert space. Au unbounded operator is
	A: D(A) -> H vector subspace of H, called the DOMAIN of A
Achtuu	g! The term 15 misleading because UNBOUNDED does not comply NOT BOUNDED.
	For example, the operator $A \times = 0$ defined on a subspace of H, or even with $D(A) = H$, is an unbounded operator (i)
	Ju ofher words: UNBOUNDED = We do not ask a priori a bound.
	Multiplication operator)
	DLICATION OPERATOR If there exists
	Hilbert bossis { em}
	sequence of real unibers { \mathbb{\pi}_m}
	A eu = >u eu
	nds, these operators are the cuficite dim versions of ral matrices
the or	perator is extended by Dineanity, so if

Lecture 67

	$u = \sum_{n=1}^{\infty} u_n e_n$	
Hen	$\Delta u = \sum_{u=1}^{\infty} \lambda_u u_u e_u$	
The series	countries if and only if $\sum_{n=1}^{\infty} \times_n u_n^2 < +\infty$	
	$D(A) := \left\{ u \in H : \sum_{n=1}^{\infty} \lambda_n^2 u_n^2 < +\infty \right\}$	
	is bounded, then D(A) = H Is unbounded, then D(A) is strictly contained in H	
	DEXAMPLE Let A: H -> H be as in the spectral th	
	-> linear -> continuous and symmetric	
	-> compact. not A is injective, namely 0 is not an eigenvalue. A and A-1 are multiplication operators.	
Because o	f the spectral theorem A en = \(\text{\text{n}} \) en	
	1 bounded and \n → 0	
	A'en = \frac{1}{\text{\text{\$\ext{\$\text{\$\}\$\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{	

Lecture 67

_	Istituziotti ut Attutist Mutemutica – A.A. 2021/2
Ī	POWERS OF MULTIPLICATION OPERATORS
Given	a mult. op. A: D(A) -> H, we can consider the power
	$A^s: D(A^s) \longrightarrow H$
defined	by $A^{s}eu = \lambda_{m}^{s}eu$
with	Lauain
	$D(A^{S}) := \left\{ u \in H : \sum_{n=1}^{\infty} \lambda_{n} u_{n}^{2} + \infty \right\}$
what a	bout $s? \rightarrow If s \in \mathbb{N} \setminus \{0\}$, then no restriction $\rightarrow If s \in \mathbb{Z}$, it is enough that $\lambda_n \neq 0$
	\rightarrow If $S \in \mathbb{R}$, we have to which to $\lambda_n > 0$ (positive operators)
Ruk]	We have the classical composition rule, namely
	A ^s (A ^r u) = A ^{s+r} u ∀u ∈ suitable domain
	$f: \mathbb{R} \to \mathbb{R}$ is any function, we can define $f(A)$ as abounded operator such that
	$\varphi(A) eu = \varphi(\lambda_m) eu \forall m \geq 1$
	is rule PRODUCT OF FUNCTIONS becomes COMPOSITION
	$g(\varphi(A)) = (g \cdot \varphi)(A)$

Lecture 67

Istituzioni di Aualisi	- LECTURE 68
ote ritie	10/12/202
THE EXAMPLE DIRIC	MLET LAPLACIAN
ű = t	$\Delta w = 6$
$U = (\pi) \mathcal{L} = (0) \mathcal{L}$ $(\pi, 0) = (d_1 a)$	ulos ≡0 Ω ⊆ TR ^d bounded open set with
(418) - (0,11)	reasonable boundary
	(for example a ball)
Let us consider the open	rator
$I: L^2((a_1b)) \rightarrow L^2((a_1b))$	$J:L^{2}(\Omega)\to L^{2}(\Omega)$
+ → u t mique sdu	1
unique solu	ation Inventor of the Laplacian
Step 17 The mountain I	is well-defined (existence and uniqueness)
	(3.1.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
First way] Variational &	Pormulation
$\min \left\{ \int_{\Omega} \left(\frac{1}{2} \nabla u(x) \right) \right\}$	1)2 + p (x) u) dx: u e Ho (Ω)}
Standard dred method	d applies and products a unique solution $H^2(\Omega)$.
Second way] Lax - >	tilgram (because the equ. 15 Dinear)
- Se Vu(x), V(x)	$\int_{\Omega} f(x) \psi(x) dx \qquad \forall \psi \in C_{\infty}^{\infty}(\Omega)$

Lecture 68

			00 1110a0050 1V1a0C110a00C	
Third way]	Only to div	renzian ane	. we sel	
F(x) := 5 P	(t) dt	₹(x):=	S F (t) dt	
M (*) =	$= \stackrel{\wedge}{F}(x) + ax + b$	o to de values for	- DBC	
Linearity is o		the totales for		
	ain that I	is symmetri	c	
Proof) In d	him 1 ii	= f	: v = g	
47(0) ->				
< 1(41, g >	= Sugdx =	7 J JUL V = 7 PBC	-) 10 V =) DBc	, , ,
	= 5 pv = <.	P, I(9)>		
In higher di	mension is the	. Same		
J m 6	dx - S u Δυ	- = - J < V	u, Vv> = 5 Du	·~ = S & v
Step 3] We cl	aim that I ?	s compact.		
, , , , , , , , , , , , , , , , , , ,	au operator is		' '	
	such a way the tuput"	eat the our	TPUT is beller th	iau the

Lecture 68

	course (vounte o)	
Proof in	u div 1 Let {fm} & L² ((0, TT)) be any sequence.	
	er un the corresponding solutions.	
	er un = vn.	
	11 vm 11,2 is bounded. By Rolle's fleorem, there exist.	2
Xm E	$(0,\pi)$ 5.+. $\lim_{n \to \infty} (x_n) = V_n(x_n) = 0$.	
Ju the	e usual way we can apply Ascoli-Arrelà to on	
	herefore	
	Un - Un uniformly	
	Ch -2 Co carearing	
	ousider [un]. It is a sequence of lipschitz functi	
(becau	use of the Lo bound on m), and again un (0) =0	
	by AA	
0	un - 2000 miformly (and the posticular	V
00 600	urse vo - elo.)
4		
CALL CO	ensergences are up to subsequences)	
Ruck	$I: L^{2}((0, \pi)) \longrightarrow H^{1}((0, \pi))$ Is it compact?	
(Yes 1	because we proved also unif. com. of derivortives)	
	$I:L^2((0,\pi))\longrightarrow H^2((0,\pi))$ Is it compact?	
	ce , , ,	
CVD		
	udend compacturess would couply that	
{ P n]	$J \subseteq L^2$ bounded $\Longrightarrow ll_{m_k} \longrightarrow ll_{\infty}$ ûn H^2	
	4	
	iling -> clips in L2	
	₹m _{ve}	
	this in not the for every fr.	
10.1	THIS I'V NOT THE FOR EVERY +M.	
and.		

Proof in din d] Aun = fn with {fn} bounded in L2
As au the regularity theory we obtain bounds on
Dun ₁ 2 ≤ M' D ² un ₁ 2 ≤ M'' Tall second derivatives of un
From Poincaré inequality me obtain also
[\ Mn \ \ \ 2 ≤ \ M"
At this point we can apply compact embeoblings and decline that
un _k → u _o a L ²
At the end of the day
I IS A COMPACT OPERATOR
and we can apply the spectral theorem. By uniqueness I is also injective, and therefore
THE INVERSE OF I IS AN UNBOUNDED HULT. OPERATOR CALLED THE DIRICHLET LAPLACIAN
$A: D(A) \longrightarrow H$ $\uparrow L^{2}(\Omega) \cap H_{0}^{\prime}(\Omega)$ $\uparrow DBC$

Lecture 68

Special care in (0,71) Let us find eigenvalues (eigenvectors
$ii = \lambda u$
First of all, $\lambda < 0$: $Su\ddot{u} = \lambda Su^{2}$
- 5 m²
ii = - du with d >0
$u(x) = c_1 \cos(\sqrt{a}x) + c_2 \sin(\sqrt{a}x)$
we apply DBC no q=1 no Td=n no d= m2
Eigenvalues: $-n^2$ with a positive integer Eigenvectors: Sia (mx) up to a multiplicative constant of we want them to be orthonormal
Renk Tress are the eigenvalues of the second derivative with DBC.
The same problem with NBC produces an operator with eigenvalues $-m^2$ and eigenvectors $\cos{(m \times)}$.

Istitwa ote Title	rioui d	izilauA :				LEC	TURE	69 20/12/20:
			_					
- DIRI	CHLET	LAPLA CIAN] -	- ii	(0,7	Τ)	H20 +	1'0
eigenic	rlues	M2 1	eigu	vectors	Sil	r (wx)	(up to	a mutt.com
- NEO	MANN L	-APLACIAN)				H ² w	ith NBC
eigenso	Ques	₩\$0 •	eigen	vectors	Ťu.	s(mx)	the	up to coust.)
- PED)	חשור ו	APLACIAN	7, 7	ewal	(0,2π)	% M=0		ai mais x u
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4001		(0,2)			riodic su
eizew	seulc	W2	eige	wector:			COS (m>	
		W50				of di		th m≥1
					(m=	· 0 ~ 0 ·	1) = 1)	
	The the	eony is sic	uilar	for d	erivative	es of	order 2	ik with
	[even	n ns eve					symme	hic
Ruk		se operato					7	
	um - Aun -	> Um }	=)	U-00	= A.M.	x		
		iu weaker					of the	second

Lecture 69

intout of tectures (volume 3)	141
From now on we focus on the Dirichlet case	
Prop. If $A = -dir$. Lap. => $D(A^{1/2}) = H_0^4((0,\pi))$	
$[Rroof.]$ $[\Rightarrow]$ Let us write $u(x) = \sum_{n=1}^{\infty} u_n siu(mx)$	
Assumption $\sum_{n=1}^{\infty} m^2 u_n^2 < +\infty$	
[Ju abstract: $D(A^S) = \{\sum_{n=1}^{\infty} \lambda_n^2 u_n^2 < +\infty\}$]	
$S_{m}(x): \sum_{k=1}^{m} \mathcal{M}_{k} \operatorname{Siu}(kx)$ $S_{m}(x) \rightarrow \mathcal{M}(x) \operatorname{iu} L^{2}((0, \pi))$	C
$S_{m}'(x) = \sum_{k=1}^{n} K \mathcal{L}_{k} \cos(kx)$	
Now cos (kx) is (up to a constant) an orthogonal system in)	2
Therefore $\sum_{k=1}^{\infty} k u_k \cos(kx)$ counserges in $L^2((0,\pi))$ if and only	ly if
$\sum_{k=1}^{\infty} K^2 u_k^2 < +\infty \text{ and this is the assumption.}$	
$\sim 5_n'(x) \rightarrow v(x)$ in $L^2((0,\pi))$ and as always $v(x) = \dot{u}(x)$	4)
This proves that $u \in H'((0,\pi))$. However $S_m(x) \to u(x)$ uniformly in $[0,\pi]$ and since $S_m(x) = 0$ in $x = 0$ and $x = \pi$	+
this is time also for u(x), namely u & Ho.	
Here we exploited Ascoli - Arrelà.	
(=) Assumption: ME H'o ((0,TT)) aaim: \(\frac{\alpha}{\pi_{21}} \) m^2 U_m^2 < +00	

Lecture 69

$$u_{m} := \int_{0}^{\infty} u(x) \sin(mx) dx \qquad (up to constants)$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) \cos(mx) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

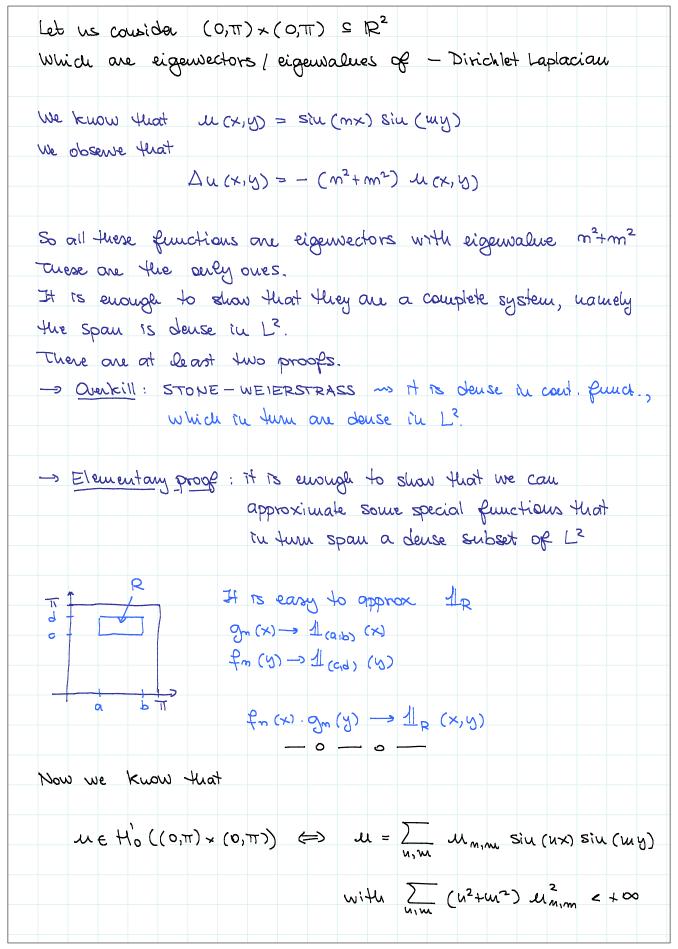
$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

$$= \left[-\frac{1}{m} \cos(mx) u(x) \right]_{x=0}^{x=1} + \frac{1}{m} \int_{0}^{\infty} u(x) dx$$

Lecture 69

FRA	CTIONAL	SOBOLE V S	PACES	p=2	
	H ⁵ ((0,π + DBC	$(x) = \mathcal{D}(A^{s/2})$	`)		
				then u is and s	atisfies DBC
Brutal	uode: 1	LEWM, P IS CA	avannitus	when up	> d
Proof		=) Um sic			
	ue Hs	$\stackrel{\bigcirc}{=} \sum_{n=1}^{\infty} \sum_{n=1}^$	<u> </u>		
		ition for m		that $\sum_{n=1}^{\infty}$	un) < +∞
N=1		$\sum_{n=1}^{\infty} m^{5} u_{n}$			
	<	$\left\{ \sum_{n=1}^{\infty} n^{2s} lu^{2} \right\}$			
	•	u(x) to be		nges iff 25>1	u a suitable
	exponent.	for $S \leq \frac{1}{2}$	u is ve	t even in L	» aud
	ne DBC a				,


Lecture 69

			1												5	<u>'</u>
Example	For	5<	2 1	ne.	expe	ct ·	Huat	•	U (X) =	· Xa	75	ìω	. Н		
	for	some	a.													
Heuri stics	>	Ja	e L2	((0,	,π)) (=	=>	20	2 < 1	L	رڪ	a ·	2 7			
We e	xpect	5-	- devi	v	40	be	^	- ر	ats							
									*							
and	, Her	refor	٤	Ja	€	Hs	(= >	20	a + 2	.s <	=					
										~~	_					
un:	= 5	<u> </u> a .	siu ((xm;	q^{\times}	=			1		<u></u>	ر م	uu ((9)	sty .	
	0	X				mx=	= Y		740	0	8				0	
						×=	8 <u> </u>					mī	Т		dy.	7
						d×	> \frac{\pi}{7}	dy	2		na	5	8	iu y	dy	
											M	0		y		
													co	mer	gent	
	,															
u _m ~	m	-a														
ω ∈ °	2	<u>-</u>	<u> </u>	25	2		1 20	<i></i>	=> \	5	Λ	22		1 ~		
M E				Μ.	Mm	<	400			_	M	2-2a		+ 0	•	
								,								
								<u>_</u>	> 2	_ — 2	.a -	- 25	>	I		
								<u></u> ;	> 2	a+	25	2				
				-0		O	-	-								

Lecture 69

Ist	iturioui d	izilana ik	_		LECTUR	E 70
ote Title_						20/12/20
	Let us of domain Then		Dirichlet	Laplaciau	rs a neaso	oka ble
_	» eigeme	ctors are of	f class C	00		
			_		suitable seur	e.
		wectors au				
		anity: Me			→ RHS E H	· ->meH
			- 1	9	, are actually	y true
					= 15 large er	•
<u> Assu</u>	ue wow	that Δ	$u = \lambda u$			
		Δ	v = uv			
Claiv		< \(\nabla u \nabla v >	dx = 0			
Tuis	s wears	that Du.	I VV as	elements	of L2(12,	R ³)
Judes	if la	we integrat	e by pa	nts:		
<i>و</i> ک	< \(\nabla u \), \(\nabla \)	12 dx = -	-S m D	v dx = -	-uSur	4×
						ecause eigens
			. 0 — 0		are orthog	" .

Lecture 70

Lecture 70

Trinioai of tecture	is (voiume 3)
Theonem	To every $u \in H'_0(0,\pi) \times (0,\pi)$
Mose Numo	$M(x, \frac{\pi}{2}) \in H^{1/2}((0, \pi))$
	rtant: the trace is sungective with values in $H^{1/2}$. us set $g(x) := u(x, \frac{\pi}{2})$.
	\Rightarrow $g \in \mathcal{H}^{1/2}$ we observe that
g (*) =	$\sum_{m_1m} u_{m_1m} \sin(mx) \sin(m\frac{\pi}{2})$ $(-1)^k i \notin m = 2k+1$ $0 i \notin m = 2k$
	Unk Um, 2k+1 (-1) & Siu (mx)
	$\sum_{n} g_{n} \operatorname{sin}(nx) \text{where} g_{n} := \sum_{k} (-1)^{k} u_{n,2k+1}$
	$\mu^{1/2} \iff \sum_{n} n g_{n}^{2} < +\infty$ uat $g_{n} \leq \left(\sum_{k} u_{n,2k+1}^{2} (n^{2} + (2k+1)^{2})\right) \left(\sum_{k} u_{n}^{2} + (2k+1)^{2}\right)$
so that	$uat G_n S (n + (2k+1)^2) / (2k+1)^2)$
	$\leq m \geq \frac{1}{m^2 + (2k+1)^2} \geq \frac{1}{k} M_{u,2k+1} (m^2 + (2k+1)^2)$
	$\sim W \int_{+\infty}^{\infty} \frac{W_s + x_s}{1} dx$ $\leq M$

Lecture 70

and therefore

$$\sum_{n} m g_{n}^{2} \leq M \sum_{n} \sum_{n} u_{n,2n+1}^{2} \left(m^{2} + (2k+1)^{2}\right) < +\infty$$

For every $g \in H^{1/2}$, there exists $u \in H^{2}$ s.t. $g(x) = u(x, \frac{\pi}{2})$

we are given $g(x) = \sum_{n} g_{n} \sin_{n} (mx)$ with $\sum_{n} m g_{n}^{2} < +\infty$

and we want to define $u_{m,m_{0}} \operatorname{such} \operatorname{that}$

$$\sum_{n,m_{0}} u_{m,m_{0}}^{2} \left(m^{2} + w^{2}\right) < +\infty \quad \text{as } u \in H^{1} \quad (3)$$

$$g_{m} = \sum_{n} (-1)^{n} u_{m,2n+1}$$

A good choice is

$$u_{m,2n+1} := (-1)^{n} g_{m} \frac{1}{m^{2} + (2n+1)^{2}} \left(\sum_{n} \frac{1}{m^{2} + (2n+1)^{2}}\right)$$

The this way (3+1) is almost thirdal, let us check (4)

$$\sum_{m,k} u_{m,2n+1}^{2} \left(m^{2} + (2n+1)^{2}\right) \left(\sum_{n} u_{n}^{2} + (2n+1)^{2}\right)$$

$$= \sum_{n,k} q_{n}^{2} \left(u^{2} + (2n+1)^{2}\right)^{2n} \left(\sum_{n} u_{n}^{2}\right)^{2n} \left(\sum_{n} u_{n}^{2}\right)^{2n} \left(\sum_{n} u_{n}^{2}\right)^{2n}$$

$$= \sum_{n} m g_{n}^{2} < +\infty$$

Lecture 70

WHAT WOULD REHAIN TO DO Evolution problems Mt = Δu + sin m Bounded Variation Functions (extension of Whi(Ω) Things work) Dual of Co wo dual is a suitable space of mean Spectral theorem for unbounded operators (and als continuous operators that one not compact) — o — o —	
Bounded Variation Functions (extension of W" (2) Hings work) Dual of Co wo dual 1s a suitable space of mean Topectral theorem for unbounded operators (and als	
Hungs work) 3 Dual of Co wo dual 15 a suitable space of means 4 Spectral theorem for unbounded operators (and als	
4) Spectral theorem for unbounded operators (and als) where
	Servis
	o few
	\

Lecture 70