A.A. 2021/2022 Istituzioni di Analisi Matematica

Printout of lectures

(Volume 2)

Massimo Gobbino

Contents

Lecture 25. Weak derivatives: definition W and H, basic properties, H implies W, statement that W implies H. Sobolev spaces in full generality (any dimension, any open set, any order of derivation): definition W and definition H (as the completion of a suitable metric space). Statement of the three approximation theorems: low cost version, Meyers-Serrin, deluxe version. Example of function without first order weak-derivatives, but with second order mixed weak-derivatives	6
Lecture 26. Algebraic theorems in Sobolev spaces: product, composition (Sobolev inside), absolute value, min and max, composition (Sobolev outside). Discussion of the approximation results needed in the proof. Discussion of the case p=infinity.	11
Lecture 27. Summary of basic facts about mollifiers and regularization by convolution. Convolution commutes with W-weak derivatives. Proof of the low-cost approximation result for Sobolev functions. Proof that W-weak derivatives are also H-weak derivatives	16
Lecture 28. The product of a Sobolev function and a C-infinity function with compact support is a Sobolev function. Partitions of the unity of type A (locally finite covering of an open set by means of well-contained open sets). Proof of Meyers-Serrin theorem (H=W)	21
Lecture 29. Embedding theorems for Sobolev spaces: statement of the three cases (depending on p and d), both in the whole space and in a regular open set, both for derivatives of order one and for derivatives of any order. Pure (rhs depending on the gradient only) vs impure (rhs depending on the full norm) estimates. Definition of various classes of extenders, and their role in the proof of Sobolev embeddings and deluxe approximation results	27
Lecture 30. Gagliardo inequality (with a hint to Brascamp-Lieb inequalities): statement and proof. Homothety argument that identifies the exponents involved in the Sobolev embeddings. First example of an open set where extension and embedding results fail	32
Lecture 31. Proof of Sobolev embeddings for p less than or equal to the space dimension. Deluxe approximation for Sobolev functions on the whole space	37
Lecture 32. Proof of Sobolev embeddings into Holder continuous functions for p greater than the space dimension (Morrey). Sobolev functions with p greater than the space dimension vanish at infinity. Scaling technique for constructing multi-bump counterexamples	43

Lecture 33. General presentation of extension results. Extension by reflexion in cylinders, and computation of weak derivatives of the extension. Extension in rectangles by multiple reflections	48
Lecture 34. Open sets with compact boundary of class C-1. Sobolev spaces of diffeomorphic open sets are isomorphic. Partitions of the unity of type B (finite covering of an open set with compact boundary). Existence of 1-extenders for open sets with compact boundary of class C-1	54
Lecture 35. Informal introduction to compact embedding theorems. Summary of basic facts concerning compactness, relative compactness, and total boundedness in metric spaces. Compactness criterion in Lp spaces (Lp variant of Ascoli-Arzelà theorem).	59
Lecture 36. Compact embedding theorem in Sobolev spaces (Rellich-Kondrachov): statement and proof. Interpolation inequality in Lp spaces and consequences. Counterexample to compact embedding in the critical case	65
Lecture 37. General presentation of traces. Traces of Sobolev functions in the model case (half-space): fundamental inequality in the smooth case, further Lp regularity, definition through approximation. Basic properties of the trace: linearity, it coincides with the restriction for continuous functions, integration by parts formula.	71
Lecture 38. Holder continuity of the trace. Continuous dependence of the trace under a boundedness assumption on the gradients. Counterexample for p=1. Road map for the definition of the trace in regular open sets	76
Lecture 39. Sobolev functions that can be approximated with functions of class C-infinity with compact support: definition, embedding theorems, characterization (in open sets with smooth boundary) as functions with null trace or functions whose extension by 0 is Sobolev	81
Lecture 40. Approximation of Sobolev functions defined in the complement of a single point by functions of class C-infinity with compact support. Connection with the computation of the capacity of a point in a ball. Discussion of the capacity in terms of the space dimension and the summability exponent p	86
Lecture 41. Poincaré-Sobolev inequalities (estimate of the q-norm of a function that is 0 at the boundary in terms of the p-norm of the gradient. Poincaré-Sobolev-Wirtinger inequalities (estimate of the q-norm of the difference between a function and its average in terms of the q-norm of the gradient). Discussion of two possible strategies for a proof	90
Lecture 42. Example of variational approach to two elliptic equations: weak formulation, compactness, lower semicontinuity, existence of a weak solution via direct method, ELE in first integral form	95

Lecture 43. Introduction to regularity for elliptic equations. Terminology: elliptic-	
ity condition on a matrix, linear/semilinear/quasilinear equations. Summary of	
(internal and up-to-the-boundary) regularity results for linear elliptic equations:	100
L2/Lp/Schauder theory. Applications to semilinear equations	100
Lecture 44. Statement of the internal L2 regularity results. A priori estimates for internal regularity, both in the whole space, and in a general open set. Rigorous proof of the localization result (Laplacian of the product of a smooth and a Sobolev	
function)	105
Lecture 45. Discrete derivatives: definition and main properties. Characterization of Sobolev spaces in terms of discrete derivatives. From a priori estimates to elliptic regularity via discrete derivatives.	110
regularity via discrete derivatives	110
Lecture 46. Regularity up to the boundary for elliptic equations with Dirichlet boundary conditions: a priori estimates in a half-space, formalization through discrete	
derivatives, general case in regular open sets	115

Lecture 25

Eas	sy properties]
(1)	Uniqueness Deu, if it exists, in unique
	s Nagx = (-1), I m Dabax = 2 No 16gx
	$\int_{\mathcal{D}} (v_1 - v_2) \varphi dx = 0 \forall \varphi \in C_c^{\infty}; FLCV \Rightarrow v_1 = v_2 \text{ alw. ev.}$
(2)	Livearity $D^d(u_1+u_2) = D^du_1 + D^du_2$
(3)	Classical compatibility If $u \in C^{ u }(\Omega)$ then D^{u} is what we expect
1-8	ess early properties
(4) "Restriction" If B = A are open sets, and v = Dan in A in W-sense, then vig is the W-Danis
(5) "Locality". Assume that $u \in L^1(A \cup B)$. Assume that $v_A = D^a u$ in A $v_B = D^a u$ in B $v_A = v_B$ in $A \cap B$
	Then a admits Dan in AUB and it is what we expect.
(6	(a) Assume that we Leoc (s) and $\frac{\partial u}{\partial x_i} = 0$ in w-sense for every $i = 1,, d$ (all 1-st order derivatives)
	Then u(x) is locally constant in Ω .

Lecture 25

Stabi	lity whe	u pass	ing to	limit						
wazA wzzA	ne {w	rm} au	nr 3 Ja	ij ane	<u> </u> કથ્વ .	iu I	-leoc (-	요).		
	Vm = Do		La er	sem w	121					
	un ->			_		it is	enous	er te	cat un	and -
	Vm →				>				weak	
Then						L1	(v_i)	Pon	every	$v_{1}cc$
	Vo	» = D	Moo							
			,			led 1	,			
Proof_)]	MnC	5) D, 6	(x) dx	= (-1)]	Vm G	4) (9	(x) dx	
	77					٠,٠				
	(, T. d.	\		\a [
	2	M00 (x) D Q	(メ)のメ	= (-1	ک ا	V00 (X	.)φ(x) dx	
(4 >										
(4 1	s euoug	Sir Arc	77 75	5 8m	Sport	OF Y				
H - wee	ak deniv	atives	1 Xa	aiu >	v aud		(C.)	1.000	(0.)	
	y that									
Seque	uce									
L	nu }	م} ⊆ (° (D))	(or ($C_{\infty}(U$	_) or	C 10	(TS)))
Such	tuat									
(i) u	un ->	u d	e Leo	(D)						
	5 ² un –									
	Thrue of	Serivati	ves							
Easy	proposi	liou]	H =	=> W						
						-1				
If 1	- Dan	iu H	-seuse	. They		√ a	146	ו עם –	rze	
						D M	ia v	900	- o _C .	

Lecture 25

Theorem (Approximation o) (W=> H for weak derivatives) ff v = Dan in w-sense, then v = Dan in H-sense, namely there exists { em} [C (12) such that ... Sobolev spaces, def. W $M_{m,b}(U) := \{ m \in \Gamma_b(U) : Dm \in \Gamma_b(U) \mid A | \alpha | \epsilon m \}$ Tw-weak derivatives Sobolen spaces, def. H1 H (Ω): = exactly the same, with H-weak derivatives There is another different possibility also (0,...,0) is included $C^{m,p}(\Omega):=\left\{u\in C^{\infty}(\Omega): \|u\|_{\Omega,m,p}<+\infty\right\}$ It is not difficult to see that II ull , m, p is actually a norm ou cm, P (s2). At this point we can define Hm, P (12) as the abstract completion of Cm, p (12). [Easy theorem] Hm, P (D) C Wm, P (D)

Lecture 25

Diffic	it theorem	(Approx. results fo	n Sobolen functions)
		satisfies	
Assum	e that we	: W",P(Q) with -	p < +∞]
Then	There exist	5 { Un } [
Such	l uat		
	JU,	$\lambda \to u u L^{P}(\Delta u)$	2)
and			
	Dun -	→ Dan in some	Senze
	sery 1 ≤ 12		
J	9		
Low	720)	MEYERS-SERRIN H	I=W DE LUXE
		(1964)	
		(1004)	
any _	0	0,444 0	80 "1004/20"
	$C_{\infty}^{c}(\mathbb{R}^{d})$	any s	O_Q "regular"
	- 1	mu e Ca (2)	$u_n \in C^{\infty}(\mathbb{R}^d)$
_	$\rightarrow D^{\alpha}u$	Dan - Dan	Daun -> Dau
	(D) for	in LP(D)	in LP(22)
men	\mathcal{U} , cc \mathcal{U}	}	
	is good"	en is value goo	d elm 15 good
	15 "bad"	Com. the good	cow. is good
Proof	is easy	Proof is long	D is NOT any
			open set,
		_ 0 _ 0 _	0 1 1
Examp	<u>le</u> Cousida	e u(x,y) with 3	0 1
		as in the figure.	
went		0 in M-sonze	-1 0 ×
		Luy do NOT exist	
		ot in W Seuse)	
		_ 0 _	0 —

Lecture 25

Istituzioni di Analisi	- LECTURE 26
lote Title	25/10/20
ALGEBRAIC THEOREMS	(
-> Product	
	2.2 2.102
-> composition 1 (sob	
- Absolute value, mas	
→ Composition 2 (Solo	(spietno veloc
Theorem (Product) Let	us assume that
me W', P(Ω) η La(Ω)	$) \qquad \wedge \in \mathcal{M}_{Jb}(\mathfrak{D}) \cup \Gamma_{\infty}(\mathfrak{D})$
Then uv & W'rP(D) n	$L^{\infty}(\Omega)$ and
$\mathcal{D}_{u}(uv) = \mathcal{D}_{u}$	u. v + u. Dx; v
Purk we would be son	ume er and v in L ^{oo} because otherwise
H 18 not clear to	
	entomatic that W'P => L, at least
ou cutemals)	
General strategy . Take	. $u_m \rightarrow u$ and $v_m \rightarrow v$.
o Obser	we that the formula is true for every m
· Pars	to the Dimit
For every m 21 it is tu	ue that
(u > D = 0 d = - ((un Dx; vn+ Dxi un·v) qdx

Lecture 26

							1			1	1									21/20
	We	do	Sevve	٤ ٢	lla	- ,	Un	au	d 1	Vm	cau	be	. to	rkeu	40	be	e 9	ui -	- L	
			ક્લ્પ હ																	
			itive														2	α	Ω	
			Cou				_													
			quei				_			_			sut	+ 75	s Qu	עלמג	ah.			
											1						$\overline{}$	ubse	aue	uas
					,						Hu									
	4	4	ņ2 ,	30C	ut	الما	Ca	44 (δu	tean	rals	
			utu:															0		
												80								
		W.S	220,	V-CC	100	C .,	W 300	. ,	.6	۲										
T	<u></u>	0 1	- 1	00	7 -	١			200		سا	. 0.1	, Ju	. ~						
L	<u></u>	30 0	>=+		٠ ر	3 00	7000	5 C	CV SE	We	k	~ 3 ~	, ,,	CUI						
				4.			2021				7		d .		2	. , .			2021	
			> √ > \		ù	ı L	2021	(52)						Dx		Ċ	u L	_ ((Ω')
			-»								ע	×i	V 1/1	•	Dx	, ,				
		9c	ther	afa	Œ															
			6.	*			N/	7							<u>.</u>	. ,		80.	2021	(D1)
		•	lln	レメ	, VA	, +	Vm	U ₇	i, en	.m	一 り、	M £)x(\	/ T \	ן טא	i, 20	,	(u)		ر عد
	V -				١,		Δ		.11.			71	l 0 -0		. (0.	1				
	17000	200	er	200	Ru	oW	the	ow.	700	e q	ppro	K. Pu	1		اده ا	OCT	, 00	(0		
			un,												CLOC	νω	L	(12)	
	ΙW	r2 1	lqui	les	70	att	η.	ki (_41)	2	iu l	~ ·							
	G.		\	o 1		70						1	2021	(` `	_	1			
	<u> </u>	men	al f	Fac	<u>-</u>	T.								(1	۷)	au	DL			
						1.				_	2)									
					,	+W	en		W I	Γœ Ć	υ)	≼ Υ	<i>ا</i> .							
					2021						,							1		,
	(F	3e C	wse	. L	_	Co	wen	Sen			bors	dwi	36	Cou	υ, ι	P	S &	sabs	eq.).
									-0		- 0		-							

Lecture 26

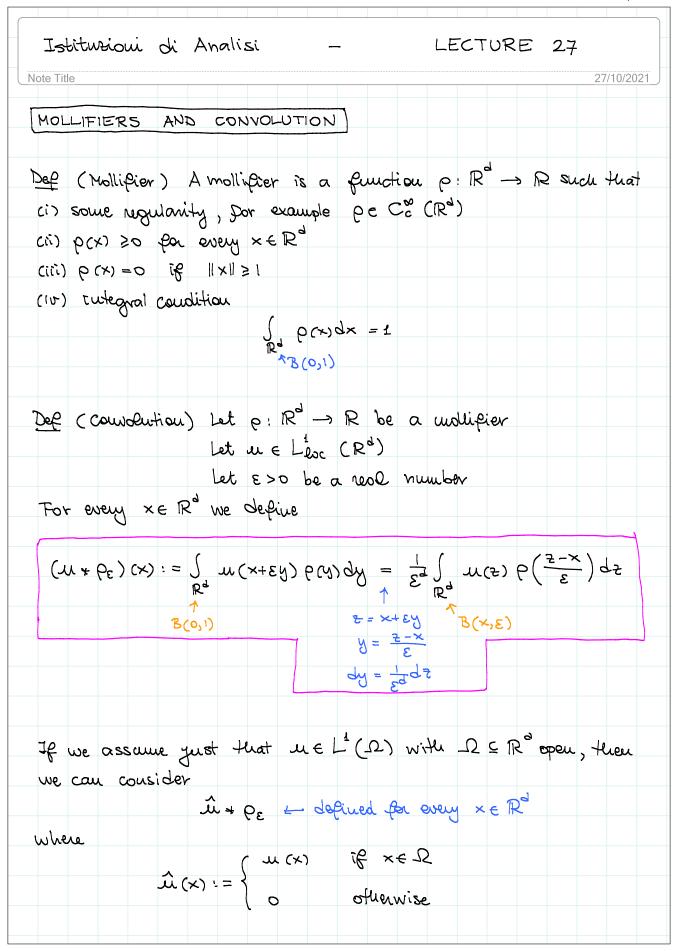
	u) (Composition with Soboan inside) is assume that $u \in W^{1,2}(\Omega)$. Let $\varphi: \mathbb{R} \to \mathbb{R}$ be	
Such.		
	e is of class C1	
	e (0) = 0 (not needed if 12 is bounded)	
	1 (g'(x)) ≤ L for every x ∈ IR.	
	$\varphi(u) \in W^{i,p}(\Omega)$ and	
	D_{x} ; $[\varphi(u)] = \varphi'(u(x)) D_{x}$; $u(x)$	
	Let us approximate un -> u in the low-cost way.	
For e	very m>1 and every y & C° (D)	
5 4 6	un (x)) Dx: 4(x) dx = - 5 (e' (un (x)) Dx: en (x) 4(x) dx	
٠ -		
	subsequeurs, the cow. is pointwise almost everywh	LEL
	est need dominations	
10 4	uis end, we observe that	
1.0		
10	e' (un (x)) [. Dx; elm (x)] ≤ L	
	L Sommation 23 L Sommation	
As P	on the LHS, we observe that	
14(un (x) = (q (un (x)) - (p (0)) < L un (x))	
	ce 1's 1 La domination	
	L-lip.cout.	
This	15 OK 16 p < +00. Otherwise we argue as before	
	<u>-0 -0 -</u>	

Theorem (Absolute value) let us assume that
$$w \in W^{1p}(\Omega)$$

Then $|u| \in W^{1p}(\Omega)$ and D_{X} ; $|u| = Sign(u(x)) \cdot D_{X}$; $u(x)$
 D_{X} ; $|u| = Sign(u(x)) \cdot D_{X}$; $u(x)$
 P_{roof} we approximate the absolute value by means of $Q_{m}(\sigma) = \sqrt{\sigma^{2} + \frac{1}{m^{2}}} - \frac{1}{m^{2}}$

We describe that $Q_{m}(\sigma) \to |\sigma|$ unif. in $|R|$

and


 $Q_{m}(\sigma) = \sqrt{\sigma^{2} + \frac{1}{m^{2}}} - \frac{1}{m^{2}}$

Consider $u_{m}(x) := Q_{m}(u(x))$. Due to the previous then $(\sigma) = 0$ and $|Q_{m}(\sigma)| \le 1$ we know that $u_{m} \in W^{1p}(\Omega)$ and $u_{m}(x) = Q_{m}^{1}(u(x)) \cdot D_{X}$; $u(x) = U^{1p}(\Omega)$ and $u_{m}^{1}(x) \to Sign(u(x))D_{X}$; $u(x) \to Sign(u(x))D_{X}$;

Lecture 26

Printout of lectures (volume 2)	19
[Theorem] (Composition - Soboln outside)	
Let A and B be open sets in R2 Let ue W', P(B).	
Ф: A → B	
be a function such that	
(i) Φ is of class C^1	
(ii) ∮ is awentible	
(iii) Jup and Jo-, are bounded (in A and B, respectively).	
Cousider the function	
$V(x) := le(\phi(x)) x \in A$ Then $V \in W^{1/p}(A)$ and	
$\frac{\partial x!}{\partial \Lambda} (x) = \sum_{q} \frac{\partial \hat{\Lambda}^{2}}{\partial m} (\varphi(x)) \cdot \frac{\partial x!}{\partial \varphi^{2}} (x)$	
951 002	
or even better	
$\nabla v(x) = \nabla u(\phi(x)) \cdot J_{\phi}(x)$	
(Assumption (i) and (ii) and (iii) provide the needled	
dominations).	

Lecture 26

Lecture 27

Prop Properties of the consolution Let us assume that ρ , μ , ε are as in the def. of consolution.
Then the following statements one true
(i) ux pe 75 of class Co (if pe Ck, then ux pe Ck) and with some extra work Ck+1)
(2) u -> u + Pe is Qiuean
(3) Assume that support (11) $\subseteq \Omega$. Then
$supp (u*e_{\varepsilon}) \leq Clos (UB(x,\varepsilon))$
(4) If $u \in L^{p}(\mathbb{R}^{d})$, then $u \star \varrho_{\varepsilon} \in L^{p}(\mathbb{R}^{d})$ and
11 1 4 8 E 1 1 1 1 1 1 1 (Rd)
This is true for every $p \in [1, +\infty] \times included$
(5) If u ∈ LP (Rd) for some p∈ [1,+∞) revoluded then
$u + \rho_{\varepsilon} \longrightarrow u \text{in } L^{P}(\mathbb{R}^{d})$
Ruk No hope that (5) istrue with p = +00 (consider II (a,b) in R).
Exercise Prove the properties.

Lecture 27

Proposition	(The completion commutes with w-weak derivatives)
	$A \subseteq \mathbb{R}^d$ be open sets. $u \in L^1(A)$ and $D^{\epsilon}u = v \in L^1(A)$
Assume 4	
	O < E < dist (B, DA) NO coud. If A = Rd
and then	efore $B(x, \varepsilon) \subset A$ for every $x \in B$.
Then	$\mathcal{D}^{d} \left[\hat{\mathcal{U}} * \rho_{\varepsilon} \right] (x) = (\hat{V} * \rho_{\varepsilon}) (x) \forall x \in \mathbb{B}$
Proof	$5b\left(\frac{3}{3}+\rho_{\epsilon}\right) + \frac{1}{63}b^{2} = (*)\left(\frac{2-x}{3}\right)d^{2}$
D (û + PE	$(x) = \frac{1}{\epsilon^{2}} \int \hat{u}(z) D_{x}^{2} \left[e^{\left(\frac{z-x}{\epsilon}\right)} \right] dz$ $(x) = \frac{1}{\epsilon^{2}} \int \hat{u}(z) D_{x}^{2} \left[e^{\left(\frac{z-x}{\epsilon}\right)} \right] dz$ $(x) = \frac{1}{\epsilon^{2}} \int \hat{u}(z) D_{x}^{2} \left[e^{\left(\frac{z-x}{\epsilon}\right)} \right] dz$
chaiu	rule $=\frac{1}{\varepsilon^d}\int_{\mathbb{R}^d}\hat{u}(z)\left[\hat{D}^d\rho\right]\left(\frac{z-x}{\varepsilon}\right)\frac{(-1)^{ \alpha }}{\varepsilon^{ \alpha }}dz$
chaire	$= \frac{(-1)^{d}}{\epsilon^{d}} \int_{\mathbb{R}^{d}} \widehat{\mathbb{R}^{d}} \left[P\left(\frac{z-x}{\epsilon}\right) \right] dz$ rule \uparrow ϵ^{d} $\epsilon^{$
v=Ddu	$\frac{1}{2} \int_{\mathbb{R}^d} V(\xi) \varphi\left(\frac{\xi-x}{2}\right) d\xi$ $\int_{\mathbb{R}^d} \mathbb{R}^d R^d + \int_{\mathbb{R}^d} \mathbb{R}^d R^d + \int_{\mathbb{R}^$
	= (v+PE) (x). Provided that x EB

Lecture 27

										Ω).	(P <	+∞)
Then	there	exis	sts	{un	3 5	C°c	(R	3)	s.4.			
		ر	un -	→ .ℓ	ı	ù	LP C	D)				
) por	every	ړ' دد	Ω
										_	\ 1 ≤ 1a	
300f	et u	n co	usio	Der	er	=:3	û	*	e E			
Theu	MEE	C∞	(R	,)	(als	SO .	C %	(IR	gs (6	2 is	bound	2d)
Horeau	er											
		UE		ú	ù	LP	(Rd)				
and te	wefor											
		u	٤ -) û	= u	;	iu 1	P (۵)			
							^					
Finally		(Da	ù)	* P=	-	> I	5°u	į	in LP	(\mathbb{R}^d)		
۵			1									
and H	ure Por	۰										
	0											
	(D'a	x) *	٥٠		> D ^d .	u		ì.	T, (7	2/5		
				ne o					_			
	D4 (0-7	MC 6					onon L	Sh		
	5 ((37							0		
2 000			1	L. 61	S	. 80	olo.	1-	1,0,00	10.0	301.50	Science
rt illuction	mas 4	0 W	pour	9 3	0 —	- 0		10	wang	Tue (Surperci	: support.
Tl. 0	<u></u>	1 1	, ,				. 1.					
Theorem										(0)		
Let u											-	
Then						-c ((۱۷	ક્ય	ich H	Lat		
un.							(d	rs -	fixed			
Dun	→ ∨	ìu	را	مح (ح	2)							

Lecture 27

$[Proof]$ Let us $fix \Omega' \subset \Omega$ and let us satisfy Ω'
Let us choose $\Omega' \subset \Omega'' \subset \Omega$ (prove that it DOES exist)
Define $u_{\varepsilon} := \hat{u} + \rho_{\varepsilon}$ extension to 0 outside Ω''
As in the previous proof we can show that $u_{\mathcal{E}} \to u \text{in} L^{\mathcal{P}}(\Omega^{"}) \text{ and also in } L^{\mathcal{P}}(\Omega^{'})$ $D^{\mathcal{Q}}u_{\mathcal{E}} \to D^{\mathcal{Q}}u \text{in} L^{\mathcal{P}}(\Omega^{!})$
How to satisfy any Ω' . For every $k \ge 1$ consider $\Omega_k := \{ \times \in \Omega : \times < k \text{ and } dist (\times, \partial \Omega) > \frac{1}{k} \}$
It is easy to see that $\bigcup_{k \geq 1} \Omega_k = \Omega$ and for every $\Omega' \subset C$
it turns out that $\Omega' \subset \Omega_k$ overtaally. For every $k \geq 1$ we know how to satisfy Ω_k , in particular there exists V_k s.t. 1 expression of $M_k = M_k + M_k$
I claim that {vk} satisfies any \O! Indeed executually it is true that
$\ u - v_k \ _{L^p(\Omega_k)} \le \ u - v_k \ _{L^p(\Omega_k)} \le \frac{1}{k}$ and the same for derivatives $\frac{\Omega' c c \Omega_k}{-} \circ - \circ -$

Lecture 27

Istituzioni di Analisi – LECTURE 28
[Prop] (Sobolev. smooth = Sobolev) Assume that $u \in W^{m,p}(\Omega)$ and $\psi \in C_c^{\infty}(\Omega)$. Then $\text{zer} \in W^{m,p}(\Omega)$.
Ruk There is a "vice" formula for derivatives (general Leibniz rule) D'a [yu] = \(\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \Bu \\ \beta \end{pmatrix} \Bu \\ \beta \end{pmatrix} \Bu \\ \beta \end{pmatrix} \left(\frac{\alpha}{\beta} \right) \\ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \\ \beta \\ \beta \end{pmatrix} \left(\frac{\alpha}{\beta} \right) \\ \begin{pmatrix} \alpha \\ \beta \\ \beta \\ \end{pmatrix} \end{pmatrix} \]
[Prop] (Type A partition of the unity) Let $A \subseteq \mathbb{R}^d$ be an open set, and let $\{An\}$ be a family of open sets such that (i) $An \subset A$ for every $n \geq 1$ (ii) $T \in A$ cowering of A , namely
Of $A_m = A$ Mill the covering is LOCALLY FINITE, namely for every compact set $K \subseteq A$ the set $\{m \ge 1 : A_m \cap K \ne \emptyset \}$ is finite
Then there exists $\{ \gamma_m \}$ such that (1) $\gamma_m \in C_c^{\infty}(A_m)$ (2) $\gamma_m(x) \ge 0$ for every $m \ge 1$ and every $x \in A_m(x \in \mathbb{R}^d)$ (3) $\sum_{u=1}^{\infty} \gamma_m(x) = 1$ $\gamma_m(x) = 1$ $\gamma_m(x$

Lecture 28

Theorem (H=W by Meyers-Service)
Assume that $u \in W^{m_1 p}(\Omega)$ with $p < +\infty$
Then there exists { lim} c Co (2) such that
um -> u cu L3 (s2)
Dolum → Dou in LP (Ω) for every a ≤ m.
[Proof] The result is now trivial if supp (u) CC 1.
Ju this case it is enough to consider the low cost result with supp (u) $\subset \Omega' \subset \Omega$.
Let us consider now the general case. The goal is the following
Vε>0 ∃ Vε∈ C∞(Ω) st. u - Vε u, p, Ω ≤ ε ↑ full wow
In order to construct $v_{\rm E}$, we consider $\Omega_{\rm k}$ as before
$\Omega_{k}:=\left\{\times\in\Omega:\ \ \times\ <\kappa,\ dist\ (\times,\partial\Omega)>\frac{1}{\kappa}\right\} k\geq 1$
We sot $\Omega_0 := \emptyset$ and
$A_{k} := \Omega_{k+1} \setminus Clos(\Omega_{k-1}) \forall \ k \geq 1$
We doserve that { Ak} is an open covering
of A as in the park of unity of type A. (easy check)
Let Entrez denote the corresponding part of the anity, and let us set
lex:= yx. u

Lecture 28

	perti		1 -		l .														
	zab																		
•	Uk	E	w w	'P (D)) k	e c a	use	7	18	201	wlox	· 500	roor	h				
G																			
			<u>></u>	. 14.	رب	, -	ا ج	u~		1	e.co	UNA	5	- س	'k (*)	_			
		k	=1	٨.								W &C		- \					
						13 0													
				#		<i>men</i>	ټو ړ	× ed	×€	25									
For	الم	щ	k;	١,	Hu	سو	فعز	2+2	Vk	E	_ &	(Ak) 2	ud	i te	at			
		0																	
			II.			. 1			11 /		V II				3				
			Ш	JUL 1	_ \	الد اا ر	u,p,	∿.	ב ון ב	W _K ~	A 11	ш,р,	Ak	2	2k				
	+ 15	શ	مسو	zlı -	6	cho	ose	\	k =	Mk	* 0	5	Por	2	Seuc	all o	wou	ger)	
				J															
Fi	uall		10.B	ue.															
	ococci	2	्र ५	,,,,															
						₩													
		,	۶۷ ک	4):	=	2	Vk	(x)				Α×	€ 75						
							1 ei	uite	Sm	u e	مر	Ω ∀×							
							فر	very	Pix	ed '	x e -	Ω							
We	clai																		
7.0	C.00		100			4000	, - 3			~ -									
14			11			h	00	-		II									
Į.	u-	ع∨ -	II w.	P,-2		- 11	k=	1	1º-,	Vk [[w, p	٠-٧							
					<	: 2 r		114	k - 1	rkll,	M ,D,	ત							
											1								
					_	> \scale="1">\scale="1	-	3	_	5									
						K-	-1	2 F		ے									
				_															
MM	is	3	€ (ر" (75) '/	Be	cau	ne i	iu	અથ	4	ixec	E d	ALL	\mathcal{B}	(X,	v) ca	- 2
												_			5 (*,1				
	a									•		-		~					
12		, 50		7.07)	٠. ـ			_									

Lecture 28

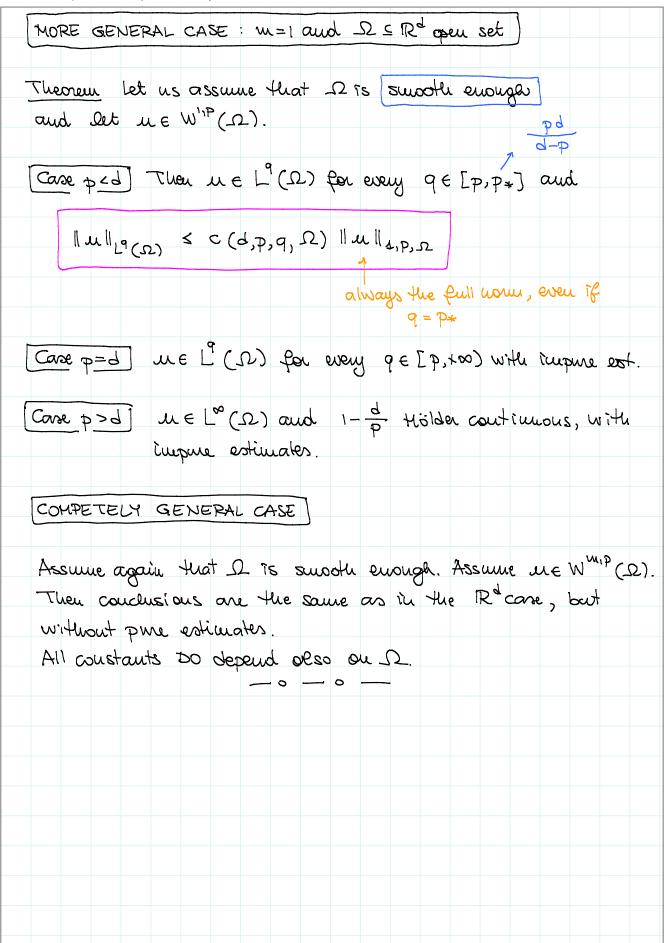
	130000000000000000000000000000000000000
Proof of Sc	mooth. Sopolov Juduction on m
	N. P.
m=1) Claim	i! yee w'', P(Ω) and Dx; [yel] = Dx; yel+yeDx; en
S[yu]D,	
7	est function
	- Su{Dx; [xq]-Dx; y, q}dx
	= Su Dxi [44]dx - SuDxi4 cp dx
	= Ser Dx; [z+cp]dx - SerDx; z cp dx riew test function
	= -SDx: u. y qdx - SuDx; y qdx
	= - S { Dx; u.y + u.Dx; y} qdx :
(+m c= m	Let us consider a with $ a = m+1$. Let us write
	d = B + (0,, 0, 1, 0,, 0)
	pos. i
You	
Dd[yu]=	$D^{B} D_{x;} [\psi u] = D^{B} (D_{x;} \psi \cdot u + \psi D_{x;} u)$
	$D^{B} D_{X;} [Yu] = D^{B} (D_{X;} Y \cdot u + Y D_{X;} u)$ $\sum_{w \in A} V_{w \in A} V_{w \in A} V_{w \in A}$ $\sum_{w \in A} V_{w \in A} V_{w \in A} V_{w \in A} V_{w \in A}$
so the resu	it follows by the cuductive hypothesis because 131=m.

Lecture 28

	Let $\{A_k\}$ be an open covering of A as in the Prop. with one exists $\{\hat{A}_k\}$ a new covering as in the Prop. with	
	Âk CC Ak Y kz1	
"We c	u take it smaller"	
R-00[] =	want to replace A, by	14
	$A_{1,m}:=\{x\in A_{1}: okst(x,\partial A_{1})>\frac{1}{m}\}$	
	of mis large enough, I can replace A_i by $\hat{A}_i := A_i$, to check that	nv ,
	A _{1,m} U A ₂ U A ₃ U = A	
To thi	end, it is enough to check that	
	A1, m U A2 U A3 U 2 Clos (A1) Bn T clos is not really needed	
īs a c	serve that Bn 13 an open covering of Clos (A1), which impact set. Therefore the conclusion follows because he increasing.	h.
In the	same way, I can deplue Âz, Âz,	
Me Ve	to check that $\bigcup_{k \ge 1} \widehat{A}_k = A$. Let $x \in A$, then	
	s to a finite unmber of Az, so if x "survives" after steps, then it survives porever.	* tu

Lecture 28

20 Istituzioni di Andiisi Matematica - A.A. 2021/20
Proof of part of unity
Let us consider { \(\hat{A}_k \) as in the Lemma. For each k z1 we can find \(\text{D}_k \) st
For each k z1 we can find $\theta_k(x)$ s.t (Ak)
• Ox E Co (Ax)
0 0 5 8 k 5 1 iu Ak
• $\Theta_k(x) = 1$ for every $x \in \tilde{A}_k$.
Define $S(x): \sum_{k\geq 1} \theta_k(x)$ (>0 in A because $\{\tilde{A}_k\}$ is a
covering)
and finally $\gamma_{k}(x) := \frac{\theta_{k}(x)}{S(x)}$
SCX)
Note that S (x) € C because the sum is locally finite
The field S(x) & C second for some some is executed from the
11 . 1 - 9 . 1 9 . 6 . 7
How to find Ox (x)?
Take $\hat{A}_k \subset \hat{A}_k \subset A_k$ and then define
and then define
Ox = 112 x PE with E small
euouge


Lecture 28

I=tituzioni di Analisi - LECTURE 29 Note Title 28/10/2021
SOBOLEV EMBEDDINGS
BASIC CASE: WHOLE Rd, m=1
Theorem Let us assume that $u \in W^{1/p}(\mathbb{R}^d)$. $\frac{1}{p} = \frac{1}{d}$
[Case $p < d$] Then $u \in L^{R_1}(\mathbb{R}^d)$ where $p_* := \frac{pd}{d-p}$ (>P)
ull_Pa(Rd) < c(d,p) Vull_P(Rd) only Vu in RHS
As a consequence, $u \in L^{q}(\mathbb{R}^{d})$ for every $q \in [p,p_{+}]$ and $ Mpupe \in StimAte:$
[Case p = d] Then $u \in L^{q}(\mathbb{R}^{d})$ for every $q \in \mathbb{E}_{p}, +\infty)$ and
ull_9 (124) < c (d, p, 9) ull_1, p, R2 equal
[Carse p>d] Then u ∈ L [∞] (IR ^d) and ∈ (0,1]
$\ u\ _{L^{\infty}(\mathbb{R}^d)} \leq C(d,p)\ u\ _{L^{\infty}(\mathbb{R}^d)}$ In addition, it is $1-\frac{d}{p}$ Hölder continuous and
m(x)-u(x) < c (d,p) \nabla u p(Re) y-x \tag{PURE ESTIMATE} \tag{Hölder coust aux}

Lecture 29

				130	itazioni a	i Analisi Me	<i>iiemaiica</i>	7.A. 202	1/202
ारहा	CSTAS	BASIC	CASE :	WHO LE	R ^d , A	NY mu			
The	ouu	Assum	e that	m e W	u,p (Rd).	P	- = -	m
Cars		p < d	Ju Huis	case s	u∈L	m) (Rd)	where P+(m)=	dp	
II	ull, 240	w) (Rq)	≤ c (d,1	p,w) <u></u>	_ 11 25	mll [P(182)		d-pm	
						11 9 E E	p, p4 (u)	Jaud	
<u>II</u> .	ull_9 (.Ra) €	c (d,p,c	7, W) Z) 1) , ≤ m	D'ull 20 (1	<i>S</i> ²)		
						w,p,Rª			
Car	ж2; и	vb=9]	Ju His with in			Rd) for e	very qE	[p,+∞))
Ma	neone	, let	R be H	re sura	llest iu-	eger suc	h that 1	8p>d.	
TV He	nen w	ce cm ut. wi	tu Höld	and o	lewyati: sueut	1 - ap	and	are	
7	3 Du(~)	- Du (4	2) ≤ c ((d, w,p)	d =m	11 Ddu 112P(15g) [x-/	1- ap	
to	r every	y × au	d y iu	\mathbb{R}^d					
Proc	E] Iu	duction	i using	previou	s stateu	uent.			

Lecture 29

Lecture 29

13.11. SOST SOSS
EXTENSION PROBLEM
Def Let Ω ⊆ IR de au apou set.
(1) A (m,p) - extender) is a map
$E_{m,p}: W^{m,p}(\Omega) \longrightarrow W^{m,p}(\mathbb{R}^d)$
Such that
(i) $[E_{u,\varphi}(u)](x) = u(x)$ for almost every $x \in \Omega$
(ci) Em, p 35 Dinear
(iti) we have a "wour control"
Em,p u m,p, π2 ≤ c(m,p, Ω) lull m,p,Ω
2 A m-extender is a map Em: Leoc (P) -> Leoc (R2)
such that the restriction of E_m to $W^{m,p}(\Omega)$ is a (u,p) extender for every $p \in [1,+\infty]$.
3 A cuiversal extender is a map Emin: Leoc (12) -> Leoc (12)
which is good for every m≥1 and every p∈[1,+∞].
First application] If Ω admits a (1, p) extender, then
Sobolev embeddings hold true in D.
Proof Let us set $\hat{u} := E_{1,p} u$. Then Sobolev in \mathbb{R}^d
$\ u\ _{\mathbb{P}^{+}(\Omega)} = \ \tilde{u}\ _{\mathbb{P}^{+}(\Omega)} \leq \ \tilde{u}\ _{\mathbb{P}^{+}(\mathbb{R}^{d})} \leq c(d,p) \ \nabla \tilde{u}\ _{\mathbb{P}^{+}(\mathbb{R}^{d})}$
cu-2 ≤ c(d,p, Ω) u _{1,p,} Ω
property of the extender

Lecture 29

Very	cuportai	d point):	if we want + 75 enough	t embeddi L to have	(1,p) - ex	hengers
Secou	ud applic	ation) If	Dadmits deluxe ap	s au (w, sprox. holds	p) extenders fu	, then $W^{m,p}(\Omega)$
Proof] Let ú	î = Em,p ((u) ∈ W ^{w,}	(R4).		
Assuu	ne that	we can a	ipproximate	û iu Rdi	iu a delux	e way
	$\widehat{\mathcal{U}}_{n} \longrightarrow \widehat{\mathcal{C}}_{c}^{\infty}(\mathbb{R}^{d})$		LP (Rd).	for every	(d) ≤ m	
Thei	n the co	zi sgrewe	true a for	tioni in L	°(\O).	

Lecture 29

Istituzioni (ti Aualisi –	LECTURE 30
ote Title		28/10/202
GAGLIARDO	INEQUALITY (1959)	
		BRASCAMP-LIEB ineq.
Selling: we an	e in R and we cousid	er d'functions
0	φ; ε C° (Rd-1)	
Let		
	$\mathbb{P}: \mathbb{R}^d \longrightarrow \mathbb{R}^{d-1}$	
be the project	tions that "forgets the	e i-th component".
Define		
_	<u>d</u>	×e R
્	$(x) := \prod_{i=1}^{d} \varphi_i(P_i x)$	× e IR
For example:		
rot example.	d=2 (x, y) = c), (U) (O ₂ (X)
		?,(y, \(\frac{1}{2}\)\(\psi_2\)\(\psi_3\)\(\psi_3\)\(\psi_3\)\(\psi_3\)\(\psi_3\)
(Greveral BL i	ueq. (q(x) = 11 (q; ($(Li \times)$ $Li : \mathbb{R}^d \to \mathbb{R}^m$ Diveau
	(2)	with uni <d)< td=""></d)<>
	4	
Theorem	1 cp 11 12 (Rd) = 17 11 c	Pill d-1 (Rd-1)
20 77 7. 1		10.)
1800k 700m	ction on d. We can as	sume that Q; >0.
0=2 ((0)	(4) \(\varphi_2(x) dx dy = \big(\mathbb{R} \)	(x) dx). (((0, (u) du)) "
122	R	R

Lecture 30

3=4) 4(4,4	y, z, w) = a(y, z, w) b(x, z, w) c(x, y, w) d(x, y, z)	
J 6 (x, y, z,	w) dxdydz dw	
= S d (x	(x,y,z) { $\int a(y,z,w)b(x,z,w)c(x,y,w)dw$ } $dxdy$	75
	(メ, ツ, モ) 2 3	
	$\frac{1}{3}$ $($ $\frac{1}{3}$ $($ $\frac{3}{2}$ $)$ $\frac{1}{3}$	
E { }	$\frac{1}{2}(x,y,z)^3 dxdydz $ $\frac{1}{3} \left\{ \int_{\mathbb{R}^3} \Phi(x,y,z) dxdydz \right\}$	
Let us esti	Idle 2 (R3) Luate \$ (x, y, 2):	
Φ (x, y, z)	$= \int a(y, z, w) b(x, z, w) c(x, y, w) dw$ 12 13	
	$\leq \{\int a(y,z,w)^3 dw\}^3 \{\int b(z,z)^3 dw\}^{1/3} \{\int c(z,z)^3 dw\}^{1/3$	Jun 3 1/3
	IP IP IP	
φ (x, y, z)	$\leq \{ \int_{\mathbb{R}} \alpha(y,z,w)^3 dw \} \{ \int_{\mathbb{R}} \dots \} \{ \int_{\mathbb{R}} \dots \}^{1/2} $	
	A(y,2) B(x,2) C(x,y)	
∫ Φ (x, y, ₹	$\int_{\mathbb{R}^3}^{3} dx dy dz \leq \int_{\mathbb{R}^3} A(y,z)B(x,z)C(x,y) dx dy dz$	45
R3	R-5	
	$\leq \left\{ \int_{\mathbb{R}^2} A(y,z)^2 dy dz \right\} \left\{ \int_{\mathbb{R}^2} B \right\}^{\frac{1}{2}} \left\{ \int_{\mathbb{R}^2} B \right\}^{1$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
tuc	studive $\neq \mathbb{R}^2$ \mathbb{R}^2 \mathbb{R}^2	2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ny p	

Lecture 30

Finally, let us compute any of the three terms

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} \left\{ \int_{\mathbb{R}} a(y_{1}, x_{1}, w)^{3} dy dx dw
\right.$$

$$= \int_{\mathbb{R}^{2}} a(y_{1}, x_{1}, w)^{3} dy dx dw$$
and therefore

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} a(y_{1}, x_{1}, w)^{3} dy dx dw$$
the twictory of \mathbb{T}

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} a(y_{1}, x_{2}, w)^{3} dy dx dw$$
the twictory of \mathbb{T}

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} a(y_{1}, x_{2}, w)^{2} dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} a(y_{2}, x_{2}, w)^{2} dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{1}, x^{2})^{2} dy dx = \int_{\mathbb{R}^{2}} a(y_{2}, x_{2}, w)^{2} dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{2}, x_{2}, w)^{2} dx dx = \int_{\mathbb{R}^{2}} a(y_{2}, x_{2}, w)^{2} dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{2}, x_{2}, w)^{2} dx dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{2}, x_{2}, w)^{2} dx dx dx$$

$$\int_{\mathbb{R}^{2}} A(y_{2}, x_{2}, w)^{2} dx$$

$$\int_{\mathbb{R}^{2}} A(y_{2}, x_{2}, w)^$$

Lecture 30

Printout of lectures (Volume 2)	;
$\Phi\left(\hat{x}_{d+1}\right) \leq \prod_{i=1}^{d} \left\{ \int_{\mathbb{R}} \varphi_{i}\left(\hat{x}_{i}\right)^{d} dx_{d+1} \right\}$	
Φi (×i,d+1)	
$\int_{\mathbb{R}^d} \Phi\left(\hat{x}_{d+1}\right) d\hat{x}_{d+1} \leq \int_{\mathbb{R}^d} \int_{\tilde{z}_{d+1}} \Phi_{\tilde{z}_{d}}\left(\hat{x}_{d}, d+1\right) d\hat{x}_{d+1}$	podu at
function on Rd which is the proof of of functions in Rd-1	se hyp
< Ti ₱; (\$\hat{\chi}_i, d+1) d-1 (\mathbb{R}^{d-1})	01
Now it is enough to check that	
$\ \Phi_{i} \left(\widehat{x}_{i,d+1} \right) \ _{L^{d-1}(\mathbb{R}^{d-1})} = \ \operatorname{CPi} \ _{L^{d}(\mathbb{R}^{d})}$	
Homothety argument] If a pure estimate is true	
11 ull_9 (Rd) ≤ C (P,d) 11 Vull_P (Rd)	
then necessarily q = Px	
Proof Assume the inequality is true for every $u \in C_c^{\infty}$ (then, for every $\lambda > 0$, it is true for $v(x) := u(\lambda x)$	
$\ v\ _{q} = \{ \int u(xx)^{q} dx \}^{1/q} = \{ \int u(y)^{q} \frac{1}{x^{d}} dy \}$	3 }
$\frac{dy = \lambda dx}{\frac{1}{\lambda^{d/q}}} \ \mathcal{U} \ _{2^{q}(\mathbb{R}^{d})}$	

Lecture 30

)				tatica – A.A. 20	021/202
∇υ(x) =	$\lambda \nabla u (\lambda x)$ and	therefore			
			1/0		
170112° (129)	$\lambda \nabla u (\lambda x)$ and $= \begin{cases} \int_{\mathbb{R}^d} \lambda^p \ 1 1 1 1 1 1 1 1$	ru (>x) ^P d	×}		
	= \rightarrow \lambda/p \rightarrow \lambda/p				
In particular	it has to be t	me that			
×6/9 mll	$P(\mathbb{R}^d) \leq \frac{\lambda}{\lambda P}$	11 >u 11 2 > (0	Ra) . C (9't	»)	
The two power	us of λ should contradiction				
Therefore	$\frac{d}{q} = \frac{d}{p} - 1$	~ <u> </u>	5 - 9 = 0	~> 9= P*	,
In the same	way we can sh	as the op	timality o	of the expor	ients
	estimate for the				
The eveny =	F1 of embeddin	gs and ext	teusiou]		
Ω = (-1,0) ((0.1)				
u∈W" ₽	s every w >1 au	d p			
	Hölder coutinu				
it is not po	way.	. it to IR			
	0 _ 0 -	- 0 —			

Lecture 30

LSU.TU ote Title	zioui di	Aualisi	7	LECI	URE 31	03/11/20
Sobolev	, empeggin	g p <d)< th=""><th></th><th></th><th>P-P+= 3</th><th>-</th></d)<>			P-P+= 3	-
μ ∈	W"P (Rd)	⇒ ມ (ELP* (Rd)	where	Px = d-P	_
Step 1	Assume J	u ∈ C° (1	R ^d) and 7	>=1 ~~	$p_{+} = \frac{d}{d-1}$	
w (·	X1, X2,, X	$\int_{x_1}^{\infty} \frac{\partial}{\partial x}$, xd) dt		
		humb				
\u	(*1,*2,,*	(d) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3u (t, >	(2,, Xd)	dt	
				(× ₁)		
	he same v	100	2			
lu	(x1, x2,,)	(d) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 0xi (x1,	, × _{i-1} , t,	× 741,, × d) (Jt L
		V 12		Pi (Ŝi)		
,		luese telati				
	m (x) a	≤ Pi	(\$\hat{i})			
	hence					
	[m(x)]	≤	Pi (Ži)			
\N\0 C	10 11 U10	assumption	N12 06 C-	مونصمه نا	9.0	

Lecture 31

$$\int_{\mathbb{R}^{d}} |u(x)|^{\frac{1}{d}} dx \leq \int_{\mathbb{R}^{d}} |v|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} dx$$

$$\int_{\mathbb{R}^{d}} |v|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} |v|^{\frac{1}{d}} |x|^{\frac{1}{d}} |v|^{\frac{1}{d}} |v|^$$

Lecture 31

LHS =
$$\left\{ \int_{\mathbb{R}^{3}} |V(x)|^{\frac{1}{d}} dx \right\}^{\frac{1}{d}} = \left\{ \int_{\mathbb{R}^{3}} |u(x)|^{\frac{1}{d}} dx \right\}^{\frac{1}{d}}$$

= $\left\| u \right\|_{(n+1)^{\frac{1}{d}}}^{(n+1)^{\frac{1}{d}}} dx$

= $\left\| u \right\|_{(n+1)^{\frac{1}{d}}}^{(n+1)^{\frac{1}{d}}} = \left\| \nabla u \right\|_{L^{p}(\mathbb{R}^{d})}^{p}$

RHS = $\left\{ (2n+1) \right\} \left\| u \right\|_{L^{p}(\mathbb{R}^{d})}^{p} \left\| \nabla u \right\|_{L^{p}(\mathbb{R}^{d})}^{p}$

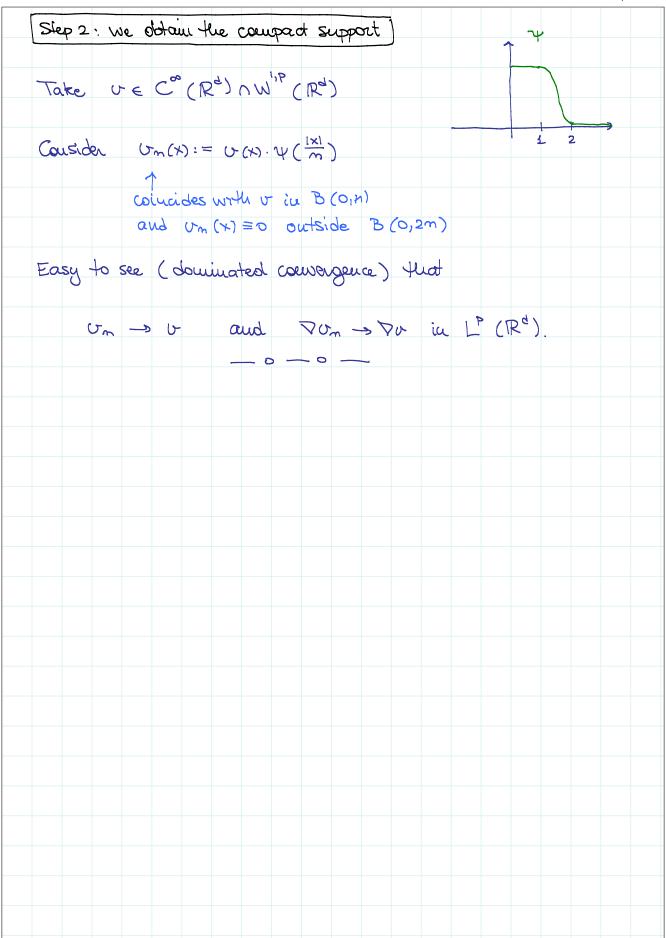
= $(n+1) \left\| u \right\|_{L^{p}(\mathbb{R}^{d})}^{p} dx \right\}^{\frac{1}{p}} \left\| \nabla u \right\|_{L^{p}(\mathbb{R}^{d})}^{p}$

= $(n+1) \left\| u \right\|_{L^{p}(\mathbb{R}^{d})}^{p} dx \right\}^{\frac{1}{p}} \left\| \nabla u \right\|_{L^{p}(\mathbb{R}^{d})}^{p}$

Putting things together we get

$$\left\| u \right\|_{L^{p+1}(\mathbb{R}^{d})}^{n} \leq \left((n+1) \right) \left\| u \right\|_{L^{p}(\mathbb{R}^{d})}^{p} \left((n+1) \right) \frac{1}{d-1} = 2 \cdot \frac{p}{p-1}$$

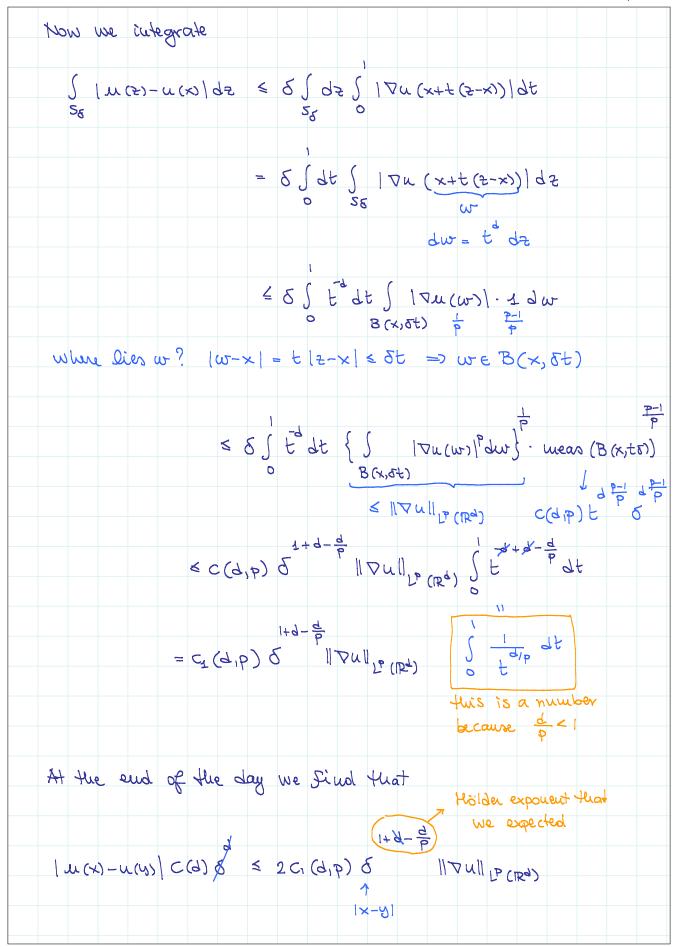
Then $(n+1) \frac{1}{d-1} \leq (n+1) \left\| u \right\|_{L^{p}(\mathbb{R}^{d})}^{p} \left((n+1) \frac{1}{d-1} \right) = \frac{1}{d-1} \quad \text{and} \quad (n+1) \frac{1}{d-1} = \frac{1}{d-1} \quad \text{and}$


Lecture 31

Step 3 Let us consider now any $u \in W^{1,7}(\mathbb{R}^d)$, and let us approximate it in the deluxe way with $\{u_m\} \subseteq C_c^{\infty}(\mathbb{R}^d)$
$u_n \rightarrow u iu L^p(\mathbb{R}^d)$ $\nabla u_n \rightarrow \nabla u iu L^p(\mathbb{R}^d)$
{Vuny is a Couchy sequence in LP (Rd) (H is convergent)
As a cousequeux, { em} is a Cauchy sequeux in L?* (Rd) because
lun-um 1, Pa (Rd) ≤ C (P,d) Vun-Vum 1, P (Rd)
Therefore un -> û in LP (Rd) un -> er in LP (Rd)
The two Dimits coincide (L9 convergence => pointwise com, of a subsequence)
At this point we can pass to the Dirent in
11 um 11 pm (pd) ≤ c(p,d) 11 vum 11 p (pd)
Soboles embedding in the case p=d
$u \in W''^d$ (\mathbb{R}^d) $\rightarrow u \in L^q$ (\mathbb{R}^d) $\forall q \in [p, +\infty)$ with turpure estimate

Lecture 31

set	d d-1 Triv Here	summer su	cause relieved that	in the	let us Lu E is enou (Rd) be eady in (Rd).	is better prove by Like (IRd) ugh becan	euse P>+	u
set =0	Privatere.	vial, be the e	cause estimate that	and that this ere L ³ is afre u e L ^P in suc	let us Lu E is enou (Rd) be eady in (Rd).	prove by LPk (IRd.	y ivolaction). euse P2->+	u
(30)	Triv Here	rial, be the e Assume	cause stimates that	that This Lee La is alre we L ^P in suc	the \in is enough in early in (\mathbb{R}^d) .	LPE (IRd.). euse P_>+	
	Here	Hee e Assume Ne die	stimate that use r	$u \in L^{P_k}$ in suc	eady iu	T I I	eption.	
=> c+		ve du	oose r	iu suc				
			= $=$ $d-1+$		$\frac{d}{d-1}$		-k	
					growin	3		
			- o -	mation	iu Rd			
: MOS	e lariz	ection	Cous		u + PE =	= lie a	ud dosen	e
•	p pvc	prove c	o prove deluxe	prove deluxe approxi	prove deluxe approximation		prove deluxe approximation in Rd	to as k > +00


Lecture 31

Lecture 31

Istituzioni di A	Änalisi	_	LECTU	RE 32	
te Title				03/	/11/202
SoboQu embeddi	ing with p	>d]			
$u \in W''^{P}(\mathbb{R}^{d})$					
	zi w	1	er cout. with		,HC
		of	the Höbber (oustaut	
Step 1 Let us as	ssame that	με C° (\mathbb{R}^d).	/ exchau	
MORREY TRICK	(exchange	204e)		5 y	oue
[u(y)-u(x)] <	J.W.(N)-W.(3	:) + (u(z)-	u (*>)	×	
				*	
We set 8 := 1 y-	-x1 and me	iute grate	īu S _s		
LHS = 5 /4(16)	-u(x)/dz =	= en(y) - u	(x) (· meas (S	56)	
		= (u(y) – u	(x) \ C(d) {	2	
For the RHS, w	e have the	following	estiwak		
/m (5)-u(x)/	= 1 \(\phi(1) - (p(0) =	[5 6, (F) 94	; \	
्र (/	=)=u(x+t(z-	·×1)) [6,(F)]9f		
1			0		
8	< Vu (x+t(z-				
≤ २-	×1.5/ \Du(((x-5) 5+x	dt & 8 S	να (χ+t (z-x	2) 9.

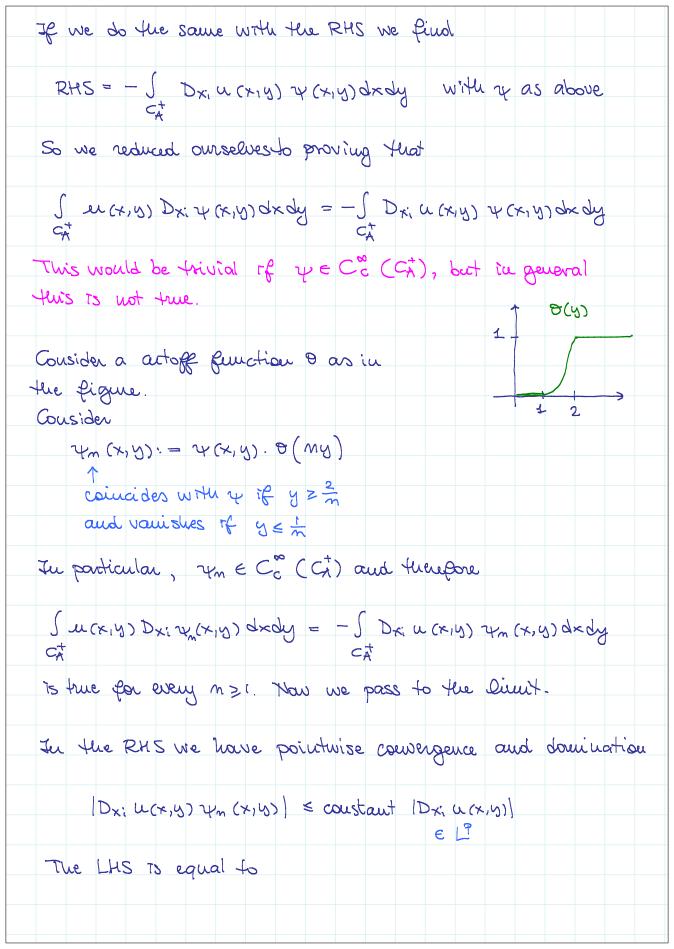
Lecture 32

Lecture 32

Slei	p2) Again $u \in C_c^{\infty}(\mathbb{R}^d)$. We want the $L^{\infty}(\mathbb{R}^d)$ estimate	
	us consider any $x \in \mathbb{R}^d$. For seve	
	$\int_{\mathbb{R}^{d}} u(y) ^{p} dy \leq \int_{\mathbb{R}^{d}} u(y) ^{p} dy$ $ u _{\mathbb{R}^{d}} u(y) ^{p} dy \leq \int_{\mathbb{R}^{d}} u(y) ^{p} dy$	
	B(x,24)	
	[u(g)] meas (B(x,24)) wiskious point	
	in the Ball	
	$= \int u(\hat{y}) \leq C(d) u _{L^{p}(\mathbb{R}^{d})}$	
	$- > u(x) \le u(\hat{y}) + u(x) - u(\hat{y}) $	
	< c (d) \(\lambda \rightarrow \) + C (\(\rho d \) \(\nabla \rm \rightarrow \) \(\lambda \rightarrow \rightarrow \) \(\lambda \rightarrow \) \(\lambda \rightarrow \rightarrow \) \(\lam	
	< C (d, p) 11 ull 1, p, R2	
Ste	$p \ge 1$ Assume $u \in W^{1/P}(\mathbb{R}^d)$. Take delive approximation $\{u_m\} \subseteq \mathbb{C}^p_c(\mathbb{R}^d)$ and observe that u any ball of	
	tradius 24 (and actually any radius) they satisfy the assumptions of Asodi-Arrelà.	
	The couclusion is standard.	
Ru	IN The previous proof does NOT work if $p=+\infty$ in the point where we apply Hölder inequality.	Ŋ
	This case can be dealt with by completion or simply by observing that Step 1 is almost trivial if $p = +\infty$	
	(cu this case \7u bounded => er is lip. with bound on the Lip. coust.)	

_>	$f u \in W^{1,p}(\mathbb{R}^d)$ with $p>d$, then $u \in C^0(\mathbb{R}^d)$ (and actually uniformly continuous) Dim $u(x) = 0$ $ x \to +\infty$
	This DOES not follow from I man 18dx < +00
GENERAL	FACT) If $\int V(x) dx < +\infty$ AND $V(x)$ is uniq. cond. Here $V(x) \to 0$ as $ x \to +\infty$
	If p <d, (rd)="" (rd)<br="" co="" exists="" me="" nw17p="" then="" there="">Such that m(x) +> 0 as 1x1 -> + so</d,>
Let us use	a scaling technique. Let us consider
φε C°	(B(0,1)) with (20 and J (2(x)dx = 1)
Let us co	ousider a sequence of disjoint balls B (xm, 2m)
Let us co	usider
: (٢)	$= a_{m} \varphi\left(\frac{x-x_{m}}{x_{m}}\right) \text{ in } B(x_{m}, x_{m})$
S (x4, ru)	$ u(x) ^{q} dx = au \int_{B(xu, Nu)} \varphi\left(\frac{x-x_{m}}{xu}\right)^{q} dx$
	= au 2m S (v) dy B(011)

Lecture 32

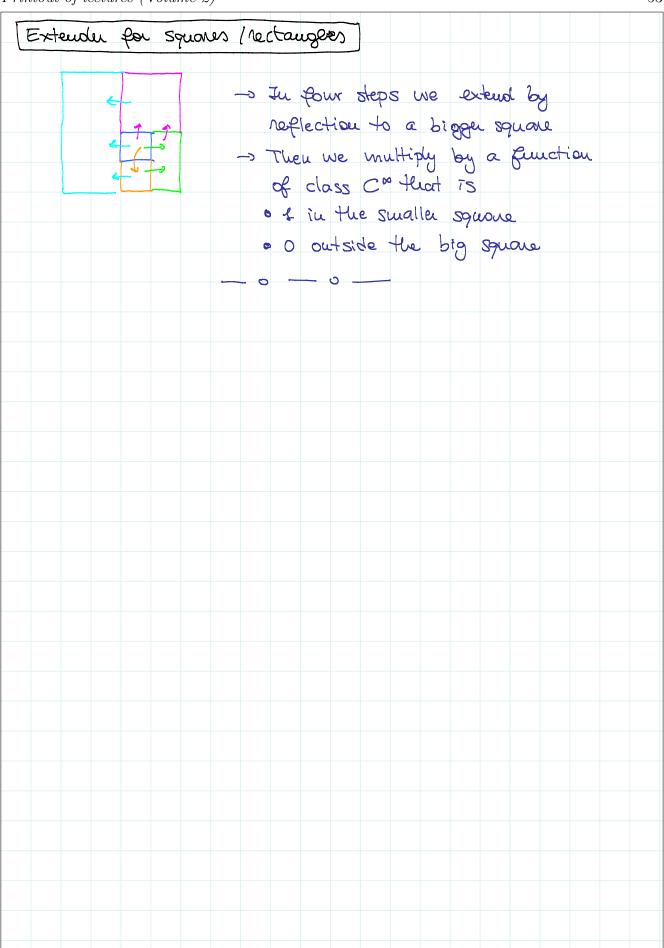

	W (1	د) =	<u>Cu</u>	. \(\nabla \)	५(<u>*</u> u)	au	ba	fu	ené	fore						
	S B(x	in, Qu	.)	Þυ	(X)	9	= •	an In	24	; S	(0(1)	[7) بو (ر	10	dy				
If	we	. w	tur	ىد	ιe	W ¹ 27	r (1	R_q)	We	ιιe	.ed								
	Σ	an	ν. 9	<	ta	5	a	bu		Σ	_ a	P u	2m	-P	<	+∞			
We	COU	u to	xke	а	u =	= 1	8	60	Heat	-						as			100
	Σ	24	<	+00	1	au	lou		Σ	. Pi		-							
Q	بصر	rdr	40	් ට	مما	se	7.	2m.	= 1	<u>]</u>			(c	zu.	also	s d	ر م	se	11 \
								0	-	0						au	→	- 00	••)

Istitutioni di Analisi	_	LECTURE	33
ote Title			04/11/202
EXTENDERS - MODEL CASE	=		
why do we need extenders? To delike approx. in $\Omega \subseteq \mathbb{R}^d$	They are a s	uff. coud. for	
→ Sobolev eurbedolings in D:			
Model carse A = Rd-1 open s	et	., y∈ (-1,1)} cyù	1
		$y \in (-1,1)$ cylu	idel
d-1 vm.			
CA+ := { (x,y) €	K ; XEA	, y = (0,1))	
1Na con consider also 410 "»;	مملينات طنيا	0,11	
We can consider also the "infi	sorie commen	<i>7</i> 0	
$C_A := A \times IR$	C* := X x	(0,+∞)	
Goal: given u e W', P (Cx),	Siud û € \	N'IP (CA) that e	xtends u
Def. For every u∈ W'IP (CA)	, Det us cou	usiden	
(u (×	د, الم	f x e A and y e	(0,1)
[Easen U] (x,y):= }			
$\left[\mathbb{E}_{\text{even}} \mathcal{U} \right] (x, y) := \begin{cases} \mathcal{U} (x) \\ \mathcal{U} (x) \end{cases}$	(,-9)	ExeA and ye	(-1,0)
[Eod u] (x,y):= { -u(x,	, 4)	as before	
[_ ord r? (x, 2); =)		20 1-00-	
(– ω (χ ,	-9)	rs befou	

Lecture 33

1 Tilliout of tectures (volume 2)
Theorem Let en $\in W^{1,p}(C_A^+)$. Then $\hat{u} := [E_{\text{even}} u](x) \in W^{1,p}(C_A)$,
$D_{x_i} \hat{\Omega} = E_{\text{even}} D_{x_i} \Omega$ if $i \in \{1,, d-1\}$
Dy û = Eodd Dy u
In addition $\ \hat{u}\ _{1,p,C_A} = 2 \ u\ _{1,p,C_A}$
[Proof] It is trivial that Eeven is Dinear and extends u. Let us consider derivatives.
Dx: û with i=1,,d-1 We need to prove that
$\int_{C_{A}} \hat{u}(x,y) D_{x}(\varphi(x,y) dxdy = -\int_{C_{A}} E_{over} D_{x}(u(x,y) \varphi(x,y) dxdy$
for every $\varphi \in C_c^{\infty}(C_A)$. $dz = -dy$
LHS = $\int dx \int dy u(x,y) D_{x}(\varphi(x,y) + \int dx \int dy u(x,-y) D_{x}(\varphi(x,y))$
$= \int dx \int dy u(x,y) D_{x_i} \varphi(x_i,y) + \int dx \int dy u(x,y) D_{x_i} \varphi(x,-y)$
$= \int_{C_{+}^{+}} u(x,y) \left\{ D_{x_{i}} \left(\varphi(x,y) + D_{x_{i}} \left(\varphi(x,-y) \right) \right\} dx dy \right\}$
= \int u(x,y) Dx; \(\psi(x,y) dxdy \qquad \qq \q

Lecture 33


Lecture 33

Jun C	x, y) O(ny) Dx; y (x, y) dxdy	
and he	conclude in the same way.	
Dyû	Ne need to prove that	
∫ û(x,4	o) Dy (x, v) dxdy = - S Eow Dy u (x, v) (x, v) dx	يىلا
Sor every	y φ ∈ C° (C _A).	
with the	e same variable change we find that	
LHS =	Su(x,y) Dyy(x,y) dxdy	
RHS = -	- S Dy u (x, y) y (x, y) dx dy	
was fud	4 (x,y):= (x,y) - (x,-y)	
We cutrod observe th	uce $\forall n (x_i y) := \forall (x_i y) \cdot \theta (ny)$ as before, and what a for every $n \ge 1$,	e
S uc	(14) Dy 4 (x,y) dx dy = - S Dy u (x,v) 4 m (x,v) dx dy	
	- S Dy u (x,y) 24 (x,y) doxdy	
-HS = S u	(x,y) 0 (my) Dy y(x,y) dxdy + (w (x,y) y (x,y) m 0'(nu))c

Lecture 33

The first -	term no no problem
As for the	second term me obsense that
• m le'(4)	\leq coust n and vanishes when $y \geq \frac{2}{n}$
• 4 (x,0) =	efore
14 (x, y)) = 14 (x10) - 4 (x10) < Ly
As a couse	zqu euce
C.†) + (x,y) n & (my) dx dy S dx S dy u (x,y) . Ly . n. coust
	3 × 2 m
5	Sax Say coust. L. (u(x,y)) -> 0 A o daminated coewergence
Runk Ju	gueral it is Nor fue that
S ω (7	(x,y) Dx; 4 (x,y) dx dy = - J Dx; 4 (x,y) 4 (x,y) dxdy
	not compact support in C_{\star}^{\dagger} . To consider the boundary terms when $y=0$

Lecture 33

Lecture 33

Lecture 34

Pontition of the unity of type B Let $\Omega \subseteq \mathbb{R}^d$ be an open set with $\partial \Omega$ compact. Assume that A.,..., Am is a FINITE open covering of DD by bounded open set. Let us set $A_0 := \Omega$. Then there exist functions to, 41, ..., 4n such that (i) supp (v;) ⊆ A; for i=0,1,..., ~ (this means compact support for i > 1 but not necessarily (belowed tou or 1 9; 0= i rog (ii) v; (x) ≥0 for every x ∈ Rd and every i=0,1,.., n. (rii) as expected ~ Y; (x) = 1 YXE Clos(D) (and actually in an open set that contains clos(2). (Second ingredient) (Composition with Sobolev outside) Assume $\phi: A \rightarrow B$ has the properties stated above open sets (Jo and Jo-1 are bounded) Then for every $v \in W^{'1P}(B)$ it turns out that $u = v \circ \Phi \in W^{'1P}(A)$ and we have a control on the full hours m || v || 1, p, B ≤ || u || 1, p, A ≤ M || v || 1, p, B The same using \$\phi' instead of \$\phi\$.

Lecture 34

Journal of the state of the sta	Andrest Matematica - A.A. 2021/2022
Theorem Let us assume that I is a	es in the previous
definition.	
	27-10-
Then Dadwits a (1, p) -	extension
Proof let A,, An be a finite coveri	ug of 2-12 with
open sets as in the definition.	
For every i = s,,n, let	
$\Phi_{\lambda}: A_{i} \rightarrow Q$	
the corresponding map.	Q
	Aî Pi'
Let 40, 21, ,, 4n be the	
corresponding partition of the	Φί
unity of type B. Let us set	
$u_i(x) = u(x) v_i(x) \forall x \in I$	
$M_{i}(x) = M(x) \psi_{i}(x) \forall x \in \mathcal{L}$	3.2
so that $u(+) = \sum_{i=0}^{n} u_i(x)$ That sup	
1=0 1	-7 C x ·
nas sup	poct = Ai
For every i = 1,, n we set	
100 00003	
υί (χ) = lli (φί (χ))	Yxe Q+
Ûi (x) := Ever Ui (x)	YXEQ 4 FULL CUBE
$\hat{\mathcal{M}}_{i}(x) := \hat{\mathcal{O}}_{i}(\hat{\mathcal{O}}_{i}(x))$	∀×€ A!
Mi (x) := 01 (4x (x))	VXEAL
	open neighborhood
and finally	
Lower &	of Clos (22)
	∀×€ Û Ai
$\widehat{\mathcal{U}}(x) := u_0(x) + \sum_{i=1}^{\infty} \widehat{\mathcal{U}}_i(x)$	∀×€ () A:
	O = J

Lecture 34

The	claim is that u - û is a (1,p) extender
	t is Divean (almost trivial) t is an extension. To this end, it is evolugh to show that
	To the extension. To this early to sum that
	$\Omega \cap iA \Rightarrow x \forall x \in A : \cap \Omega$
(if x ∈ Ai n 12 we did nothing)
9 V	we need the horn control. It is enough to show that
	ll élill _{1,p, Ai} ≤ Mi II will _{1,p, AinΩ}
	and this is true because
	11 II i 11 s,p, Ai ≤ coust · 11 Vi 11 s,p,a 2nd iugr.
	≤ 2. coust. Il villa, p, q ^t
	< coust. 2. coust. 11 mills,p, Ains
てん	e couclusion follows because
	û _{1,p,R} ² ≤ uo _{1,p,R} ² + ∑ û i _{1,p,R} ² î i i î i î i î i î i i î i i î i i î i i î i i î i i î i i î i i î i i î i i i î i i i î i i i î i i i i
	$\leq u_0 _{2,P}, \Omega + M \geq \frac{m}{r-1} u_1 _{2,P}, A_{1} \cap \Omega$
	< coust 11 u 11 s.p. s

Lecture 34

58 Istituzioni di Analisi Matematica – A.A. 2021/2022
Proof of partition of the unity
[Step 1] We replace Ao, As,, Au by smaller open sets defined as
$A_{i,k} := \{ x \in A_i : dist(x, \partial A_i) > \frac{1}{k} \}$
We show that, if k is large enough, then $\{Ai,k\}_{i=0,1,,n}$ are again an open covering of $Clos(\Omega)$. We call these now sets \hat{A}_0 , \hat{A}_1 ,, \hat{A}_n
Step 2 For every i = 0, 1,, n we find to which is
Step 3] We set
$\psi_{0}(x) := g_{0}(x) (1 - g_{0}(x))$ $\psi_{1}(x) = g_{1}(x) (1 - g_{0}(x))$
$\gamma_{2}(x) := \theta_{2}(x)(1-\theta_{1}(x))(1-\theta_{0}(x))$ \vdots
$V_{k}(x) := \Theta_{k}(x) TT (1-\Theta_{i}(x))$
This works! We only need to check that $\sum_{i=0}^{\infty} \gamma_i(x) = 1$ for every $x \in \widetilde{\mathbb{Q}}\widehat{A}i$. This follows from
$1 - \sum_{i=0}^{n} \psi_i(x) = \prod_{i=0}^{n} (1 - \theta_i(x)) \forall x \in \mathbb{R}^d$
[This equality with k instead of a can be proved by induction]

Lecture 34

Istituriou Note Title	ui di Analisi	_	LECTURE	35
Compactues	s results)			
	assume that {um; to show that some STRONG Sense (subseq. co	werges in some	want
Let × be a (i) × 75 00 (ii) × 75 50	wehic spaces) wehic space. Then overing compact equentially compact complete and Tor-			
	vic space (X,d) 75 sists a FINITE SC $X \subseteq \bigcup B(s,E)$ $s \in S$	best Sc:	× such that	
Let Y S X Then the (i) Clos ((ii) for er not 1	ively compact subset of a subset of a subset of a following are equal () is compact (where it is a following in Y totally bounded ()	COMPLETE ivalent; nt the restriction exists	tion of the metry) *o
Defu Y S	× 7s relatively co	upact if i	t satisfies any of	(1), (11), (11)

Lecture 35

						71.71. Z	/
Prop.	let x be	e a metic	space, a	ud let	Y S X be	a serbset	
		ollowing an					
	18 7070	illy bounde	oc, ame	M			
	O< 3 K	3 FINITE	SEY S	.t. Y 5	EUBC	y, E)	
					9 € S		
(>=)	HC	7 V C	2 - 1 +	- iz _lad		and Cen aus	, ,
CIL)		3 7 2 3	\$ 5.4. 12	7 18 701	ary bound	ed (for exc	
	and	Y E U J				kε comb	act)
		YEUI	3(4, 8)				
		RE KE					
				-> -> i =la	O	الم مات	
CXIS	reme of	a compact	requel -	-> ext stee	ice of fru	ite e - her	
Proof c	e (ii) =	=> ci) Gi	0< 3 ugu	Pind '	KE S.+.		
		? C () R	/. E \				
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	rs OB	(0, 2)				
then	Rind	5 ⊆ K _E s.4	r. Ke <u>c</u>	UB	$(y, \frac{\varepsilon}{2})$.	Couclude Hu	ot
	0			yes			
		C () D	(1, c)				
		r c O B	(9, 8)				
		_	~ o ~ o				
Coucle	siou of	the Sum	nany A	ssume 4	uat × is	a complete	
		Assume 4					
			,	\ - \ (
46>	0 7 KE	10f. 20mg	pact st.	9 <u>C</u> Uz') B(y, E)		
		tof bou	ided is ew	ough Je			
Then	27 Y	relatively	compact.				
			0 — 0 –				

Lecture 35

Theorem] (Compactness in LP) Let us assume that $\Omega \subseteq \mathbb{R}^3$ and $\mathcal{G} \subseteq \mathbb{R}^3$
Let us assume fluat
CI) I S BOUNDED
ciì) Is is bounded in LP (ID), namely
∃M∈R YPEY 117112 ≤ M
(((i) 3) rs "equicoutiunous in L? (D)", namely
AE>OSEOC3A
1R1 € 5 ⇒ \$ \hat{\hat{\phi}} (\times + \hat{\rho}) - \hat{\hat{\phi}} (\times) \hat{\phi} \times \le \frac{\phi}{\phi}
[After video: 2 outside 1
is evange] outside 1
// Ta p̂ - p̂ P (Rd) ≤ ε ↑ [La is evough]
A-translation of u.
[Some philosophy in the VIDEO]
Then y is relatively compact in LP(s2).
Proof We need to show that
VE>O J KE S.t. US CO B (g, E) compact compact
uamely 4 f ∈ 3 ∃ g ∈ t ∈ 5 +. f - g L f (Ω) ≤ E. (*)
Consider $\delta > 0$ corresponding to ϵ in (122), and define $k_{\epsilon} := \{ + + p_{\sigma} : + \epsilon + \} $ Tourolation

Lecture 35

Lecture 35

Step 2 Eleme	uts of ke are bounded in the Lo sense.	
1(6*68)(*	$\int_{\mathbb{R}^{d}} \hat{\varphi}(x+\epsilon y) \cdot \varphi(y) dy$ $\int_{\mathbb{R}^{d}} \hat{\varphi}(y,y) dy$	
	\[\left\{ \text{\pi} \ \text{\pi} \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	$\begin{cases} \int \hat{f}(z) \frac{1}{2} dz \end{cases}$	
	uts of k_{ϵ} are lipsduitz coutinuous with	
Siuce	union bound on the Lip. constant. elements of k_E are of class C^∞ , it is enough to L the gradient	
∇ (₽ ¥ 6²)	$(x) = \nabla \left(\int_{\mathbb{R}^d} \hat{\varphi} (x + \varepsilon y) \rho(y) dy \right)$	
	$= \nabla \left(\frac{1}{\varepsilon^{d}} \int_{\mathbb{R}^{d}} \hat{f}(z) \varrho \left(\frac{z-x}{\varepsilon} \right) dz \right)$	
	$= -\frac{1}{8} \int_{\mathbb{R}^d} \hat{f}(z) \nabla \rho \left(\frac{z-x}{s}\right) dz$	
10 (4 + 62	$ \nabla e = \frac{1}{\epsilon^{d+1}} \left \frac{1}{\epsilon^{d+1}}$	

Lecture 35

Cadusioa:	the set K_{ε} satisfies the assumptions of
	the standard Ascoli - Araelà in Clos(12)
	Which is bounded and compact.
	Therefore KE is relatively compact with unit. convergence, and therefore also with respect
	convergence, and therefore also with respect
	to LP convergence.

Lecture 35

Istituzioni di Analisi – LECTURE 36
Note Title 08/11/2021
COMPACT EMBEDDING RESULTS
Theorem Let $\Omega \subseteq \mathbb{R}^d$, and let us assume that (i) $\Omega \subseteq BOONDED$
cii) D 75 "regular" (what 15 weeded for Sabolov embeddings and deluxe approximation)
Then the following statements are true
$p < d$) The embedding $W'^{p}(\Omega) \rightarrow L^{q}(\Omega)$ is compact for every $q \in [1, P_{*})_{N}$ NOT INCLUDED
$[P=d]$ $W^{1,p}(\Omega) \rightarrow L^{q}(\Omega)$ is compact for every $q \in [1,+\infty)$
$[P>d]$ $W'^{P}(\Omega) \rightarrow C^{o}(Clos(\overline{\Omega}))$ is compact
Defu Let × and Y be metric space. A map f: × → Y is compact if the image of every bounded subset of × is relatively compact in Y. In other words
∀ {xn} ≤ × boundod, { f (xn)} admits a converging subsequence in Y.
[Proof_for $p > d$] Almost trivial. If $\{u_m\} \subseteq W^{1/p}(\Omega)$ is bounded then en is bounded to $L^{\infty}(\Omega)$ and we have a control on Hölder constants Standard A.A. => conclusion.

Lecture 36

```
Proof for p=d Very easy. Consider any 9 < 100. Then there
                   exists p, <p=d such that
                               q < (P1)*
 Observe that {um} bounded in W'iP => {un} bounded în W'iP'
 because 12 is bounded.
The canclusion follows from the case Pi < d.
Proof of the true case: p<d Let us start with the case q=1.
Let y 5 M'r (12) be a bounded family. We want to prove that
I satisfies the assumptions of the compactness thun. in L^{2}(\Omega).
The first two assumptions are true for free. We need
assumption (ici), namely
          \int_{\mathbb{R}^d} |\widetilde{u}(x+R) - \widetilde{u}(x)| dx \leq \varepsilon
  for every ene & if IRI is small.
Step 1 Let us set \Omega_k := \{x \in \Omega : dist(x, \partial \Omega) > \frac{1}{k} \}
    \int |\hat{u}(x+R) - \hat{u}(x)| dx \leq \int |\hat{u}(x+R)| dx + \int |\hat{u}(x)| dx
\hat{u}(x+R) - \hat{u}(x+R) = 0
 \int |\hat{u}(x)| dx \leq \left\{ \int |\hat{u}(x)|^{2} dx \right\} \cdot \text{mean} \left( \frac{2}{2} \cdot \frac{2}{2} \right)
\leq ||u||^{2} \cdot (2)
\leq ||u||^{2} \cdot (2)
  The same for the other term. We dotain that
         J [û (x+α) - û (x) | dx ≤ 2 | null [P(Ω) meas (Ω Ω<sub>k</sub>))°
                  [After video: if p=1 one needs to use 1, instead of 1]
```

Lecture 36

Step 2	Assume Assume				Assume also the $C_c^{\infty}(\mathbb{R}^d)$.
	Assume	Tagi	XE	-> < k .	ouen
1 12	(x+R) - U(×1 =	1 (0	(1) - (0	(6)
5500	(7/10-)	4 (glt):=			
		Q 101-	1		
		3	≤ ∫	(4) (t)	dt
			0 -		
		=	<u> </u>	1< Vu	(x+Qt), R> dt
			0	l	
		3	< (R	1.5 17	7u(x+Rt) dt
				0	
Let us	. rutegrate	tru	۲:		
	J				
	(m(x+R)-	- U (X)	19x	≤ (6	el. Sdx SlVu(x+Rt)ldt
Ωk					Die 0
					1
				= &	1 Sdt S Vu(x+Rt) dx
					o 12k y dx=dy
				- (&	1) dt) Puiss dy
					1) dt) 10 u (v) 1 dy = 2
					1
				≤ (6	21 Sdt J 1 Du (w) ldy
				= /6	1 5 174 (8)/ 1 dy
					1 1 PI
				€ /6	. · \ \ \ \ _(Ω) · weas (Ω) ²

Couclusion: if u∈y and lel< 1/2, then
$\int_{\Omega_{k}} u(x+x) - u(x) dx \leq x \cdot \nabla u _{L^{p}(\Omega)} \cdot ueas(\Omega)^{\frac{1}{p}} $
provided that also $u \in C_o^{\infty}(\mathbb{R}^d)$. Why is the same true for every $u \in W^{1,p}(\Omega)$? This is true due to deluxe approximation!!
[Step 3] the goal was the following
AESO 3850 ANEA ABEBG
$ \Omega \leq \delta \implies \int \widehat{\Omega}(x+x) - u(x) dx \leq \epsilon$
We proved that
$\int_{\Omega} \hat{u}(x+\alpha) - \hat{u}(x) dx = \int_{\Omega} + \int_{\Omega}$
$\leq 2 \ \ \ _{L^{p}(\Omega)} - \text{meas} \left(\Omega \setminus \Omega_{k} \right)^{\frac{1}{p'}} + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Given $\varepsilon > 0$, we choose $\varepsilon = 0$. Pirst term $0 \le \frac{\varepsilon}{\varepsilon}$.
Then, after choosing k, we choose δ such that $\delta < \frac{1}{k}$ and the second term is $\leq \frac{\epsilon}{2}$.
Step 4 We need compactness up to pr.
GENERAL FACT Swall /converging on L ¹ + bounded in L ^R => small /converging on L ⁹ for every $q \in [1, P_*)$

Lecture 36

This is due to the outerpolation inequality	
ul [q(Ω) ≤ el [1(Ω) · el [2] (Ω)	
where $\frac{d}{1} + \frac{1-d}{p+1} = \frac{1}{9}$	
More generally	
m rd (20) ≤ for (2), (20) . m 1 (2)	$\forall q \in [p_1, p_2]$
where $\frac{d}{P_1} + \frac{1-d}{P_2} = \frac{1}{9}$ with $d \in (0,1)$	
_ 0 _ 0 _	
The embedding is NOT compact if q = Px	2
San I Than on the a san on	
Step 1 There exists a sequence of disjoint balls B (xm, rm) & D	
Step 2 Choose a nontrivial $\varphi \in C_c^{\infty}(B(0,1))$	
and define	
$lim(x) := au \varphi\left(\frac{x-x_m}{ru}\right)$	
choose an in such a way	
that 11 Ven 11 = 2	L3 (B (xm, 2u))
Step 3) Observe Heat	
Um Pr (D) = coustant (does NOT depend	ou n)
Un P+ (s) = coustant (does not depend 1 because of the defin of P+	
un [P (D)] = 0 and therefore is bounde	d
because D < D=	

Lecture 36

10.11.2021/20	
Ju particular, lue sequence { cm} is bounded in W17 (2)	
[Step 4] { un 3 does not admit a converging subseq. in L? (-2)	
$\int u_m(x) - u_m(x) ^{\frac{2}{3}} dx = \int u_m(x) ^{\frac{2}{3}} dx + \int u_m(x) ^{\frac{2}{3}} dx$	
balls are disjoint	
= 2 · coustant	
=> {um} & has NO Candy Subseq.	
Ruk un → 0 for every p ∈ [1, P4)	

Lecture 36

200	nom or	Aualisi	_	LECTURE	37
Note Title					10/11/202
TRACES	OF 20B	OLEV FUNC	ZUOIT		
Problem:	given e	r∈ M,b(U)	, define	ulor and more	generally
		reve K & Cla			0
				0. 4.1.04.00	
		er of codium			
	→ 0h	of .	* \		
Ruk If	ueLP(an Jano (2	Hung better	, then there is a	us hope to
		ictious to s	<u> </u>		
	,				
We look	for a u	uap			
	Tr:	M,16 (V)	→ Space	$(\Omega \mathcal{S})$	
ر المن	1005		lico		
		ouable proper	160		
→ lii					
-> 1t c	oiuaides	rolu Min	if ue	C(0s(Ω))	
7 +7 6-	s coutium	ous, vouvel	y if elm	n → ll∞ îu souu	e souse, then
		rum in 5			
		estimates se			
	sur spes	08/10/02/10/2 %	ica ws		
	11 Tru	Space (8s)	coust 11 s	u (1,p, s	
→ 500	ue cut. E	y ponts form	nula holds	true.	
		υ T			

Lecture 37

Easy care 1 $\Omega = (a,b) \subseteq \mathbb{R}$. In this care functions in
W''P (12) one conditions up to the boundary
Face case 2 O E Dd and n c MIP (O) with a 2 d and O
Easy case 2 $\Omega \subseteq \mathbb{R}^d$ and $u \in W^{1,p}(\Omega)$ with $p > d$ and Ω
regular.
As before in is conditions (also Hölder cont.)
in Clos(12), so that in this case we can take
Space (92) = C, (92)
FIRST NONTRIVIAL CASE Model case p <d and<="" td=""></d>
2 is a half-space
$ \Omega = \{ (x,y) \in \mathbb{R}^d : y > 0 \} = \mathbb{R}^d, $
g_{-i} \bar{x}
DΩ = { (x,y) ∈ Rd. y=0}
Proposition (key estimates) Let us assume that $u \in C_c^{\infty}(\mathbb{R}^d)$.
u defined in R ^d
(1) (x,0) , p, (md-1) \(C(p,d) u , md LHS is in Rd-1
(1) $\ u(x,0)\ _{L^{p}(\mathbb{R}^{d-1})} \leq C(p,d) \ u\ _{L^{p},\mathbb{R}^{d}} $ LHS is in \mathbb{R}^{d-1} RHS with full worm
IMPURE in Rd
P (4-1)
(2) Let us assume $p < d$ and set $\hat{p}_{+} := \frac{p(d-1)}{d-p}$. Then
PURE
u ca R
(u(x,0) ₁ p+ (Rd-1) ≤ C(p,d) Dull p (Rd) LHS & Rd-1
RHS only Pu in R
(3) u (×,0) q (Rd-1) ≤ C (P,d,q) u 1,p, Rd ∀q∈[p,p+]
L'(R°-1)
IMPURE RHS with full home in Rd

Lecture 37

1 resolute of sectores (volume 2)
Proof Step 1 Cousider p=1
too , any lange R 5 enough
$ u(x,0) = -\int \frac{\partial y}{\partial u}(x,y) dy$
100
≤ ∫ (8y (x, v) (dy
We integrate unt x:
400
$\int_{\mathbb{R}^{d-1}} u(x,0) dx \leq \int_{\mathbb{R}^{d-1}} dx \int_{0}^{+\infty} \frac{dx}{dx} (x,y) dy$
= S su (x,v) dxdy
5/ep 2] Aug + >1. We set 1(x,y):= [u(x,y)] 2 ex (x,y)
and we apply Step 1 to 1 (x,15).
We observe that
3v - 12 3u - 1
$\frac{\partial \partial}{\partial \Lambda} (X^{1} \partial) = (S+1) \left[\pi (X^{1} \partial) \right]_{\mathcal{I}} \frac{\partial \partial}{\partial \pi} (X^{1} \partial)$
() 1 2 1 2 1 2 1 2 M C 1 2 1 2 M C 1 2 1 2 M C 1 2 1 2 M C 1
$\int_{\mathbb{R}^{d-1}} u(x,0) ^{2d} dx \leq \int_{\mathbb{R}^{d}} (x,y) u(x,y) ^{2} \left \frac{\partial u}{\partial y} (x,y) \right dx dy$
11 P
$ u(x,0) _{L^{n+1}} (R^{d-1}) \le (n+1) \frac{1}{2^{n+1}} \frac{1}{2^{n+1$
$\ u(x,0)\ _{L^{2+\epsilon}}(\mathbb{R}^{d-\epsilon}) \leq (n+\epsilon) \ \frac{\partial u}{\partial y}\ _{L^{p}(\mathbb{R}^{d}_{+})} \left\{ \int_{\mathbb{R}^{d}_{+}} u(x,y) ^{2p} dx dy \right\}^{p'}$
W \(\text{L'AP'} \) (R\(\text{L'AP'} \)
We proved that
u(x,0) [241 (Rd-1) < (241) 3u LP (Rd) LP (Rd)
[After video]

Lecture 37

Choose	. 1	Stron	that.		RP	' = P	٨	か	N =	PI	5	P -	P-1	n	p-1	
Ju 4	o Eu	Zavse	we ob	tain v	uhat	We	. ue	ed								
د ۱	r (x))	(Rd-1)	≤ ₫	>	<u>ou</u>	ا م ال	JRd.) (erl L	-1 -P (TR	5 4)				
Step 3									Z- 1							
				~» r				۸۰	s R	+1 =	d+1	1-1 1-1	d -	P((d-1)	ت ر ر
We ol																
N.M.	(*,0)		(R ^{d-1}) {	c (p	,d) <	11 Dr	L _ T	(Rd)) . ≤		P= \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(R+) 		
										≤ (ĉφ,	9)	170	Pr LII	-1 '(R2')
and	the	Couc	luzio	, foll	2WC											
Step 4) T	he en	stimal	e for	polo	sery Hior	9	e [ww	Ps F Lu	e bu	w) c	Zuk	OU	25 .		
Ruk			tement	_	- 4c	ie c	Case	P=	: d	الصك	SW	<u>ک</u> ىر	Hue	Sa	me	

Lecture 37

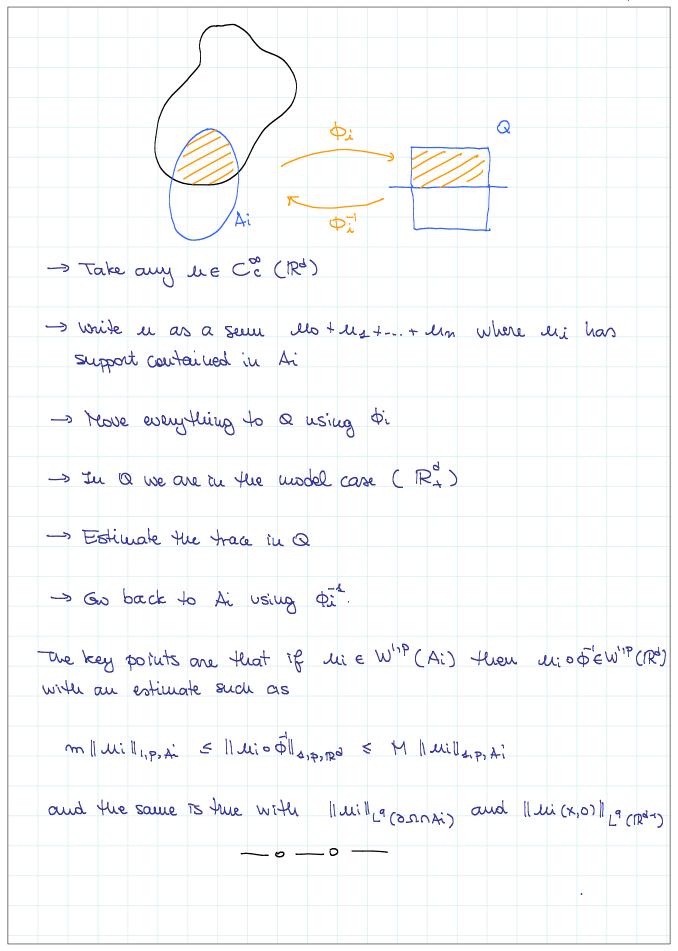
Theorem	Let $p < d$, and let $q \in [p, \hat{p}_*]$. Then there exists	
	Tr: $W^{1/P}(\mathbb{R}^d_+) \longrightarrow L^q(\mathbb{R}^{d-1})$ with the required properties	
Roof	→ Take $u \in W^{1,p}(\mathbb{R}^d_+)$ → extend by reflection to $\hat{u} \in W^{1,p}(\mathbb{R}^d)$ → approximate deluxe $u_n \to \hat{u}$ (u full norm	
	1 in $C_c^{\infty}(\mathbb{R}^d)$ -> observe that quaj is a Cauchy sequence with the full norm of $W^{1,p}(\mathbb{R}^d)$ -> by the Prop. we know that quan (x,0) are a	
	Cauchy seq. in L^{q} (\mathbb{R}^{d-1}) \Rightarrow define \mathbb{R}^{d-1} as the Dimit in L^{q} (\mathbb{R}^{d-1}) of un (x, o))
deluxe	gu. is well posed because if vn → il is a different approx, then us, vs, dvs, vz, dvs, vz, is again aly sequence	
	s continuous, then it is continuous, then we can in defined by consolution and in this case	
	ueregore Trum -> û (x,0)	
	e estimates and the rut. by parts formula pass to the from un to u and Tru.	

Lecture 37

Istituriai di Aualisi	_ LECTURE 38
CONTINUITY OF THE TRAC	Z)
flien	n → u ∞ in W'iP (R+) (in full norm) Trum → Trum in L9 (Rd-1) for q ∈ [p, p+]
Follows Drow Dinearity +	estimates
For every en E W"P (R4	
	$(\mathbb{R}_{q-1}) \leq \left\ \frac{\partial \Omega}{\partial n} \right\ ^{\Gamma_{b}} (\mathbb{R}_{q}^{+}) \left[\lambda^{2} - \lambda^{1} \right]_{b} \qquad Ao < \lambda^{1} < \lambda^{2}$
Proof Lu (x, yz) - Lu (x,	$ y_1 \leq \int_{y_1}^{y_2} \left \frac{\partial u}{\partial y} \left(\times, 0 \right) \right \cdot 1 dy$
	\[\left\{ \int \frac{\g_1}{\g_1} \frac{\g_2}{\g_3} \ckgreat \ckgr
	oower p and we integrate wet x:
S u (x, y2) - u (x, y,) Pdx	$c \leq y_2 - y_1 ^{\frac{p}{p'}} \int_{\mathbb{R}^{d-1}} dx \int_{\mathbb{S}^1} \left \frac{\partial u}{\partial y} (x, y) \right ^p dy$
This is good if we Co	$\leq \int_{\mathbb{R}^d} \left \frac{\partial u}{\partial y} (x, y) \right ^2 dx dy$ (\mathbb{R}^d) . Then we conclude by approx.

Lecture 38

1 Tilliour of recruires (volume 2)
Theorem Assume 1 <p<d< td=""></p<d<>
Let $\{u_m\} \subseteq W^{1/P}(\mathbb{R}^d_+)$. Assume that (i) $u_m \longrightarrow u_\infty$ in $L^P(\mathbb{R}^d_+)$
(1i) there exists ME TR S.t. NV MINITER (Rt) & M
Then Trum -> Truco in L9 (Rd-1) for every $q \in [p, \hat{p}_*)$.
Example $p=1$ and $d=1$ and $\Omega=(0,1)$
We observe that $u_n \to 0$ in $L^P(\Omega)$ for every $p \in [1, +\infty)$ and
$\ \lim_{L^{2}} \ _{L^{2}(0,1)} = 1 \forall m \geq 1$ $\text{Touly in } L^{1}$
Ju luis case Trum -> Trus
General philosophy: the trace is well-defined for every $p \ge 1$ but it does not behave well if $p = 1$.
Proof Step 1 It is enough to prove the case q=p. This is due to the usual tuterpolation inequality
cous. in L^p + bound in $L^{\hat{p}_*}$ => cous. in L^q for every $q \in L^p, \hat{P}_*$)
[Step 2] Observe that how \(\times W', P(R_+)\) and $\ \nabla U_{\infty}\ _{L^p(\mathbb{R}^d_+)} \leq M$.
Since $\ \nabla u_n\ _{L^p}$ one bounded and $p>1$, up to subsequences we can assume that


Lecture 38

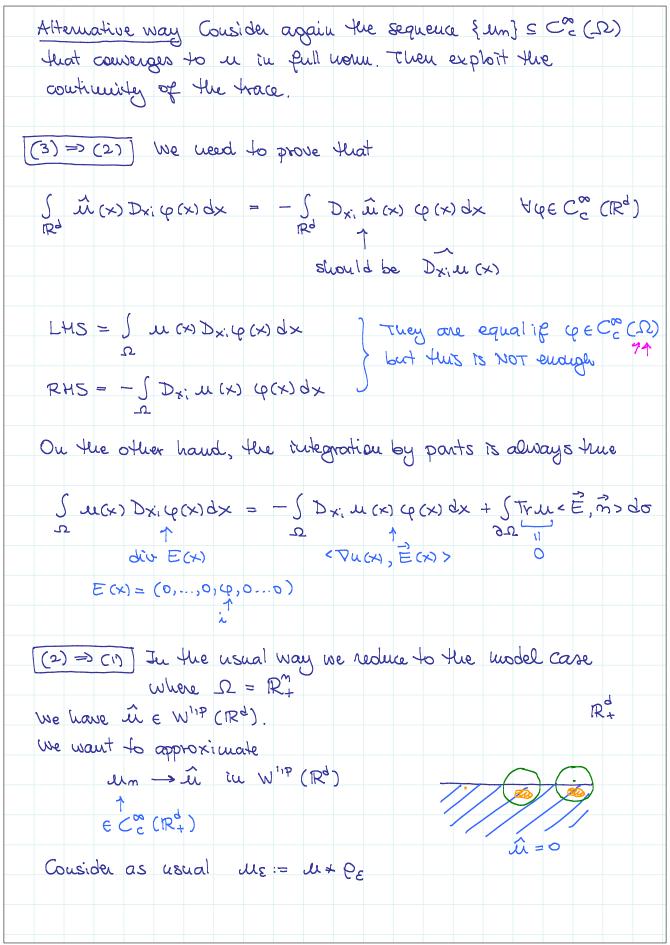
Dein	-> Something	weakly in LP (T	54)
(Here we use weak	compactness of	balls in LP when	(1<9
In the usual way	we see that sou	uething = V 1100 au	ud
UDuo II De CIR	ξ M		
weak consergence).	ex, and therefore 1	sc wit
Therefore the trac			
Step 3) We use M	oney's trick (exc	hange zone)	
1 llo (x,0) - Um (x,0	+ 11 el 00	n (x, n) - nu (x, n) 16 c(x, n) - nu (x, n) 15 c(x'0) - na (x'n) 15	
for every y > 0. Let us raise to po			
$(A+B+C)^{P}$	< 3 ^{P-1} (A ^P +B ^P +C ^P) ∀ (A,B,C) €	= [0,+\infty]3
11 Truco - Trum 1 P	. ≤ 3 ^P) { 1 Mo (x,0))-Um(x,y) P	0
	+ 1/200 (x,	y) - un (x,y) p	②
	+ 1 (x,	w) - un (x,0) P }	3
Now fix 8 >0 au		(5) wit y	

Lecture 38

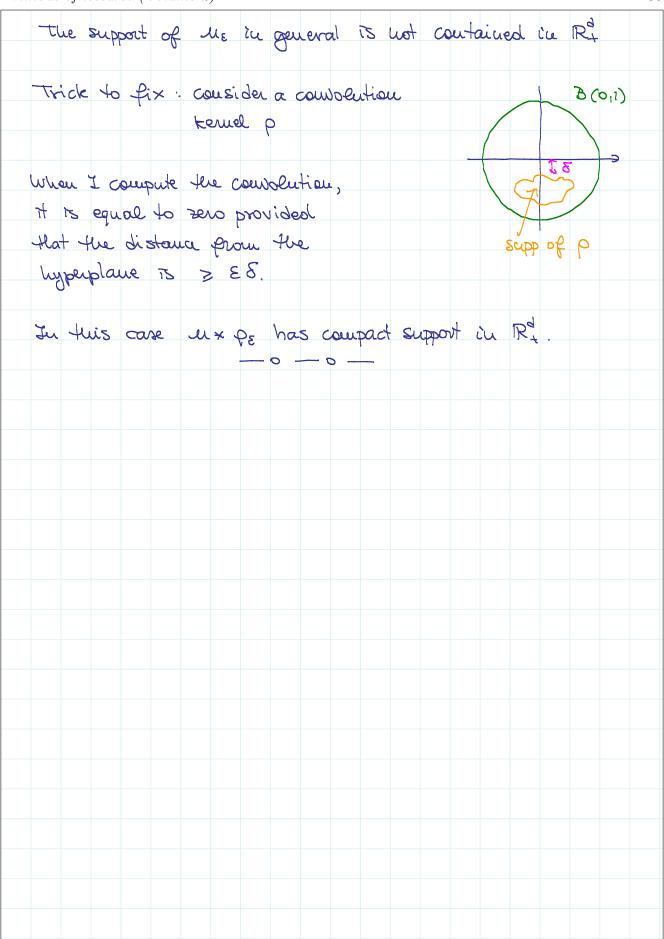
1 Third at of tectures (volume 2)	
LHS = 8 11 Trus - Trum 11 29	P
3) S um (x,y) - um (x,o) p dy \leq \frac{\delta um}{\delta y} LP (\text{R4}).	8 P1
< og P (R ²) - y P' ≤ M	
€ 5 11 mo (x, v) - mo (x, o) 1 g dy ≤ M 5	
(2)) Mo (x,y) - Mo (x,0) dy & P(0)	
② Sdy Sdx 1 uo (x,y) - un(x,y) 1 € 11 uo - un 112) (R4)
Ju couclusion ve obtain	
5 /1 Tr um - Trum 1/2 (Rd-1) 5 3-1 { 2M 5 + 11 Um - U	n P (TP4) }
We take the livesup as m > +00	
8 livesup 1 Truo - Trum 11/2 () ≤ 3 ^{P1} 2 H & p'	
Finally, let $\delta \rightarrow 0^+$ and observe that $\frac{P}{P'} > 0$ because	p > 1.
How to define the trace for a general open set	
Assume Ω is regular in the sense that $\partial\Omega$ is compact and C^1	
The key point is proving inequalities such that	
$\ \mathbf{u}\ _{L^{q}(\partial\Omega)} \leq c(p,d,q,\Omega) \ \mathbf{u}\ _{L^{p},\Omega}$	
Sor every u∈ C° (Rd)	

Lecture 38

Lecture 38

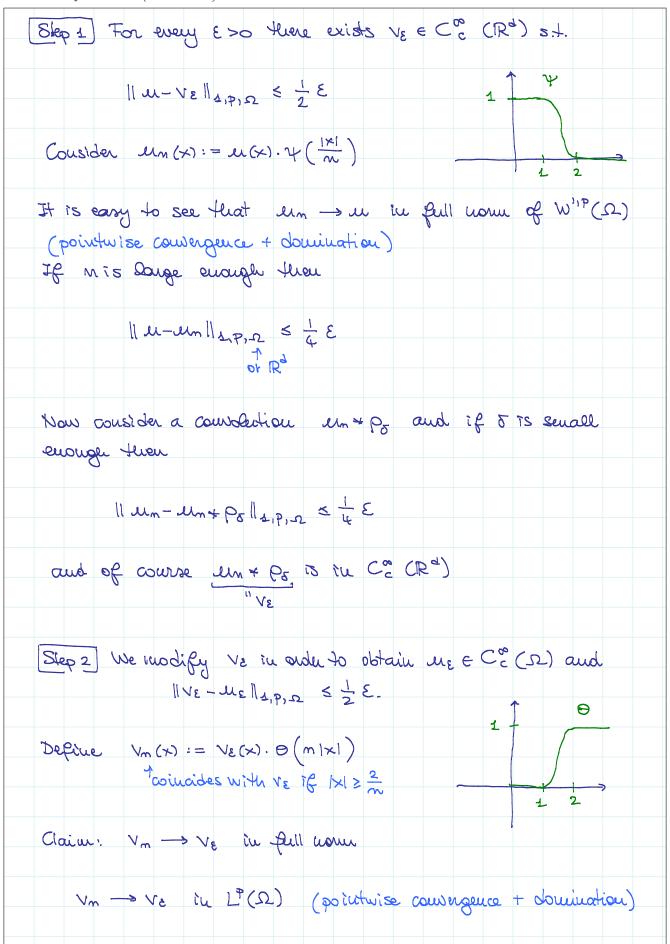

Istituzioni (di Analisi	_	LECTURE	39
Note Title				11/11/2021
The space W	0 (D)			
Def. Let I S	Rd be an open s	set, let w?		o]. esame with 1
(1) The space	Wo (S) is to	ue closure iu	you (ST) alm	で (ひ)
			the so	ame with m
(2) The space	$W_0^{M_1P}(\Omega)$ is the cat to the metric	abstract cou	upletion of Co	(ع)
with response	ct to the metric	derived that	u the full worm	of Mmib (To
Easy Lemma	The two deplicati	ous are equi	ivalent.	
Induitive idea	: we expect ele	ments in N	10 (2) to be 5	sbolev
			eu 3.0 with all de	
	up to order			
	orsumptions.	his is false	, but true und	en suctable
Achlung! Do	NOT confuse sp	saces such a	2/3	
W2,P (-D	~) ~ M',b (D)	aud	Wo (2)	
For example,	when $\Omega = (\alpha_1 b)$	s) & R, then	- su and wi - su	ı' uule
$M_{s^{16}}^{o}\left((\sigma^{\prime}\rho)\right)=$	{ u ∈ W21P ((a 16))			
$W^{2,p}((a,b)) \cap V$	$J_{0}^{1}(a,b) = \{u \in V$	N ^{2,P} ((a,b)):	м (a) = u (b) = 0 }	3

Lecture 39


Ruk If p>d, and u e W', P(D), then necessarily
$u = 0$ at $\partial \Omega$
Proof let {un} ⊆ Co (s) be such that un → en and
Dun → Du iu LP (Ω).
Due to the bounds on 11 7 millipas and 11 millipas
ve cau apply Asodi - Arrelà in every ball SIRª, and
therefore in - in mif. on bounded sets of Rd
externoled to a sutside s.
Theorem All embedding theorems hold true in Wo (12)
without assumptions on Ω and with the same pure
inequalities as in the case of \mathbb{R}^d . In particular of $u \in W_0^{1/p}(\Omega)$
132 424 302 303 14 301 237
(1) If p <d (p,d)="" \le="" \nu="" _p(d)<="" _p+(d)="" c="" td="" then="" u ="" ="" =""></d>
(2) If p=d, then u _{Lq(12)} ≤ c(p,d,q) u _{2,p,12}
(3) If p > d, then M _{L∞(D)} ≤ C(p,d) M _{1,p,D}
Moreover, u is 1-d Höder cout, with a pure estimate
ou the Hölder constant.
Proof the estimates are true for every $u \in C_c^{\infty}(\Omega)$
and then we can pass to the Dimit.
Ruck Same 15 true for compact embedolings.

Lecture 39

Prop.	(AWc	rys	rue	, ever	i if		15	., po	id".)							
26 m	LE W	11P (<u>a)</u>	, tue	ži.	û	€ ,	ω_{μ}	P ((R^d)	-						
					exte	me;	ou t	00									
					ou	tsid	e 7.	2									
Proof	Let	us	cous	ider	ه ځ	Un 3	2	- % - c	(2) ક	uch	. H	Lat				
	Mu	→	u	aud		Vu	-M	→ ▽	u	ડ	u	LP (<u>Ω</u>)				
Obse	me	the	at a	Huali	ly	u	m E	, C	° (Rd) a	ud					
	û	m =	Mu		auc	k	Þ	ùn	= 3	D.M.	ц						
ang	· iu	ada	diti oe	ı													
	^		<u> </u>		, D	د نجحا ،)		ا دما		0.0). N	. ! .			
	ûn))	>	Out	121a	عد ع	. 400	end4	uup	ر (Ο,	
	∇û _n	→ >	Dα	iu		CIK,	-) 	0									
Theor												gen.	ctio	u iu	ı w	<i>ت</i>) _ط در	D).
Then (1) (2)		W'S	1) P(1)	iug L) 20)	one	وم	uis Leu s	rleu iou	t (for O	a f	geui. ↑ E	ctio	u iu	ı w		D).
Theu (1) (2) (3)	ue ue ûe Tru	\ \(\forall \)	wollo 2P (∠ 4'1) (IF 10 °0'	60) (16)	are L	eq ex- (4	teus	iou frae	t (for O	a f	geui. ↑ E	Adde	u iu	ı w	<i>ت</i>) _ط در	D).
(1) (2) (3)	the u e û e Tru	Por Williams	ollow 2 ^P (1 1 ¹ 2 ^P (IF 1 1 1 1 1 1 1 1 1 1 1 1 1	15 J.C. 25 (16)	are alwa	eg ex (H	leus Lee Tru	e.	t (for O	a =	gen. 1 E	Adde	u iu	ı w	<i>ت</i>) _ط در	D).
Then (1) (2) (3) Proof	the un E Tru (1)	\(\frac{1}{2}\)	(2)	ing L) 20) LOCATION IS Huat	are	eg (H 245)	teus tru	cou frace e.	t (Por 0 s u	a :	gem. 1 E - de(3)	ction Adde	u iu ol af	e W	<i>ت</i>) _ط در	D).
(1) (2) (3) (3)	the $u \in \hat{u} \in \hat{u} \in \hat{u} \in \hat{u}$ True (1) 2d (3)	PW W	collow Collow (2) (2)	ing L) 20) 10 15 Huat Nay	ane (3	eq eys (H cys	teus tru tru	cou frace e.) =	t (for o s u fill	a f	3)	Adde Rive	u ivololololololololololololololololololol	e w	Ω) ^q '')). J
Then (1) (2) (3) Proof	the $u \in \hat{u} \in \hat{u} \in \hat{u} \in \hat{u}$ True (1) 2d (3)	Production of the state of the	(2) (2) (2)	ing L) 20) 10 10 10 10 10 10 10 10 10	alwa (3	eq eys (H cys	teus tru tru	cou frace e.) =	t (for o s o fill	a f	3)	Adde Rive	u ivololololololololololololololololololol	e w	Ω) ^q '')). J
Then (1) (2) (3) Proof (1) =	the $u \in \hat{u} \in \hat{u} \in \hat{u} \in \hat{u}$ True (1) 2d (3)	Dy W = 0 d EI +	consolication of the consolica	ing L) 20) 10 10 10 10 10 10 10 10 10	2 (3 ; CA	eys (H cys)=:	teus tru tru der der	ion frace e.) =	t (for o s v fin in	a =	general de la constant de la constan	Adde Rue	ol)	eter,	Jut)).
Then (1) (2) (3) Proof (1) = Exter case	Led 1 20 (3) und	De Se de Les de	con contractions of the co	ing L) 20) 10 10 10 10 10 10 10 10 10	alwa (3 ; a ppro-	eq ex (H ausi xim	teus tru co (2	con frace e.) =	t (for o s v iu iu	a =	general de (3) Selu	Adde Rue	ol)	ω. ω. Ω),	uideo)). J
(1) (2) (3) Proof Use we (1) =	the we	DU W = 1 SU W W W W W	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ing L) 20) 15 Huat May Siout Huat wit	alwa (3 ; ca ppro- we iu	eq ex (He ruys) =: xim can LP (teus tru co (2	cou frace e.) =	t (for o s v iu iu	a =	general de (3) Selu	Adde Rue	ol)	ω. ω. Ω),	uideo)). J



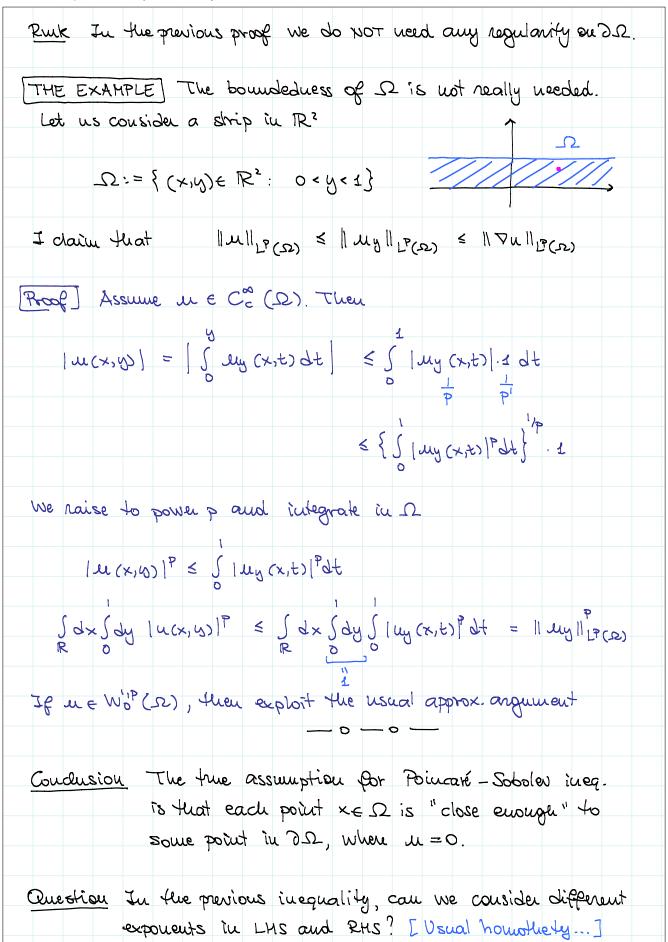
Lecture 39

ote Title				11/11/20
Duestion: are t	lune cases who	re W'ip(D	$) = \mathcal{N}_{lb}^{o}(\nabla) \dot{S}$	
First case: TRUE	if Ω = Rd	(Deluxe ap	proximation)	
	<u>.</u>		. Ju this care of	27
	FALSE becan			
This is because	Sobolev Runch	ious are con	finnous up to the	
boundary and			full consu of D,	Hreu
			of Clos (sr)	
	and easy of rela; of p=1		e bound on feell out less easy)	CLONIC
Third example	: d≥2 and	$D = 18^{q} \cdot \xi$		
I I Is TRUE.	fluat W'i? (IZ)	$=W^{1/p}(\Omega)$	it what we n	enove
provided that	ped.			
What we need -	lo prove : for	every in E	W ^{1,P} (12) there exi	.sts
{em} 5 Co (D)				
Equivalenty:	for every E>	o there exi	ists us e Cocco	L) s.t.
() 4	-uells,p,a	, ع ځ		
Let us prove the				

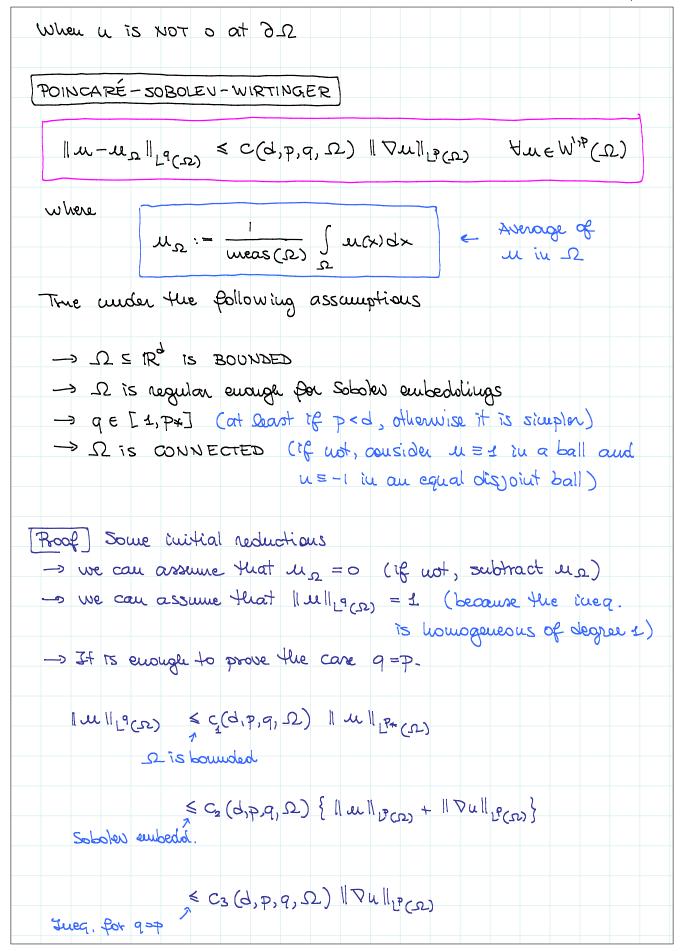
Lecture 40

Lecture 40

00	Istituzioni di Andiisi Matematica - A.A. 2021/2022
$\nabla V_m(x) = \nabla V_{\delta}(x) \cdot \Theta(x)$	$m \mid x \mid (x \mid m)^{1} \otimes m \cdot (x) \cdot y + (x \mid m)$
Vizix) iu	L P
We need that the second	term -> 0 in LP (sc)
≤C ≤C	
J NE (x) 1 . m . [B (m x)	$\sum_{i=1}^{p} dx \leq \text{Coust} \cdot m^{p} \cdot \text{meas} (B(0, \frac{2}{m}))$
18(0, 2) because	~ coust
othernise 6,=0	m ^a
3, 35000 (SE 0 2 0	000
	$\sim coust \frac{mt}{m^d}$
	i i i i i i i i i i i i i i i i i i i
71.5	
This goes to 0 of p <d.< td=""><td></td></d.<>	
The statement is true if	p < d .
0	— o —
Exercise Given Ecc S	2 cc Rd
[Exercise] Given Ecc S any meas.	Open set
set	
Define	
	19
Cap, $(E, \Omega) := \inf \{ \int f$	∇u(x) Pdx : u ∈ W', P(Ω), u(x) ≥ ± ù E}
Capacity	$u \in C_c^{\infty}(\Omega) \rightarrow uakes seuse$
	52 DSd
Statement Capp (point, &	pall) = 7
) >0 if p>d
Capp (point, ball) >0 if p	>a Claum: there exists
	1,0
min { S Ivuladx: me	
-2 Tball	mell defined because p > d

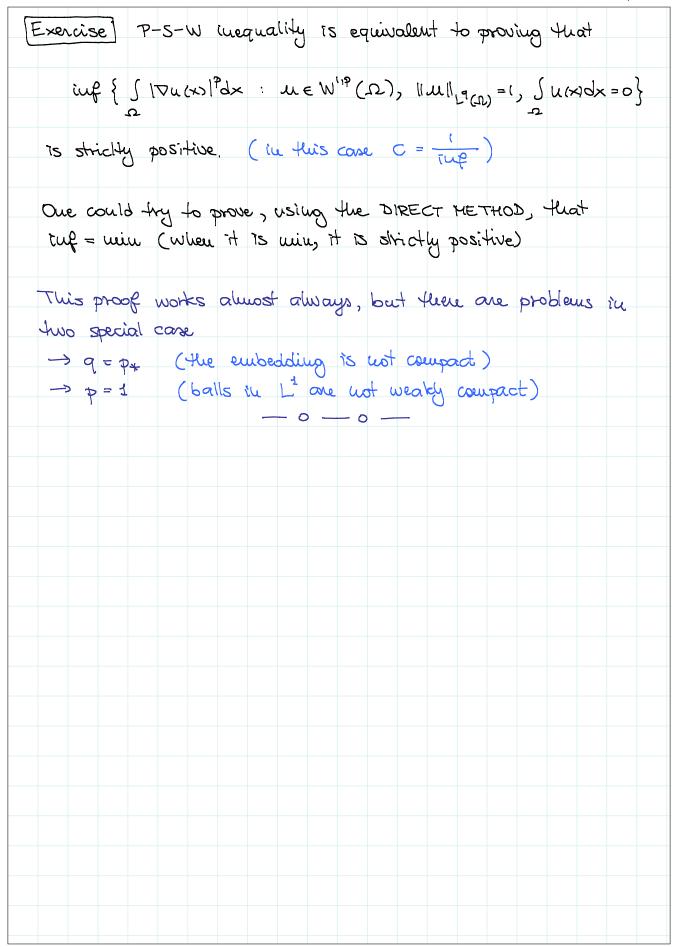

Lecture 40

Direct 1	balton	let een	be a win	uniting segu	ence.	
		Then !	Dun II LP CS) ≤ M		
			1			
In ad	difiou	11 em 11 _0	(v) < M	(because	117 unl cou	trols to
				Hölder ca	ustant of	eu,
					o at the b	
				-> ero uni	if. in Clos	(で)
dus	tuerafor	e also 1	100 (0) ≥ 1.			
Ås us			rev serpsed			
	7	Vein -	Velos U	seakly in L?	(D)	
and of	finally					
				C	<u> </u>	
	Dining	JIDUm	(x)/pdx >	S (Vuo (x))	dx	
	100 100	32	(-011.y)(y)	W. of the you	u.	
				13 of		
			the cuir			
Claim	: H 75	>0. If	not, then	Tu(x) =0	and this	implies
(true,	but not	trivial)	fluat u =	coust, but	u=0 at the	દ
pound	lary am	d u = s	in the	center.		
_						
How yo	brose,	fluot Car	op (ceuler,	ball) = 0 if	5 b < 9	Y (4)
					1	Ψ UI-7
· If p	«d, cou					
	Jun ((x) = Y(m (x1)			2
					A .	. 1/1/20
e 16 b=	= d, cou	sider			1 1-1×	1 -
			1/w			
	Jum (x) - l-l>	۷)			
(We c	au updi	fy it hear	o if we	want en e	C _∞)	


Lecture 40

Istituzioni di	Analisi	~	LECTURE 41	7/2021
POINCARÉ INEQU	ALITY			
Setting: 2 ⊆ 1R	d is a Bou	NDED set au	ual P ∈ [1,+∞].	
m 12 (2) =	c (p,d, \Omega)	ll Vull _{LP(D)}	$An \in M_{i,b}^{0}(\Sigma)$	
NATURAL INEQUA	Stoo: YTILL WE LUT! 2 U. C=	rall	HECESS ARY (think of a constant function)	
POINCARÉ - SOBO	DLEN INEQ	DER 1	s bounded	
	c (2,9,d, 2)) \(\mathbb{U} \) \(\mathb	$An \in M_{l^{1}b}^{o}(\Sigma)$	
This inequality True for every True for every	q ∈ [1,+∞).	78 p=d	.b>q 3, [**	
Proof Almost tri	P < d.	·	= d follows from p < d.	
	≤ C(q, Ω) 1 is bounded		S ou q, px, wear (A)]	
Sobolev er with PUF	7	, D) Dul po	(22) $\text{cause } u \in W_0^{1/p}(\Omega)$	

Lecture 41


Lecture 41

Lecture 41

The	case p=q) Assume the inequality
	u Lo(20) & c (d, p, Q) Dull p(20)
for	every lie W'r? (a) with I wix dx=0 and hull P(n) = 1
is t	FALSE. u there exists a sequence {lm} & W'P (D) s.t.
ll eu	$ P(x) = 1 \qquad \int u(x) dx = 0 \qquad \nabla u_m _{P(\Omega)} \rightarrow 0$
emb	anticular 11 lim 11, p, 2 15 bounded. Due to the compact pedding theorem, there exists up LP (-12),
	Dung -> 0 in L? (D)
Ma heuc	the usual way we see that $\nabla u_0 = 0$, and therefore is locally constant in Ω . But Ω is connected, and e how is constant.
	$\ u_{m_k}\ _{L^p(\Omega)} \rightarrow \ u_{\infty}\ _{L^p(\Omega)}$ tue possible if $u_{\infty} \in \mathcal{L}$ us is constant $u_{\infty}(x) dx \rightarrow \mathcal{L}$ us $(x) dx$ $u_{\infty}(x) dx \rightarrow \mathcal{L}$ pointwise cow. + domination

Lecture 41

Lecture 41

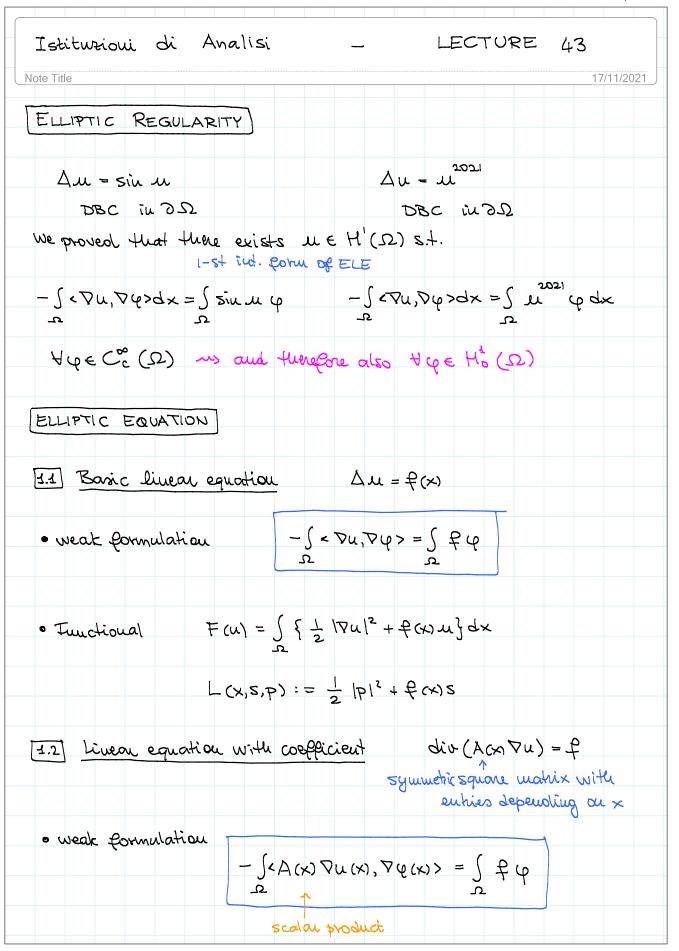
Istiturioui di	Aualisi —	LECTURE 42
Two variational proble	ems in higher dimension	
Let $\Omega \subseteq \mathbb{R}^d$ be a bound we want to solve	all (any regular bounded	open set is the same)
$\Delta u = siu u$ i DBC ou $\partial \Omega$		DBC on DD
we expect avaniation	ual formulation of the	, form
$\int \left\{ \frac{1}{2} \nabla u(x) ^2 - \cos u \right\}$	$(x) \} dx \qquad \int_{\Omega} \left\{ \frac{1}{2} \right\} dx$	$7u(x)^{2} + \frac{1}{2022} u(x) dx$ + DBC
4 200		7 000
Disaussion on DBC	Does it make sense to with pointwise constrain	
	u (origin) = 25	
Auswer: depends o	u p and d. It makes:	seuse if we have
J 174(x)19	dx with p>d.	
For the future: pri	scribing the values on the p-a	a subset $E \subseteq \Omega$ apacity of E is $\neq 0$.

Lecture 42

			Istituzioni di Andiisi Matematica - A.A. 2021/	_
sę,	we	waut	of aguard sti SIG vi us go soular all adirocary of	
			Tru = given function	
•	O		trace '	
ί		19.0 -		
bu	,	tre Si	ven function has to be in the image of the trace mage of the trace is strange, for example	, ,
pc	C+	the i	mage of the trace is strange, for example	
Ù	0	liu = :	it is not true that any continuous function	
O1	ı S	5 ¹ 75 '	be trace of a function u ∈ H' = W"2 (ball).	
54	hou	JAN. A	$LSWW: Tr: W'^{p}(\Omega) \to W^{(\frac{1}{p},p)}(\partial \Omega)$	
		2	States of the Paralist of Scholar States	
			15 survective fractional Sobolov space	7
			with fractional derivatives)
W	nont	me ox	in general 15 to prescribe DBC in the form	
	_			
	-	ī~ u =	Trus = u-us e Wo (\O)	
			given	
			Auction	
			tu WYPCO)	
Let	Λ:	s stan	with the direct method.	
			2022	
5	7	Vu 2-	$\int \frac{1}{2} \nabla u ^2 + \frac{u^2}{2022}$	
2	.2		Ω 2022	
Mec	ale .	Pormul	ation in $H'(\Omega) = W'^{2}(\Omega)$. So $F: H'(\Omega) \rightarrow ??$	
		701111001		
p	t o	Λ. 1		
		·	case real values, in the second case it depends	
or .	d:	TG 25	22 < 2x, then real values, otherwise PRU {+00}	
			$\frac{2d}{d-2}$ (the only case is $d=2$)	
			d-2	

Lecture 42

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	s] Let us assume that F (m) & M.
The both of	ases we obtain $ \nabla u_n _{L^2(\Omega)} \leq M^1$ (usual argument)
we need	à bound on em 15 some space.
	second case we have
Nul	Il rozz (r) ≤ M" and therefore (1 mm) [2 (r)
Ju the f	itst case we use Poincané inequality if he Wor (12)
	lun 12 (2) < coust. \tau 12 (2)
u-u gt	to $\in W_0^{1,p}(\Omega)$, then
1\em 1	22(2) ≤ dw 22(2) + dlu - dw 22(2)
	< 11 Lou + coust 117 (lu-us) 1/2(2)
	\(\frac{1}{2} \langle + \coust \frac{1}{2} \langle + \coust
In any a	are from F (m) & M we get un 1,2,2 & M' FULL NORM in H'(2)
Compact en	ubedding => un -> en cu L2(12)
	use generally in L9(D) for 9<2*
Up to a g	urther subsequence Very -> Vero weakly in L2(D)
	lk land


Lecture 42

[LSC] In both cases we have that
Diminf $S \nabla u_{n_k}(x) ^2 dx \ge S \nabla u_{\infty}(x) ^2 dx$ LSC of the norm with weak com.
Jee the first case Dim S cos (un(x))dx = S cos (uso(x))dx pointwise com. + trivial domination
[Here we so NOT need a further subsequence, because any subseq. has a further subsubseq. for which convergence is true] (508-508 lemma)
Ju the second case we have that Diring S leng dx > S los dx Les to a FATOO lemma + equi-bound from below
Back to compactness: we need to be sene that Trus = Trus This is how because of the continuity of the trace en -> us on L ² \tau_n _2 bounded \} => Trus Trus in L ² (0.2)
Ju this avourent a min. exists in H'(2).

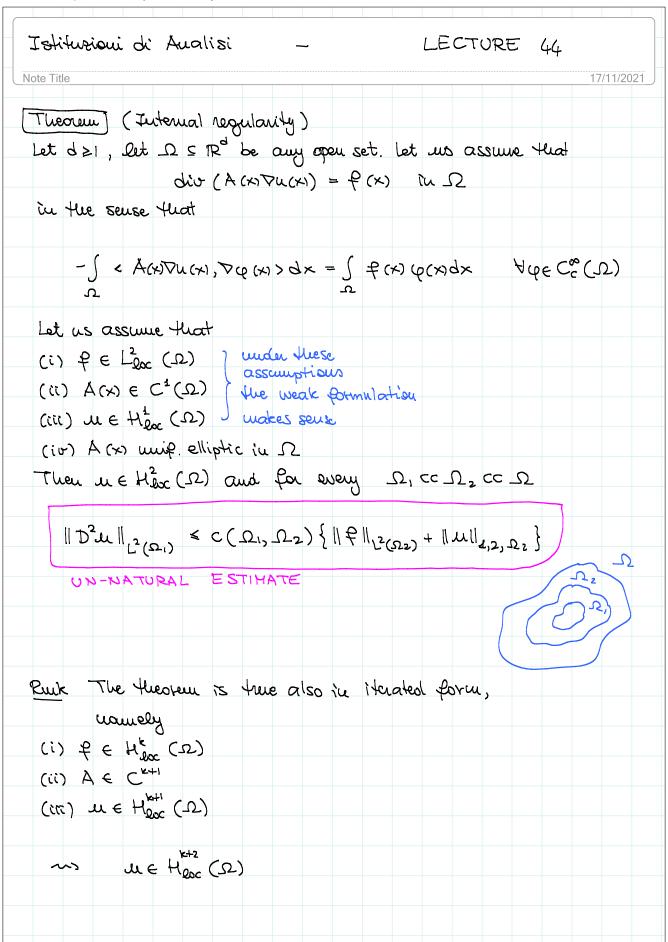
Lecture 42

Lecture 42

Lecture 43

· Functional F(u) = S{<A(x) \(\nabla\)\(\nabla\)\\ 2 \quadratic form L(x,s,p) = < A(x)p,p> + &(x)s Def. The makix A(x) is misformly elliptic in 2 if there exists v>0 s.t. <A(x)p,p> ≥ V ||p||² ∀p∈R° ∀x∈Ω The KEY POINT TS that $V \int |\nabla u|^2 dx \leq \int \langle A(x) \nabla u(x), \nabla u(x) \rangle dx$ with sums $< A(x) \nabla u(x), \nabla \varphi(x) > = \sum_{i=1}^{d} \sum_{j=1}^{d} \Delta_{i,j}(x) \frac{\partial u}{\partial x_i}(x) \frac{\partial \varphi}{\partial x_j}(x)$ $\operatorname{div}\left(\mathsf{A}(\mathsf{x})\,\mathsf{D}\mathsf{n}(\mathsf{x})\right) = \sum_{i=1}^{4} \frac{3}{3}\left(\sum_{i=1}^{4} \mathsf{A}_{i,j}(\mathsf{x})\,\frac{3\mathsf{n}}{3\mathsf{n}}(\mathsf{x})\right)$ 13 General Dinear equation -.. L(x,s,p) = general polynomial of degree 2 in thevariables 5 and 7 with coeff. depending on x.

Lecture 43


Lecture 43

Elliptio	c regu	lanty	→ INTE	RNAL		
			→ BOUY	JDARY R	EGULARITY	
		Δu(x)	= 2 (%)	iu <u>N</u>		
Tuteru	al regu	lanity:	₽ ∈ Spai	ela (D)	=> D ² u e Spa	re _{loc} (I)
Bounda	any rea	fulanity:	₽ e Space	ع (D) ع	s D ² u & Space	(D)
Surpri				, ·	2-ud order o	
		owe space		e obtain	ALL 2-ud oud	or gens.
" If w	e court	rol x2+y3	+ 22 Me	control	x², y², z², xy,	N5,5× "1
₽ ∈	Heoc ((D) =>	Du E Hlo	(V)	L2- tueon	y
₽ €	Wloc ((v) -> 5	3u e Wloc	(v)	LP- theor	g p∈ (1, 100)
₽€	C020C ($(x) \Rightarrow 0$	²u e C _{v∞} ((2م	SCHAUBER TH	EORY de (O,1)
The s	same 1	n'ithout	"Loc"			
\$,	e Loo	≠ Du	e L [∞]			
		\Rightarrow D^2u \Rightarrow D^2u				
		≠ D²u				
L2 H	leory c	and LP	theory i	ecluble -	the case k=0	

Lecture 43

Au = $\sin u$ and $\Omega = ball$ $f(m) \in L^{2}(\Omega) = D^{2}u \in L^{2}(\Omega) \implies \Delta u \in L^{2} \text{ and therefore}$ $U = \exp(ab) \text{ in diff. form}$ $U = H^{2}(\Omega) \qquad \text{in diff. form}$ $U = U = U = U = U = U = U = U = U = U =$		1300000000 We Thousand White Charles 11.11. 2021/20
$f(n) \in L^{2}(\Omega) = D^{2}u \in L^{2}(\Omega) \longrightarrow \Delta u \in L^{2} \text{ and furrefine}$ $u \in H^{2}(\Omega) \qquad \text{the equation is satisfied}$ $u \in H^{2}(\Omega) \qquad \text{the diff. form}$ $\Rightarrow \text{ Sin } u = f(n) \in H^{2}(\Omega) \implies u \in H^{4}(\Omega) \implies \dots u \in H^{k} \text{ for}$ $\text{every is anothere une } C^{\infty}(\Omega)$ IT DOES NOT WORK $\text{If } DOES \text{ NOT WORK}$ $\text{If } C \text{ for } u \in H^{2} \implies \text{ Sin } u \in H^{2} \text{ TRUE}$ $\text{If } V = \text{Sin } u \in M$ $\text{If } V = \text{Sin } u \in M$ $\text{If } V = \text{Sin } u \in M$ $\text{If } V = \text{Sin } u \in M$ $\text{If } U = \text{Sin } u \in M$ I	Δu =	siver and $\Omega = ball$
$f(n) \in L^{2}(\Omega) = D^{2}u \in L^{2}(\Omega) \longrightarrow \Delta u \in L^{2} \text{ and knowfore}$ $u \in H^{2}(\Omega) \qquad \text{the equation is satisfied}$ $u \in H^{2}(\Omega) \qquad \text{the diff. form}$ $\Rightarrow \text{ Sin } u = f(n) \in H^{2}(\Omega) \implies u \in H^{4}(\Omega) \implies \dots u \in H^{k} \text{ for}$ $\text{every k and therefore } u \in C^{\infty}(\Omega)$ IT DOES NOT WORK $\text{If } polso \text{ that } u \in H^{2} \implies \text{sin } u \in H^{2}$ $u \in H^{2} \implies \text{sin } u \in H^{2} \text{ TRUE}$ $\text{Id} = 1 \text{if } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ TRUE}$ $\text{Id} = 1 \text{if } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ TRUE}$ $\text{Id} = 1 \text{if } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ TRUE}$ $\text{If we would the tuplication } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ we had}$ $\text{If } we \text{ would the tuplication } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ we had}$ $\text{If } we \text{ would the tuplication } u \in H^{2} \implies \text{sin } u \in H^{2} \text{ we had}$ $\text{If } u = 1 \text{if } u = 1 if $		₽ (×) ∈ 1 2
the equation is satisfied $u \in H^2(\Omega)$ to diff. form $u \in H^2(\Omega)$ $\Rightarrow u \in H^4(\Omega) \Rightarrow u \in H^k$ for every k and therefore $u \in C^\infty(\Omega)$ IT DOES NOT WORK It is false that $u \in H^2 \Rightarrow \sin u \in H^2$ $u \in H^4 \Rightarrow \sin u \in H^4$ TRUE $d=1$ $V = \sin u \in H$ $v'(x) = \cos u(x) \cdot v'(x)$ $v''(x) = -\sin v(x) \cdot [u'(x)]^2 + \cos u(x) \cdot u''(x)$ bounded bounded $v''(x)$ $v''(x) = -\sin v(x) \cdot v''(x)$ $v''(x) = -\sin v$		
the equation is satisfied $u \in H^2(\Omega)$ to diff. form $u \in H^2(\Omega)$ $\Rightarrow u \in H^4(\Omega) \Rightarrow u \in H^k$ for every k and therefore $u \in C^\infty(\Omega)$ IT DOES NOT WORK It is false that $u \in H^2 \Rightarrow \sin u \in H^2$ $u \in H^4 \Rightarrow \sin u \in H^4$ TRUE $d=1$ $V = \sin u \in H$ $v'(x) = \cos u(x) \cdot u'(x)$ $v'(x) = -\sin u(x) \cdot [u'(x)]^2 + \cos u(x) \cdot u'(x)$ bounded $v'(x) = \cos u(x) \cdot u'(x)$ $v''(x) = -\sin u(x) \cdot [u'(x)]^2 + \cos u(x) \cdot u'(x)$ $v''(x) = -\sin u(x) \cdot [u'($	_	
we $H^2(\Omega)$ to diff. form \Rightarrow sin $u = p(x) \in H^2(\Omega) \Rightarrow u \in H^4(\Omega) \Rightarrow \dots u \in H^k$ for every k and therefore $u \in C^\infty(\Omega)$ If DOES NOT WORK If $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = p(x) = p(x) = p(x) = p(x)$ $p(x) = $	\$ CM	$\in L^2(\Omega) = D^2u \in L^2(\Omega) \longrightarrow \Delta u \in L^2$ and therefore
we have $H^2(\Omega)$ to diff. from \Rightarrow sin $u = p(x) \in H^2(\Omega) \Rightarrow u \in H^4(\Omega) \Rightarrow u \in H^k$ for way k and therefore $u \in C^{\infty}(\Omega)$ If DOES not work If $T = palse + hat u \in H^2 \Rightarrow sin u \in H^2$ $u \in H^2 \Rightarrow sin u \in H^2$ $u \in H^2 \Rightarrow sin u \in H^2$ $v \in H^2 \Rightarrow sin u $		I, the equation is satisfied
⇒ Sin in = $P(x) \in H^2(\Omega)$ ⇒ in $e H^4(\Omega)$ ⇒ in $e H^k$ for every k and therefore in $e C^\infty(\Omega)$ It to forest hat in $e H^2$ ⇒ sin in $e H^2$ If $e forest flat$ in $e H^2$ ⇒ sin in $e H^2$ The forest flat in $e H^2$ ⇒ sin in $e H^2$ The forest flat in $e H^2$ ⇒ sin in $e H^2$ The forest flat in $e H^2$ ⇒ sin in $e H^2$ The forest flat in $e H^2$ ⇒ sin in $e H^2$ The way want the implication in $e H^2$ ⇒ sin in $e H^2$ we need $e forest flat in e f H^2 ⇒ sin in e f H^2 we need e f f f f f f f f f f f f f f f f f f f$		
Every k and therefore $u \in C^{\infty}(\Omega)$ IT DOES NOT WORK It is false that $u \in H^2 \Rightarrow \sin u \in H^2$ $u \in H^1 \Rightarrow \sin u \in H^1$ $V'(x) = \cos u(x) \cdot u'(x)$ $V'(x) = \cos u(x) \cdot u'(x)$ bounded bounded L^2 a priori not in L^2 , unless $u' \in L^4$ If we want the implication $u \in H^2 \Rightarrow \sin u \in H^2$ we used $H^1 \rightarrow L^4$, namely $u \in H^2 \Rightarrow \sin u \in H^2$ we used $u' \in L^4$		555 C 1 5 C223 Ca Geff . \$5500
every k and therefore $u \in C^{\infty}(\Omega)$ IT DOES NOT WORK It is false that $u \in H^2 \Rightarrow \sin u \in H^2$ $u \in H^1 \Rightarrow \sin u \in H^1$ TRUE $v = \sin u \cdot (x)$ $v'(x) = \cos u \cdot (x) \cdot u'(x)$ $v''(x) = -\sin u \cdot (x) \cdot (u'(x))^2 + \cos u \cdot (x) \cdot u''(x)$ bounded bounded $v = v' =$		
It so false that $u \in H^2 \Rightarrow sin u \in H^2$ $u \in H^1 \Rightarrow sin u \in H^1 \Rightarrow sin u \in H^2$ $u \in H^1 \Rightarrow sin u \in$	=> 5	$\sin u = \varphi(x) \in H^2(\Omega) \implies u \in H^*(\Omega) \implies u \in H^* \varphi o $
It so false that $u \in H^2 \Rightarrow sin u \in H^2$ $u \in H^1 \Rightarrow sin u \in H^1 \Rightarrow sin $	enery	k and therefore en ∈ C∞ (s)
If no excise that $u \in H^2 \Rightarrow siu u \in H^2$ $u \in H^4 \Rightarrow siu u \in H^4 \text{TROE}$ $d=1 V = siu u(x)$ $V'(x) = cos u(x) \cdot u'(x)$ $V''(x) = -siu u(x) \cdot [u'(x)]^2 + cos u(x) \cdot u''(x)$ $bounded \uparrow bounded$ $iu L^2, unless$ $u' \in L^4$ If we want the implication $u \in H^2 \Rightarrow siu u \in H^2$ we head $H^4 \rightarrow L^4, uanely 4 \leq 2x = \frac{2d}{d-2}$ $\implies 4d-8 \leq 2d \implies d \leq 4$		
It is palse that $u \in H^2 \Rightarrow \sin u \in H^2$ $u \in H^1 \Rightarrow \sin u \in H^1 \text{ TROE}$ $d=1 V = \sin u \in H^1 \Rightarrow \sin u \in H^1 \text{ TROE}$ $V'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot [u'(x)]^2 + \cos u(x) \cdot u''(x)$ $bounded \uparrow bounded$ $iu L^2, uuless$ $u' \in L^4$ $u' \in L^4$ $H^1 \rightarrow L^4, uauely 4 \leq 2x = \frac{2d}{d-2}$ $\Rightarrow 4d-8 \leq 2d \Rightarrow d \leq 4$	T	
$d=1$ $V = \sin u (x)$ $V'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot \left[u'(x)\right]^{2} + \cos u(x) \cdot u''(x)$ $bounded \qquad bounded$ $u \in H^{2} \Rightarrow \sin u \in H^{2}$ $bounded \qquad bounded$ $u \in L^{2}, \text{ unless}$ $u' \in L^{4}$ $u' \in L^{4}$ $u' \mapsto L^{4}, \text{ unuely } u \in H^{2} \Rightarrow \sin u \in H^{2} \text{ we used}$ $H^{4} \rightarrow L^{4}, \text{ unuely } u \in H^{2} \Rightarrow u' \in H^{2}$ $u' \in L^{4}$ $u' \in L^{4}$ $u' \in L^{4}$ $u' \in L^{4} \Rightarrow u' \in H^{2} \Rightarrow $	1, 70	S NO I WOKE
Let $H^2 \Rightarrow \sin u \in H^2$ TROE		
$U \in H^{2} \implies 5iu u \in H^{2} TROE$ $U'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot \left[u'(x)\right]^{2} + \cos u(x) \cdot u''(x)$ $bounded \qquad bounded$ $u \in L^{2}, unless$ $u' \in L^{4}$ $U' \in L^{4}$ $U' \in L^{4}$ $U' \mapsto L^{4}, unless$ $u' \in L^{2} \implies 5iu u \in H^{2} \implies 5iu u \in H^{2} \text{ we used}$ $U' \in L^{4}$ $U' \mapsto L^{4}, unless \mapsto L^{4} \implies L^{4} \implies L^{4}, unless \mapsto L^{4} \implies L^{4$	27 HE	Palse that he H2 => sin he H2
$d=1 V = \sin u(x)$ $V'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot \left[u'(x)\right]^{2} + \cos u(x) \cdot u''(x)$ $bounded \qquad bounded$ 1^{2} $a \text{ priori uot}$ $iu L^{2}, \text{ unless}$ $u' \in L^{4}$ $U' \in L^{4}$ $H^{4} \longrightarrow L^{4}, \text{ uausly} 4 \leq 2x = \frac{2d}{d-2}$ $4d-8 \leq 2d \implies d \leq 4$		
$V'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot \left[u'(x)\right]^{2} + \cos u(x) \cdot u''(x)$ $\begin{array}{c} 1 \\ \text{bounded} \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{2}$		
$V'(x) = \cos u(x) \cdot u'(x)$ $V''(x) = -\sin u(x) \cdot \left[u'(x)\right]^{2} + \cos u(x) \cdot u''(x)$ $\begin{array}{c} 1 \\ \text{bounded} \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{in } L^{2}, \text{ unless} \\ \text{ul} \in L^{4} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{on } L^{4}, \text{ unuely } L^{4} \leq 2x = \frac{2d}{d-2} \\ \end{array}$ $\begin{array}{c} 1 \\ \text{on } L^{4}, \text{ unuely } L^{4} \leq 2x = \frac{2d}{d-2} \\ \end{array}$		
$V''(x) = -\operatorname{stu}_{\mathcal{U}}(x) \cdot \left[L^{1}(x) \right]^{2} + \cos u(x) \cdot u''(x)$ bounded bounded L^{2} a priori not in L^{2} , unless $U \in L^{4}$ If we want the implication $u \in H^{2} \Rightarrow \sin u \in H^{2}$ we head $H^{2} \rightarrow L^{4}$, namely $4 \leq 2x = \frac{2d}{d-2}$ $\Rightarrow 4d-8 \leq 2d \Rightarrow d \leq 4$	0=1	V = Siu a (x)
bounded bounded L^2 a priori not in L^2 , unless L^2 we want the implication L^2 sin L^2 we need H ² $\rightarrow L^4$, namely L^2 L^2 L^2 we need L^2		$(x)' u \cdot (x) u \cdot 200 = (x)' V$
bounded bounded L^2 a priori not in L^2 , unless $M \in L^4$ If we want the implication $M \in H^2 \implies M \in H^2$ we need $H^4 \longrightarrow L^4$, namely $4 \le 2 \ne \frac{2d}{d-2}$ $\implies 4d-8 \le 2d \implies d \le 4$,	$V''(x) = -stuu(x) \cdot [u'(x)]^2 + cos u(x) \cdot u''(x)$
If we want the implication $a \in H^2 \implies sin a \in H^2$ we need $H^1 \longrightarrow L^4$, namely $4 \le 2 \ne \frac{2d}{d-2}$ $4 \le 2 \ne 3 \implies 4 \le 4$		
If we want the implication $x \in H^2 \implies \sin x \in H^2$ we need $H^1 \longrightarrow L^4$, namely $4 \le 2x = \frac{2d}{d-2}$ $\Rightarrow 4d-8 \le 2d \implies d \le 4$		bounded bounded L2
If we want the implication $u \in H^2 \implies \sin u \in H^2$ we need $H^1 \longrightarrow L^4$, namely $4 \le 2 \times = \frac{2d}{d-2}$ $\implies 4d-8 \le 2d \implies d \le 4$		a priori upt
If we want the implication $u \in H^2 \Rightarrow sin u \in H^2$ we need $H^1 \rightarrow L^4$, namely $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$		
If we want the implication $u \in H^2 \Rightarrow sin u \in H^2$ we need $H^1 \rightarrow L^4$, namely $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$		leat e Lig
$H^1 \rightarrow L^4$, namely $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$		
$H^1 \rightarrow L^4$, namely $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$ $4 \le 2 = \frac{2d}{d-2}$	7.0	
~> 4d-8 ≤ 2d ~> d ≤ 4	16 me	nout the implication in EH => Sin in EH we held
~> 4d-8 ≤ 2d ~> d ≤ 4		
~> 4d-8 ≤ 2d ~> d ≤ 4		$H^{2} \rightarrow L^{4}$, namely $4 \leq 2 = \frac{2d}{1}$
		7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lecture 43

Lecture 44

	A PRIORI ESTIMATES
Assume a	verything 15 C [∞] and prove the estimates
Baloy case	$1 d=2, \Omega = \mathbb{R}^2, u \in C_c^{\infty}(\mathbb{R}^2), f \in C_c^{\infty}(\mathbb{R}^2)$
- S	$u_{x} c_{x} + u_{y} c_{y} = \int_{\mathbb{R}^{2}} c_{y}$
Idea: U	se $\varphi = u_{xx}$ (I can because $u \in \mathbb{C}_c^{\infty}$)
- S	elxelxxx + elyelxxy = 5 = 4 uxx
RHS	< + 2 . luxx 2 < + (uxx 2 + uxy 2) 2
LHS =	S (lixx + lixy) = 11 lixx 11 2 + 11 lixy 12 2
When I	compare I get
11 cexx 11	2 + 11 day 11 2 5 11 & 11 2 . () 12
and there	Pare (uxx 2 + uxy 2) 5 2 2
If we us	e ce = luyy we obtain
(ll	myy (122 + 1 mxy 1122) 1/2 ≤ (1/2 11/2
and finall	8
Nux	$ ^2_{L^2} + uyy ^2_{L^2} + 2 uxy ^2_{L^2} \le 2 f ^2_{L^2}$

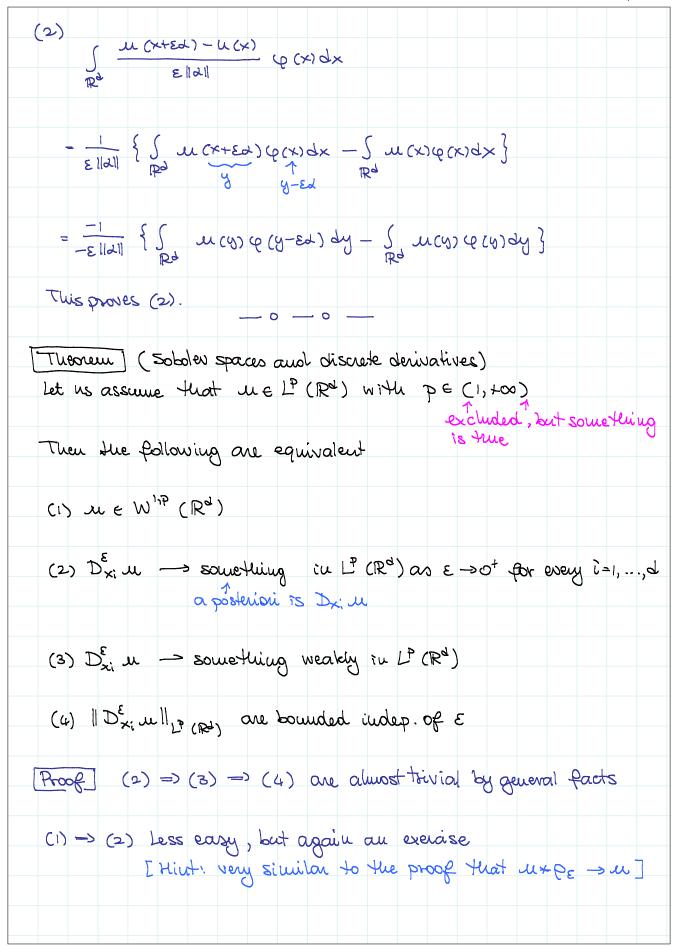
Lecture 44

1 Timout of tectures (volume 2)	107
Baby case 2) any d , $\Omega = \mathbb{R}^d$, u and f in $C_c^{\infty}(\mathbb{R}^d)$	
We use $c_0 = d_{x_1 x_1}$ and in the same way we estimate all second derivatives with one x_1 .	
At the end of the day $\sum_{i=1}^{d} \ u_{x_{i}x_{i}}\ _{L^{2}}^{2} + \sum_{i\neq j} \ u_{x_{i}} \times_{j}\ _{L^{2}}^{2} \leq d \ \varphi\ _{L^{2}}^{2}$	
Baby case 3 any d, $\Omega = \mathbb{R}^d$, $u, f, A \in \mathbb{C}^{\infty}_{c}(\mathbb{R}^d)$, equation	
$-\int_{\Omega} < \Delta(x) \nabla u, \nabla \varphi > = \int_{\Omega} \varphi $	
Use again $Q = u_{x_i x_i}$ $RHS = \int_{\Omega} P u_{x_i x_i} \leq P _{L^2} u_{x_i x_i} _{L^2}$	
$ \varphi _{L^{2}} \left\{ \sum_{j=1}^{d} u_{x_{1}x_{2}} _{L^{2}}^{2} \right\}$	
LHS = - S < A(x) Vu, Vux;xi>dx	
$= \int \langle A_{x_i}(x) \nabla u_i \nabla u_{x_i} \rangle dx + \int \langle A(x) \nabla u_{x_i}, \nabla u_{x_i} \rangle$ $= \Omega \langle A_{x_i}(x) \nabla u_i \nabla u_{x_i} \rangle dx + \int \langle A(x) \nabla u_{x_i}, \nabla u_{x_i} \rangle$ $= \Omega \langle A_{x_i}(x) \nabla u_i \nabla u_{x_i} \rangle dx + \int \langle A(x) \nabla u_{x_i}, \nabla u_{x_i} \rangle$ $= \Omega \langle A_{x_i}(x) \nabla u_i \nabla u_{x_i} \rangle dx + \int \langle A(x) \nabla u_{x_i}, \nabla u_{x_i} \rangle$ $= \Omega \langle A_{x_i}(x) \nabla u_i \nabla u_{x_i} \rangle dx + \int \langle A(x) \nabla u_{x_i}, \nabla u_{x_i} \rangle$	
$V \int_{\Omega} \nabla u_{xi} ^2$	
$V \int \nabla u_{xi} ^2 \le \mathcal{L} _{L^2} \nabla u_{xi} _{L^2}^2 - \int \langle A_{xi}(x) \nabla u_x \nabla u_x \rangle$	

Lecture 44

Ju	e conclusion
	> 11 Dux; 112 ≤ 11 P 112 11 Dux; 112 + 11 All c3 11 Duli 2 11 Dux; 11
	and we obtain
	4
	\[\langle \l
	351
1	Care 4] $\Omega \subseteq \mathbb{R}^d$ any open set, $\Delta u = f$ in weak sense in Ω ,
	u and & in Co (22) (no opt. support)
	ousider $\Omega_1 \subset \Omega_2 \subset \Omega$
U	ousider $y \in C^{\infty}_{\epsilon}(\mathbb{R}^d)$ with
	$ \psi \equiv 1 \text{lie } \Omega_1 $
	$y=0$ outside Ω_2
(0 ≤ y ≤ 1 in permeen
7	refine v = uy. Then
	$\Delta v = \Delta (uy) = \Delta u + u \Delta y + 2 < \nabla u, \nabla y > -:g$
	4
7	her apply baby case 2 to varid g
	$\ D^2u\ _{L^2(\Omega_1)}^2 \le \ D^2v\ _{L^2(\mathbb{R}^d)} \le d\ g\ _{L^2(\mathbb{R}^d)}^2$
	(Ω_1)
	Le U deponds on y
	$\leq \text{coust} \left\{ \ \xi \ _{L^{2}(\Omega_{2})}^{2} + \ u \ _{L^{2}(\Omega_{2})}^{2} + \ \nabla u \ _{L^{2}(\Omega_{2})}^{2} \right\}$
	$\gamma \equiv 0$ outside Ω_z and $\gamma \leq 1$ in Ω_z
	$A \cap A \cap$

Lecture 44

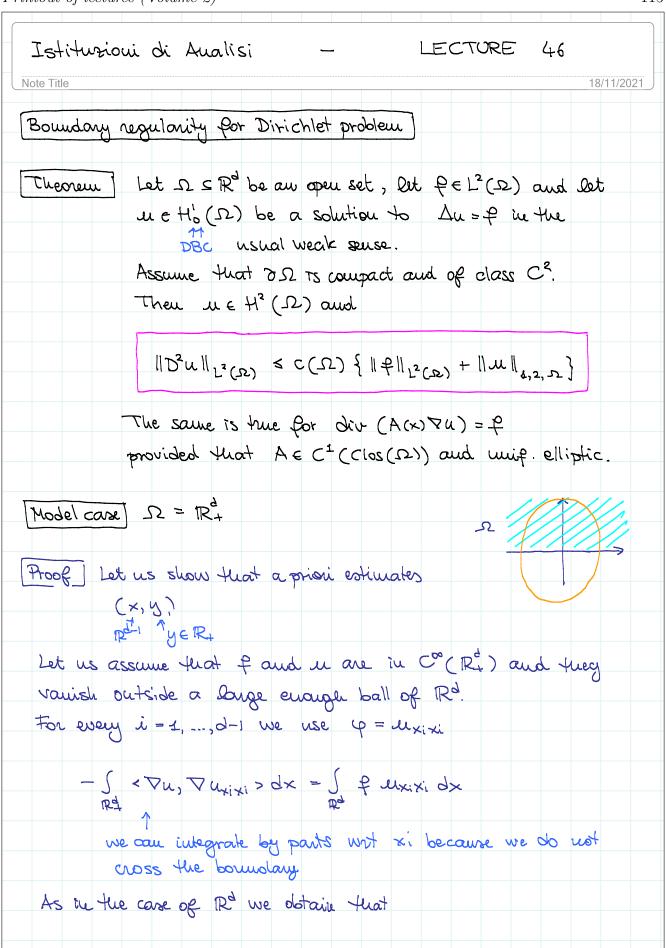

Care if now	visited) Assume everything as in Cause 4, but only $\xi \in L^2_{eoc}$ and $\xi \in H^1_{eoc}$
Can we	say that v solves the same equ $\Delta v = g$?
Hyp:	$-\int \langle \nabla u, \nabla \varphi \rangle = \int \varphi \varphi$
Th:	$-S < \nabla v, \nabla \varphi > = \int_{\Omega} g \varphi$
- S < T	$\nabla \nabla \nabla \varphi > 0 = -\int_{\Omega} \langle \nabla (u \psi), \nabla \varphi \rangle$
	= - S < Du. 4 + u Dy, De >
	= -
	a
3 = -	
	$\int_{\Omega} \langle \nabla u, \nabla (\psi \psi) \rangle + \int_{\Omega} \langle \nabla u, \nabla \psi \rangle \psi$
<u></u>	
2 = -	$\int_{\Omega} \langle u \nabla \psi, \nabla \psi \rangle = \int_{\Omega} \varphi dio (u \nabla \psi)$
	$= \int_{\Omega} \varphi < \nabla u, \nabla \psi > + \varphi \cdot u \cdot \Delta \psi$
the su	un of " is 584

Lecture 44

Lecture 45

Tribute of tectures (volume 2)
Proposition
1, 8, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
(1) If u ∈ W', P (Rd), then D _{xi} u (x) _{LP} (Rd) ≤ D _{xi} u (x) _{LP} (Rd)
(2) Discrete outegration by parts
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\int_{\mathbb{R}^d} D_{x}^{\xi} u(x) \cdot \varphi(x) dx = -\int_{\mathbb{R}^d} u(x) \cdot D_{x}^{-\xi} \varphi(x) dx$
for every choice of mand of for which the integrals make sense
for example
$\rightarrow u \in L^{1}_{loc}(\mathbb{R}^{d})$ and $\varphi \in C^{\infty}_{c}(\mathbb{R}^{d})$
$\rightarrow u \in L^{p}(\mathbb{R}^{d})$ and $\varphi \in L^{p'}(\mathbb{R}^{d})$ if $\frac{1}{p} + \frac{1}{p'} = 1$.
P P' P'
[Proof] (1) [u(x+ Eei) - u(x)] = [ce(1) - q(0)]
(2 (t) = 2 (x+ Ecit)
< () () () () () () () () () (
= 3 [φ (4) (3c - 3 (Dx; xx (x+zecc)), [z] 3c
$\leq \int \left[\varphi'(t) \right] dt = \int \left[D_{x}, u \left(x + \epsilon e i t \right) \right] \cdot \left[\epsilon \right] dt$
= [8]() [Dx: m (x+86;+)[, at]
D D
77,000,000
Therefore
$\int u(x+\varepsilon e^{2}) - u(x) ^{2} dx \leq \varepsilon ^{p} \int dx \int D_{x}; u(x+\varepsilon e^{2}) ^{2} dt$ Represent the second of the secon
R ₂ 0
= [E[P]dt] Dx; (x+Eeit) Pdx O Rd J dx = dy
O Rd
0 32 739
= LEIP S Dx: (W) Pdy
Be 12x1 col 1
P P
we divide by $ \varepsilon ^P$ and we get the conclusion

Lecture 45


Lecture 45

(4) -	حه (۱) T	ne	40	The	por	mg	01	ب با	ue	ho	nu	, , \	Lieve	ر ف	cists	
								Ha									
		7	ε _k Οχί	u	(X)		_	vi	*)	We	calc1	у .	u '	P	Rd)		
												0					
Cl	aim	. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(x)	=	Dx:	u ((X)	u	uuo	lu							
								,		0							
	(111	· .	. .	101	~ ~	<u></u>	_	_ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~\)	(0	'~1 c	7~			
	15q	u		レメ	Ψι	X) (3			₽¢	,	رمی	Q	~ (, ,			
We	sta	LT W	JIHU.	Tu	e 0	rscr	ste	ru:	regn	odi	ou k	y ?	ou	73			
		8.6										8	le:			uipn - C	
	7	$\mathcal{D}_{2r}^{x'}$	JU (x) (ф (×) d;	× ,		7	u	(4)	\mathcal{D}	ki 4	(K)) g×		
	IR								IRC					al	so u	uipor	uly
			V										J	16	φ.	- C&	(Rel)
	S R ²	vi C	x) (q	(x)	dx		7	_	5,	uc	د)	\mathcal{D}^{κ}	φı	(x) 0	X		
	Rd								Ba								
					_	_ 0	_	-0									
The	neu	\(Ju	ten	Lal	ua	ula	ntin	1									
					_		_		. L	. F.	H1	(R'	1) ;	is r) Sc	ludiou	1 40
1000	7	αοι,	7			= {				. 0		C., <			~ 50		
	١4. ٥	(م م د ۱				1											
iu \	fue	wear	* 4	wrw) U((лно	u.										
		(.		_		,		(٠۵٠			77		~ &	٠ (١	2g /	
	_	۲ ر	. 🔨	ر , ∨	φ:	ر کی و	Κ =	ۍ ب	70	5					(Cli		
												A	рE	H	(Rd)	
[]	u J	r e	Η-	(IRª) 0	hour											
			.2					. 2									
	[(D2	بالر	2 CR	۲)	≤ c	11 6	611] (IR	7							

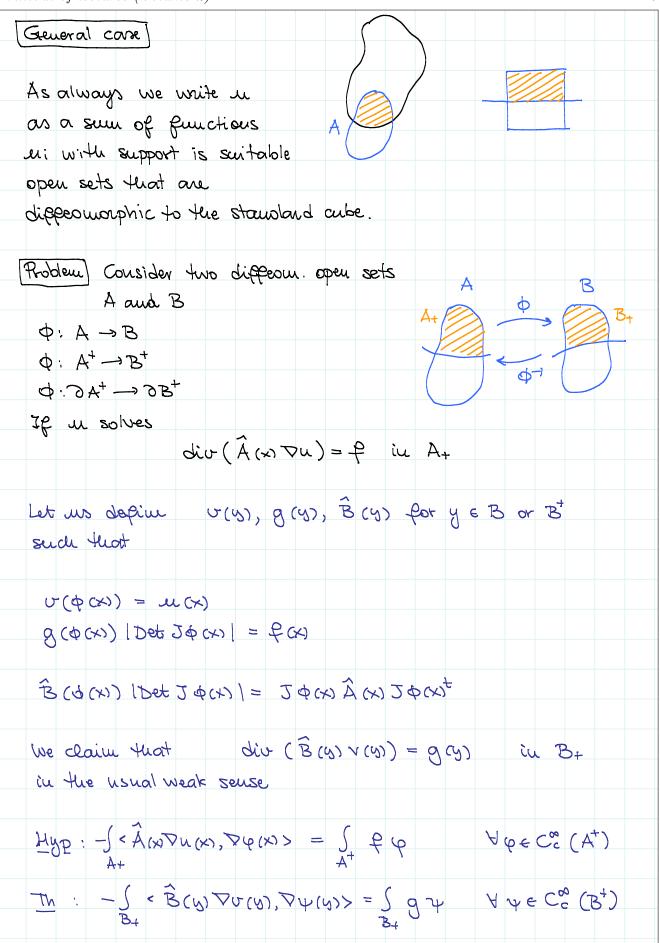
Lecture 45

	11.11. 2021/2022
Proof] Last lecture we used $\varphi = u_{x,x}$	ì.
Now we use	
$\varphi = D_{x_i}^{-\varepsilon} D_{x_i}^{\varepsilon} u(x) \in H$	(Rd)
$-\int \langle \nabla u(x), \nabla D_{xi}^{\varepsilon} D_{xi}^{\varepsilon} u(x) \rangle dx = 0$ Red	189 Dxi Dxi n(x)0x
RHS ≤ \$11. D= E D E U ≤ \$11. 1.	Dxi DEi ul
< 11.11√	7 D ^E _{xi} u 1
= 11211.11	
LMS = - S < Du (x), DDE, DE, L (x)	>d×
= - S < Ducxi, D-E, DEx, ucx	-) > d>
= S < DE Du (x), DE u (x) cutegr. Pd by parts	(x) > dx
tu each term of the Sc. prod = S < DE, Vu(x), DE, T	7u(x) > dx
$= \ D_{x_i}^{\varepsilon} \nabla u(x)\ ^2$	
Ju conclusion $\ D_{x_i}^{\varepsilon} \nabla u(x_i)\ ^2 \le \ \varphi\ $	· II DE DacxIII
This implies that $\ D_x\nabla u(x)\ ^2 \leq \ P\ ^2$ $\sum_{j=1}^{d} \ D_{x_j}u(x_j)\ ^2$	2 sem over i and get conclusion.

Lecture 45

Lecture 46

In this way we can estimate all second order derivatives of a with the exception of any. But the case where
$$f \in L^2$$
 and an H^2 we use discrete derivatives to the same way as for the internal regularity.


$$\varphi = D_{xi}^{-1} D_{xi}^{-1} = H^{-1} \left(\mathbb{R}^{d}\right) \quad \text{because } i = 1, ..., d-1$$
Again we obtain that all second der. of an, but any, are in $L^2(\mathbb{R}^{d})$.

$$-\int \varphi = +\int <\nabla u, \nabla \varphi > \int d^{-1} U d^{-1} d^{-1} d^{-1} d^{-1} d^{-1} d^{-1} d^{-1}$$
There we can integrate by parts

$$-\int D_{xi} u D_{xi} \varphi + \int D_{yi} u D_{yi} \varphi$$
There we can integrate by parts

$$-\int D_{yi} u D_{yi} \varphi = \int \int d^{-1} L_{xi} u U \varphi$$
There is equivalent to saying that D_{yi} has a weak derived the goal of U_{xi} and U_{xi} an

Lecture 46

Lecture 46

RHS =
$$\int_{\mathbb{R}_{+}} g(y) \gamma(y) dy = \int_{\mathbb{R}_{+}} g(\phi x) \gamma(\phi x) | D d J \phi x | d x$$

= $\int_{\mathbb{R}_{+}} f(x) \varphi(x) dx$

Let us obsense that $\nabla \varphi(x) = \nabla \gamma(\phi(x)) J \phi(x)$
 $\nabla u(x) = \nabla v(\phi(x)) J \phi(x)$

-LHS = $\int_{\mathbb{R}_{+}} \langle \hat{B}(y) \nabla v(y), \nabla \gamma(y) \rangle dy$

= $\int_{\mathbb{R}_{+}} \nabla v(y) \hat{B}(\phi x) \nabla \gamma(\phi x)^{\frac{1}{2}} | D d J \phi x | d x$

= $\int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | D d J \phi x | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | D d J \phi(x) | d x$

= $\int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | D d J \phi(x) | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | D d J \phi(x) | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | D d J \phi(x) | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x | d x$
 $\nabla \varphi(x) = \int_{\mathbb{R}_{+}} \nabla v(\phi(x)) \hat{B}(\phi(x)) \nabla \gamma(\phi(x)) \nabla \gamma(\phi(x))^{\frac{1}{2}} | d x$

Lecture 46

i reneoue oj e	ectures (voiume 2)	115
1 - '	We need \hat{B} to be of class C^1	
	we need that $v \in H^2 = \lambda$ in $\in H^2$ and this requires	
	\$ to be of class C2.	
Ruck	We need \$ to be unif. elliptic.	
Louis	ua (lin. alg.) If A 15 coercive and M is awertible,	
	tueu MAM 15 coercive	
Ruck	What about the case where u = les ou DD	
	ou the sense that in-in € H'o	
	$\Delta (u-uo) = \Delta u - \Delta uo = \varphi - \Delta uo$	
If	uo EH2 ms & - Duo EL2 ms u-uo EH2	
	~> u ∈ H².	
	- 0 - 0	

Lecture 46