A.A. 2015/2016 Corso di Analisi Matematica 2

Stampato integrale delle lezioni

(Appendice di Teoria della Misura)

Massimo Gobbino

Indice

Lezione 131. Introduzione alla teoria della misura: motivazioni. Paradosso di Banach-Tarski. Sigma-algebra. Tre definizioni di misura (misura positiva su sigma-algebra, misura esterna, misura vettoriale)	4
Lezione 132. Teoremi di passaggio al limite della misura su successioni monotone di insiemi. Insiemi misurabili alla Caratheodory: definizione e dimostrazione che costituiscono una sigma-algebra	5
Lezione 133. Costruzioni di misure: metodo I (misura di Lebesgue) e metodo II (misure di Hausdorff). Verifica che tali metodi producono misure esterne. I razionali hanno misura di Lebesgue nulla.	6
Lezione 134. Gli insiemi boreliani sono misurabili se e solo se la misura è additiva sui distanti. Le misure costruite con il metodo II sono additive sui distanti. Descrizione della via classica alla misura di Lebesgue (via approssimazione da fuori con aperti e da dentro con compatti)	7
Lezione 135. Misurabilità alla Caratheodory vs misura interna. Esempio di Vitali (insieme non misurabile secondo Lebesgue). Funzioni misurabili: definizione e stabilità per passaggio al limite.	8
Lezione 136. Step functions (con immagine finita o numerabile). Definizione di integrale per funzioni positive (equivalenza tra due definizioni). Definizione di integrale per funzioni a segno qualunque. Riemann-Darboux vs Lebesgue (suddivisione orizzontale vs verticale)	9
Lezione 137. Enunciato dei tre teoremi di passaggio al limite (Beppo Levi o convergenza monotona, lemma di Fatou, convergenza dominata). Dimostrazione del lemma di Fatou e sue varianti con il limsup	.С
Lezione 138. Dimostrazione del teorema di convergenza dominata e di convergenza monotona. Teoremi di continuità e derivabilità per integrali dipendenti da parametro. Accenno ad argomenti successivi (derivabilità di funzioni lipschitziane e punti di Lebesgue)	1

Teoria della Misura – LEZIONE 1 (AM2-131)
Titolo nota 17/05/2016
Motivarioui
1 Piunificare varie nozioni di integrale
· cutegrali propri u Ro in Rn
o " impropri " "
· integrali di funzioni su anne
o " - " Su Superfici
Nou è che c'è una struttura commue
2 Buoni teo di gassaggio al limite sotto il segno di integrale
Problema: Dimite puntuale di for Riemann int. può non essere Riemann int.
essere Riemann int.
3) Buona de sonizione del completamento resp. distanse integral
$C^{\circ}([a,b])$ dist ₁ $(f,g) := \int_{a} f(x) - g(x) dx$
Si verifica de è una distanta e che Co con questa distanta è sparso metrico
non completo.
wow completion
Oui è il suo completamento? L1 ([a,b])
-0-0
Achtung! a saramo des grossi problemi, dounti al
dover scausone BANACH - TARSKI.

Lezione 131

(Ippervalue at Icolour Installa)	
Bauadi-Tarsti Sia n 2 3 un intero e siaux	S
A S R7 e B S R ⁿ due insieur	i QUALUNQUE
tali che Jut (A) 7 p, Jut (B	3) ≠ Ø.
Allora esistous un intero positivo k e sottoius	
A = A, U Az U Ax cou gei su disgiunti	
B = B1 UB2 UB* Bi	
Qi: Rm -> Rm Bometrie E.c.	
φ _i (Ai) = Bi	
Brutalmente, posso scompone una stera di ran	0000 1 14
un numero finito di persi e rico	
mode de attendre 2 ston di vappi	
(Bastano 5 persi)	
0 0	
SIGNA ALCORDA I SEC X III. DISTRICT	
SIGHA-ALGEBRA J Sia X un insième Una sig	J _ D _
su X è un sotto insieme M	
Cou la proprieba du	delle ponti
$(5) \otimes (5)$	
(ti) se $A \in \mathbb{M} \Rightarrow X \setminus A \in \mathbb{M}$ (diaso risp a)	coupleu.)
(iii) se Ai Em per agui i EN, allora	
De Ai € m Colins rèsp. une 12	OMERABILI)
Oss. M si dia algebra x vale (i) + (ii) + (iii) s	olo can
union di 2 (e quindi union finite)	
Oss. Tra i sottotusiemi di » si può definire so	mua e
prodotto con le proprietà classiche	
i V	
A-B = AnB A+B = (A\8) U (B)	A
(equisare a identificare sotto rusiem di X con funsio	w & . × > Z/2)
	The state of the s

Lezione 131

(1) A & m, B & m => A B & m (AB = (AC BC)C, dove AC == XA) (2) A & m & i & N => (A & m) (2) A & m & i & N => (A & m) (3) A & m, B & m => A B & m (AB = A BC) (4) Data wa famighia qualuque & m; Jiez do sigua-algebre (I non à nec numerabile), allora (A mi & aucora wa G-algebra Def (Sigua alogora generata) Sia X wu insience, e sia
(z) Data una famiglia qualunque { m; fiet di stigua- algebre (I uon à vec numerabile), allora (z) Ai e m Vi e iN => A B e m (AB = A n Bc) (3) A e m, B e m => A B e m (AB = A n Bc) (4) Data una famiglia qualunque { m; fiet di stigua- algebre (I uon à vec numerabile), allora
(z) Data una famiglia qualunque { m; fiet di stigua- algebre (I uon à vec numerabile), allora (z) Ai e m Vi e iN => A B e m (AB = A n Bc) (3) A e m, B e m => A B e m (AB = A n Bc) (4) Data una famiglia qualunque { m; fiet di stigua- algebre (I uon à vec numerabile), allora
(3) A E M, B E M => A B E M (AB = A B) (4) Data una famiglia qualunque { M; } iei du sigua- algebre (I uou è nec numerabile), allora (3) Mi è ancora una 6-algebra
(3) $A \in M$, $B \in M = 3$ $A \setminus B \in M$ ($A \setminus B = A \cap B^{c}$) (4) Data una famiglia qualunque $g \in M$;
(4) Data una famiglia qualunque { Mi jiez di sigua- algebre (I non à nec numerabile), allora Mi à ancora una o-algebra i e I
∩ mi è aucora una o-algebra
Def (Signa alogbra generata) Sia X un insieme, e sia
G € O (X) un sottoinsieure qualunque.
51 definisce 6-algebra generata de 3 l'intersezione di
tutte le o-algebre de contempus 3, che è quindi la + picc. o-alg. che contiene 3 (almens una c'è ed è G (X)).
Oss. Due esempi banali du 6-algebra:
Ou terro esempso sous m = sotto insiemi finiti o numeratoi li e compensativi degli dessi
Esercitio Nou esistano o-algebre rumerabili.

Lezione 131

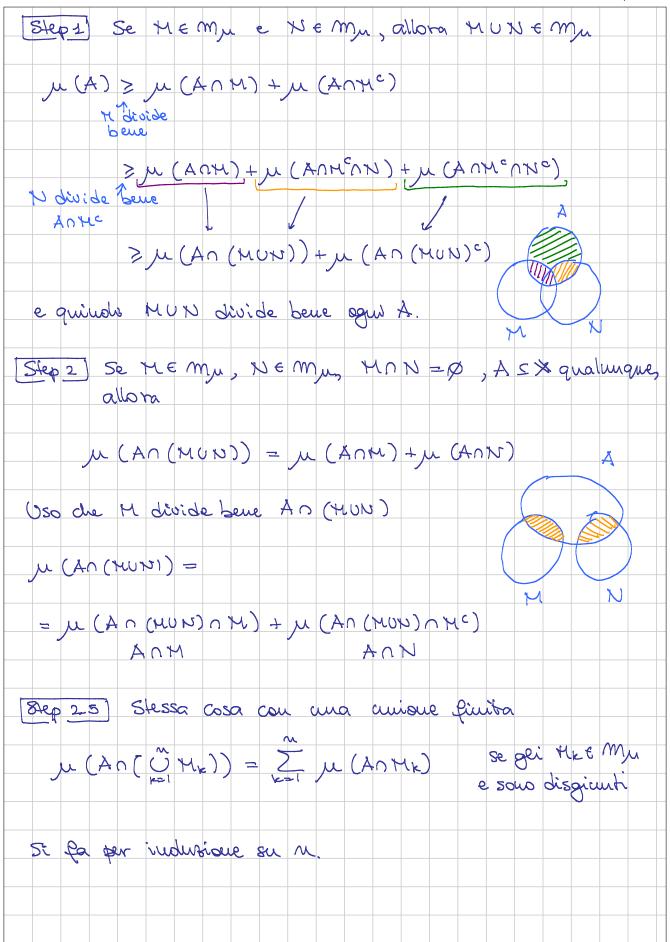
Stantpate integrate				·	
Definition	di hisura	The w	odi di f	aurlo	
· misura	(positiva su	Sigua	- algebra	.)	
	esterna (pos				
	ettoriale (a				
		4 3010 30			
TOTAL VILLE) Sr. W			M. C @	
DEF. MISOR	A) Sta X				Ca) una
	c - algeb				
	isura una				
			1/8	uluso	
	ju: m -	→ [o,·	[00+		
tale che					
(i) u (ø)	= 0				
		(AT117	+0.0	S. C.C. 050'	oue {Ai} sm
			1 -	s successi	and the fall of
a due	. a due disp	giunt 1	2016		
	~		8		
	Ju (U /	\$i) =	2 m(Ai)	
Se diama	sparsio di uni	isura (da terria	(×, m	٧, ١٤)
•					
DEF. MISUR	A ESTERNA	7 Sia >	z un ic	isteme.	ua unisura
					que feurione
					(333,039,0
	L: P(*) -	ر ۲۸ هـ	27/2	CM70	
		- LU, *	- 2-7		
٥, (١)	u (Ø) =0				
(22)	(NOMERABILE	SUBAI	*TIVITA) per equi	succ, di
	(NOMERABILE Ousieui Ai	€ 6 €	(i	EN (UX >	e
			∞	(a	La vou
	Д (<u>С</u>) Д (<u>A</u> IИОТОИОМ)	in) <	Z 11 C	Ai) dis	gounti)
(25-7	T-O-1		7-0		
(121)	(MONO CONIA)	ASB	=> Ju	(A) × ju (?	3)

Lezione 131

DEF. DI MISURA VETTORIALE	Sta × un tusiene, sia V un
	Banady, sia m una 6-alg.
Si dia misma verboniale u	ua grademara leuri que
$\mu: m \rightarrow \vee$	
t.c. (i) u (p) = 0 e V	
(ci) rale la numerabil	adolitività
$\mu(OAi) = 2$	serie a valori in
7 0=5	E serie a valori de
Se coi di Em e si	ous az az disgiunti
30 300 71 0 11 0 3	300 312 012 313 300011
Oss la misma vettoriali son	in sutpremout and original V=R
(si diameno MISURE	con SE GNO)
CSt Campagaga 1 4, 2 9 1.—S	00,0 50 4,00 5
Consequence facili delle def	1 (1) (1) (1)
10000000	
(1) numerabile additività	=> Livita additività
subadditività	=> " subadolitività
(basta prendue p de un	
(Basis, Bearing & S.	Cons Pilo (a por)
(2) Noi cari 1 e 2 vale la	wayahayi a cian
(a) pour avoir (b) e (b) valle (a)	Dopo vides: per le misu
$A \subset P \longrightarrow M$	(A) ≤ M (B) re exeme la monotonia
	va riduesta
(B = AU (B)A), poil U	sa (sub) addition to
(5) - A C (811) , por 0	could dop video
(3) finite additività + numer	
numerasile addutività	MATE SWOOM WILLIAM -
(Basta din. ju (UAi) 2	
M(Q Ai) 2 M(Q Ai)	= \(\frac{1}{27} \mu (Ai) \) \(\text{uaudo } \tau \)

Lezione 131

Teoria della misura - LEZIONE 2 (AM2-132)
Titolo nota 17/05/2016
Passaggio al Dimite della misura
COSSCIENCE STATE OF THE STATE O
Prop. Sia (X, M, u) cura sparsio di unisura e sia An
una succ. di elementi di M CRESCENTE, cioè
Anti 2 An VneN
Sia $A_{\infty} := \bigcup_{t=0}^{\infty} A_{t}$.
Allora (Beppo Levi a
u (Ao) = lin u (An) distanta)
Dans Judanto il Din. esiste (en Lo, tos) perché u (An) è
uouotoua.
u (As) z u (Au) vera per ogui u E/N perché Aso 2 Am
Basta dim quella opposta.
Pougo
Don := August Au
Allora
Aos = Ao V (Dm) \(\text{ unique disgrunta}
= \u(\Dm) + \u(\Dm) \u(\Dm) = \u(\Dm) - \u(\Dm
o-able Sur = An UDn
$= \mu (Ao) + \sum_{n=0}^{\infty} \mu (Dm) \qquad \mu (Dm) = \mu (Aun) - \mu (An)$ $= \mu (Ao) + \sum_{n=0}^{\infty} \mu (Aun) - \mu (An) \qquad \mu (Aun) = \mu (An) +$
u v v v v v v v v v v v v v v v v v v v
1 + M (Pm)

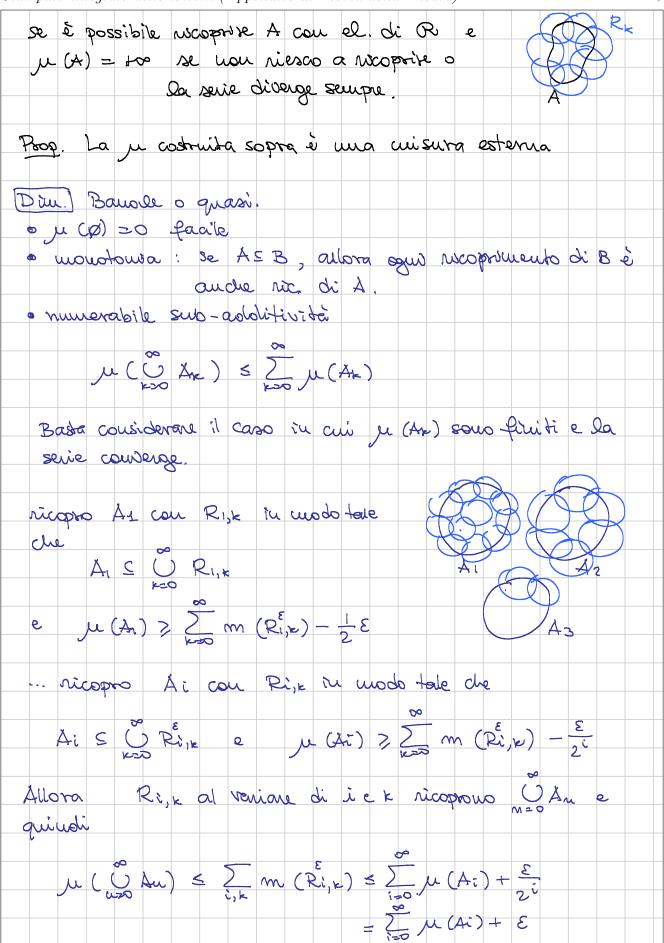

Lezione 132

10										$C\iota$	7180	ai A	пин	51 IVI	аген	iuiic	$u \sim$	- A	.A. Z	010/	2016
			7	μ	(Ac	9)	+ 5	كثند		Ž		esc	L (A	hen) -	·	(A	[(ء			
							^	۲-5 ۲	00	K-S	ه اما	050	00)	CA	-				1		
											70										
			= .	ju	CA	40) +	ر .م	או פ				u ([Åu	41)	-	u (Δ0)		
				_																	
			2	W-5	too	Ju	_ (Arusa	·L)												
Jug	ve c	i.Sì	SUR	۲ ,	Der	di	مو	Chro		u	(\mathcal{D})	u)	2 1	C.	A. A.	1).	- 11	(A	u)		
Ser	se	مال	S	 De	2	uu	Sur	2 0	al .	RH	S	riau		₽i	uit.	٤.					
I 6	ue																				
Der	00	99	u.	ch	ف		ju	CA	»)	<		w	7	L (ΔuÌ)					
																				<u> </u>	. 1
Se	RH	ۍ ۔	1	S	, રું	fo	rai\	٠.	/ /	viw o	ron	h), - 0		cte.	علا	u	ISW	U :	sour) fi	uik.
Oss	. 1.	Ωκ	~~~	~ C'	م رس	1.0	750	10	\.	0	C.0	مار	eta		0	C L	du	-	0 ~		
			·	1															rga		
												cì									
	,								c	-	_ (-							
Prop	. 5	ita	(<i>%</i> ,	M	,w	, (ھ	by,	wa		Sia	٨	şu	su	Œ.	9 e	con	ceu	te
			_																	M.	
	6																				
	ಶ	nst	<i>bou</i>	iau	w	Chr	L	Ju	. (4	7()		+ 0	٥.								
	X.	100	n					<u>م</u> ح	Δ.,	\ .		liu n-s.	A		(7						
	ا دسرا					_	C "	~O	, (00	,	(ν <u>-</u>) ,	100			.00)					
Qss	3.	U	oqi	tesi)	ı (<u>(</u> A)	۷	+	- /è	ew	e ,	al-	hùu	ieu	ĥ	we	tto.	ìu	_ X	MI=
	-											leu									
		μ	(A)	=	{	 		ક્ર	1	√ ઠે	P	w	to			Дu	= {	u, v	(f (}	
					_	mer mer															

Lezione 132

Dom. Prop							0116 VS6	we D'i	polesi)
COSTRUZI	ONE	DI CA	RATHE	EODOR	24]				
Sta X is	usieuwe Cousid	, e si	ia ju	. P () ne dei	\times) \rightarrow cottor	Co, to	u [a	ma n = × t	nisura ali che
J.	(A)	= \m((Anm)) + ju	(A\M	.)	YA C	×	
(Dico ch	e M	" dwid	e beue	- Sui	A ^u				
Allow D	tusieu	ue dep	gi H	نل عبل	ou do uo	beue	ogui	A &	uua
uisura	ner 20	uso (D.	706540	oflowe			True e	uua
Dcw.) Os	sewaz	ioui p	, eliui	iani.					
o M divid	le bew	e A se	. e soli	o se Swide	M (A)) سر ج A شو	Ann)	tu (A fatti	(M)
					(A/M)				
	wow	51.						met.	=0
e Se M Basta					ora M				<i>i</i> Α.
سر	(A) -	> ju (Ann)	+ 11 (Am)	= Ju ((Anm)	+ μ (Anma)
Ora tuo' auabich	bene						.)		mom
numerale	or W.								

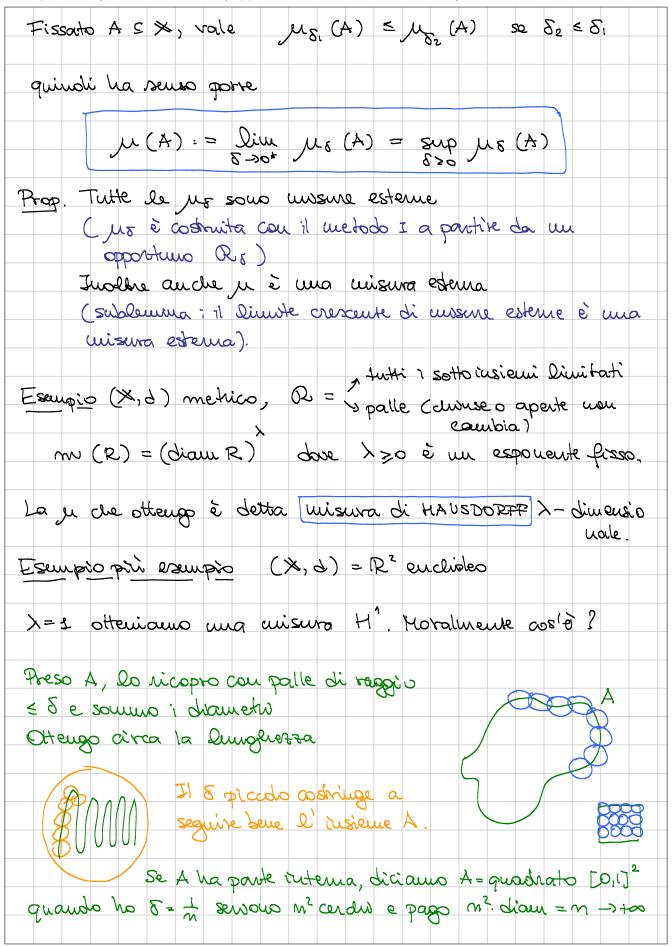
Lezione 132

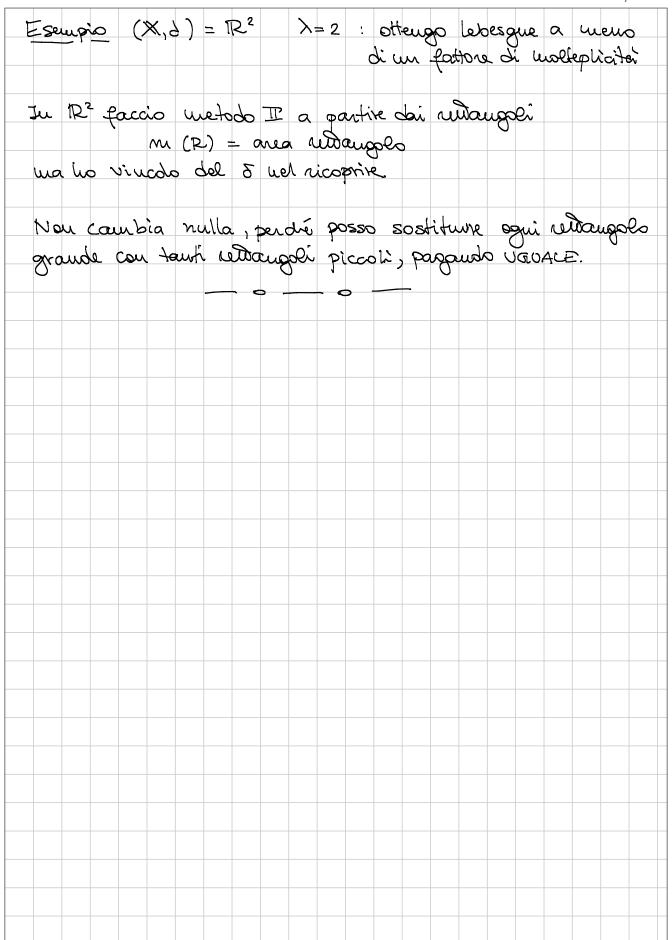

Lezione 132

Stantpato integr	are acree te	zioni (Appen	aice ai 1ec	ma acii	i wisara,	/		10
Step 3	Sia or	a Mm	uua s	سحد ح	tial.	di M	nju	
	Voolso	dim. du	e la s	2010	uuiou	e sta	àu Mu	
Intanto	wlog	posso su	ppome o	he sio	uo di:	mlyge	 	
Per agui	me N	so die	U 3	1k e	mu	, qui	ich doi	de
bene ogn	A, qu	ilavíu	ks l					
(A) U	= \u (An (Ü	Mx))	+ 11	(An	(Ü >	$\binom{k}{c}$	
(.towal)	≥ m (An C	Mk))	+ M	(An)	(Ü)	Mk)c)	
(Step 2.5)	= =	u (Ant	(k) + 1	л (A	n (() Mrs)	د)	
Questa	è vera	Sm oo	ui ne	N, C	ibuius	2220G	zuolo al	lin.
etteuse		, 0				,		
	~							
u (A)	2 2	u (Any	E) + 11	(An	([©] 1	Me)c)		
	> W (1	4n (0	Mr))	+ 11	()		
vera	per du	Anc	() Mr.)	= 0	(An	ME)		
			Kel	Ks I			A	
+ sub	cstilaba	ità nume	rabile.					
Questo u								
a sonelobo			,			н,	H ₁ H ₃	
		00						
(() Mm) = _	LL (Ma)	Se, M	n sous	disgium	L .
	u=l "	V-1	<u> </u>				31.3000	
s è bai	ade Po	1,1	ed or	()	41 2		ML	
	130	~ 0	-50 074	k=1		K21		
1, ()	m. 1 >	4 (6)	Mr. 1 -	<u></u>	L CH.	و (ا	10; M25	
ks		L M (U	Sep 25 C	k=1	× (, r)		Limite	3 30,
			1		1 •			

Lezione 132

Teoria della Misura - LEZIONE 3 (AM2-133)
Titolo nota 17/05/2016
Escupi di unisura
1 La misura che conta i punti pu (A) = numero di el . di A
Misura di tipo 1 cou m = P(*).
2 Delta di DRAC. Sulgo xo & X a piacu e pougo
1. Chi Se xoex
1 Se x0€A 1 Se x0€A Se x0€A
Misura di tipo 1 con M = P (X).
3 La souma di 2 nisure di tipo N (N=1,2,3) è una
unisura di tipo 11 (nei casi 1 e 3 serve che la 6-alg. sia
la stessa). Il prodotto di una unisura di tipo xi per
un certo 2 20 è aucora una misura
La difference tra 2 misma vetrorials é ancora una
unsura vettoriale.
Costrurione du misure: -> Motodo I
-> Metodo II
-> Metodo III (dualitai con Ca)
THE TODO I Sta X trusierne, sia R S O (X) un sottotusierne
qualunque (uou vuoto), sia
m: R -> [0, +00]
m: R -> [0, +00] qualunque con m(p)=0. 1 incluso 0 escluso P
Pougo per ajus A 5 x
$M(A) := tuf \left\{ \sum_{k=0}^{\infty} m(R_k) : A \subseteq U R_k, R_k \in \mathbb{R} \right\}$


Lezione 133


Lezione 133

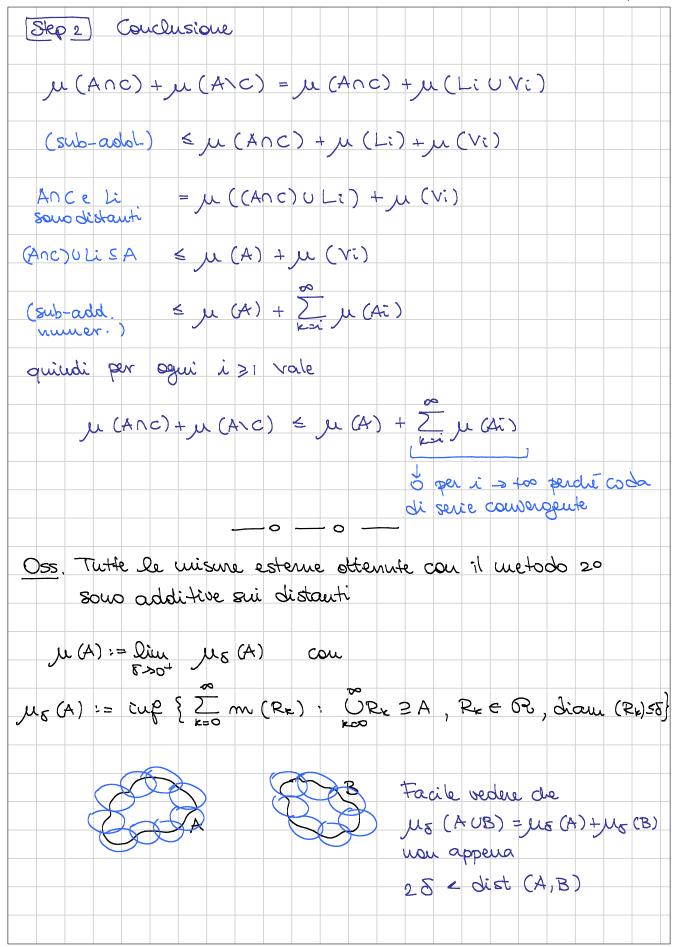
Escupio X:= R R = cutenvalli [a,b] (deado come mi pare con gli e m: R -> [0, too) m ([a,b]) = b-a wo con il metodo I ottengo una misura esterno u la misura di Lebesgue. Oss. A livello di tenia astratta nulla ganantisce de u (R) = m (R) \text{ Y R \in R.} Questo è vero per Lebesgue se dimostro un lemma d	
(deado come mi pare con gli e m: Ro -> [0, too) m ([a,b]) = b-a m> con il metodo I ottengo una unisura esterno u la misura di Lebesgue. Oss. A livello di teoria astratta nulla garantisce du m (R) = m (R) Y R \in R. Questo è vero per lebesgue se dimostro un leemno d	
m: Ro -> [0, too) m ([a,b]) = b-a no cou il metodo I ottengo una misura esterna u a la misura di Lebesgue. Oss. A livello di teoria astratta nulla garantisce de m (R) = m (R) Y R & R. Questo è vero per lebesgue se dimostro un lemma d	
De cou il metodo I ottengo una unisura esterna u a la misura di Lebesgue. Oss. A livello di terria astratta nulla garantisce de la (R) = m (R) ∀ R ∈ R. Questo è vero per lebesgue se dimostro un lemma d	de è
Oss. A livello di koria astratta nulla ganautisce de M (R) = m (R) ∀ R ∈ R. Questo è vero per lebesgue se diviostro un leuma d	che è
Oss. A livello di koria astratta nulla ganautisce de M (R) = m (R) ∀ R ∈ R. Questo è vero per lebesgue se diviostro un leuma d	Cité e
Oss. A livello di koria astratta nulla ganautisce de M (R) = m (R) ∀ R ∈ R. Questo è vero per lebesgue se diviostro un leuma d	
Oss. A livello di teoria astratta nulla ganautisce de M (R) = m (R) V R ∈ R. Ouesto è vero per lebesgue se diviostro un leuma d	
u (R) = m (R) ∀ R ∈ R. Questo è vero per lebesque se diviostro un lemma d	
u (R) = m (R) ∀ R ∈ R. Que sto à vero per lebresque se dimostro un lemma d	
Questo à vero per levoesque se diversor un lemma d	
Questo à vero per levoesque se diversor un lemma d	
Quedo à vero per lebresque se división un lemma d	
Sureno e vero per revesent se ovuosimo un suma o	
	~
dice die	
[a,b] & (bk-ak)	
$[a,b] \subseteq \bigcup_{k=0}^{\infty} [a_k b_k] \Longrightarrow b-a \le \sum_{k=\infty}^{\infty} (b_k - a_k)$	
Pri tu generale in R2 o R^ consider R= prodotto di e definisco un come in Riemann caso banale.	menternalli
e de l'uisse que cours à Pieureur care bourde	
	A
Oss. La cuisura di Q è O. Per agui E>0 posso nicoprit	e w
con intervalle divisi la sourre delle an Demoh.	ο ≤ ε.
(Nuvero i rasionali 9,91,,qu,	
	E 22-1
	→
k=0 L k 2 2 9k	
(X,d) metuco, Q = P(X) e m:Q >	70 400 1
	LC1 ,04)
come prima.	
Per agui 8 >0 e per agui A < X pougo	
$\mu_{S}(A) := \sup \{ \sum_{k=1}^{\infty} m(R_{k}) : A \leq \bigcup_{k=1}^{\infty} R_{k}, R_{k} \in \mathbb{R} \}$	
$\mathcal{U}_{\delta}(A) := \sup_{k \geq 0} \left\{ \sum_{k \geq 0}^{\infty} m(R_{k}) : A \leq \bigcup_{k \geq 0}^{\infty} R_{k}, R_{k} \in \mathbb{R} \right\}$ $\operatorname{diam}(R_{k}) \leq 1$	8 }

Lezione 133

Lezione 133

Lezione 133

Teoria della misura - LEZIONE 4 (AM2-134) Titolo nota 18/05/2016 Piassanto puntata prec. (via alta alla unisura di Lebesque) · Definisco m sull'insieme R degli internalli (in R oppine dei prodotti di internalli se sono in Rm) · Estendo ma tutte O (R) con il metodo I. Ottengo una misura estema µ: 6(R) → [0,+0] μ(A) := cup { = m (Rk): A ⊆ 0 Rk, Rk ∈ R} · Restringo u ad una 6-algebra M definita alla Caratheolory m= {MSR: u(A) = u(Anm) + u(A)m) VASR} · Si ottiene de u. m -> to, tos] à una misura nel seuso della Def 1, croè numerabilimente additiva sui disgiunti $\mu\left(\overset{\circ}{\cup}M_{k}\right)=\overset{\circ}{\sum}\mu\left(M_{k}\right)$ per agui {Mkgzen & m con MinMy = p se i ≠ j. Da questa seguira il passaggio al limite di u sulle succ. crescenti o decrescenti di rusieni succ. cresc. di cusiemi mos teo. di Beppo Levi suce decrese de rusieur con ju (41) e 200 ms 40. di cow. dominata.

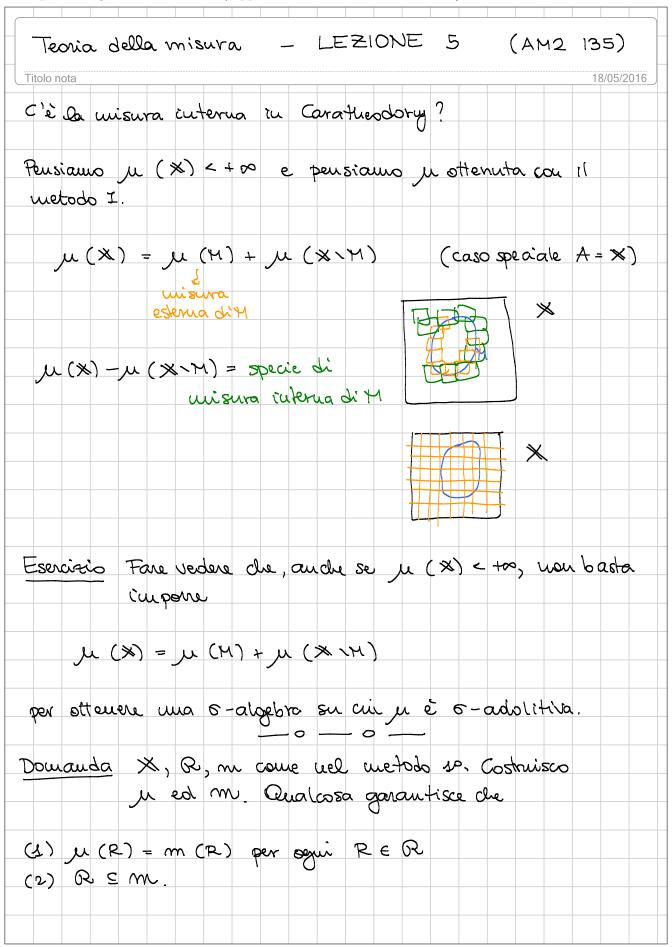

Lezione 134

										,,,,,		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30 171	acci.		- ~ ·			30107	~01
Dow	au da	. ^	Μ	<u>ک</u> د	odk	asta	aus	, e , .	nic	20	?									
* •				1.		1 .														
Dot-	Sia										ء د	grie	. Se	offo	iusi	eu	u i	Àς	*	
	e B	<u> </u>	∞	JOE	Ο	.D/2	YT?	77	Se	ی						-) —		B	
	5	ne s	9	(a)	67	,	α∈	A ,	Ь	: B	} .	> 0)				ر د د) /		
		0															\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	Drco	عىك	· u	uα	w	isu	ira	શ્ક	ew	a	سر	9	(×	.) -	⇒	<u>Lo</u>	,+∞	[د	م	
	addi	ovit.	Su	i c	he ik	au-	h s	se.												
						_	,			. (1			\1	λ	9		- 1-2			
		ju (AC) B) =	→	L	ተ)	+	K (1	3)		70	A	೯೮	9 0	X 570	euti		
Def.	Sia	(*.	, 4') n	net	لندر	, .	Sì	îus	لمندد	a c	ou	B	(>	()	La	sio	au c	l	
	algel																			
	tobol	ogic	۷).	G	از	مهم	ma	uti	ડાં	. (S ((%)	ત્ર	dic	, wa	d c	076	lia	w.	
<u> </u>													,				- 0	. 1		
Eser	منعن	\mathcal{O}	rai	whi	20	au	,	po	معلن	aw	, iu	1	R !	C) Č	u	IK.	' (
Teor	ema)	Sid	2	(×.	, d,) u	4 هد	lica	e.	Mic	λ	14.5	8	(×)	\ \	> <u></u>	O.	∫∞4		
											_								erat	u .
		All													0					
	B (*	`) ⊆	Υ	\sim	(=	=>	Ju	્ર	: ω	ddi	ti vo	ત્ર ક્ષ	ù c	tzik	aut	τ.				
7.	1 1==		- 17		C.			7 -	0	1.	4-		7		\	053	4.			
Dim	aper																	a.		
	(Pre																	~		
													,					u		
		J.	<u> </u>	=	<u></u>	P	20	(a))					((A)	4	B	
£																	/ · ·			
Alla	ra	Ju	(A	O.B) -		μ.	<u>(</u> Δ	UB)	V)	ん) L	+	U ((A(પક)		(L			
					INCE	7110	1 2	_ l	L (7	TT 1 -	- (/IL /	1		1					

Lezione 134

D 1			
🛎 Basta diru.			
Sia C S × un	duisso e sic	x A S X qu	olunque. Voglio de
			A
(A) ≥ u	(Anc) + M (ANC)	1
posso assumble E			21
Definisco, per og	mi izı in	tera	3
Ai := { x ∈ A :	1 < did (x	(c) < 13	
	2+1		
2	\:-1 (->	1 7 %1	
Li := \{ x \in A	: OLSE (x, C)	777	outaui
		1	
Vi == {x ∈ A:	o = dist(x, c)	4 2 3 " 4	taui"
₩	80		
Allora Vi = () Ax e	AC = Li	. U Vi
K-5	, C		audo de C è duisso
		quiudi se x	
Step 1) Dico che		dist (x, c)) >0
15 TOP 2 15 TO COL			
\$ \$			
X=1 Ju (A _k	.) < + ∞		
A1, A3, As, 80	w a 2 a 2 o	listanti, quiu	oli di
~			
M (U Azi-	$() = 2 \mu($	(P	acile indusione)
ouirdi D.	(A 2 i _ i) €	u (() Az	1) < m(A) < too
721		7	
Analogamente sin			
Authoramente sur	·pro		
7	/ / /		
(Ani)	= M () /	42i) € ju ((A) per sogni n
La cui Da tesi			

Lezione 134


Lezione 134

Corollanio	TWA	ri 1 bon		Souo			secong	o lebesque!
Esercizio	Iu R wisum	o iu s	< Cou	Hi gli pantio	iusie La lau	ui n	uwera	bih hanno
Basta nice	prirli	०० इरे	detto	A =	₹ ao	,a,,	, an,	. }
	A S	K [0		+				
			70 -	ε <u>ε</u> 2' 9				
Via bassa								
• Definisce (unioni	d' plu	ichwall	. la u i). Bo	uisura istauo	dei pl	urivetto Li FIN	zugoli ITE	
· Per agui	APER	2 079	defi	iuisco				
,	m (2) := &	rb { u	(P)	: PS	Ω, Ρ	plunik	traugob)
• Per cogu	i COMP	ATTO K	def	iwsco				
ſ	m (K)	:= iup	. Em	(4): (4)	P2k	, Ppl	urixetta	{ olagur
· Per ogu								wiselva
								"esterna"
							patto	"cutema"
Prop. r	YI & CA) = m	(A)	per	sym :			

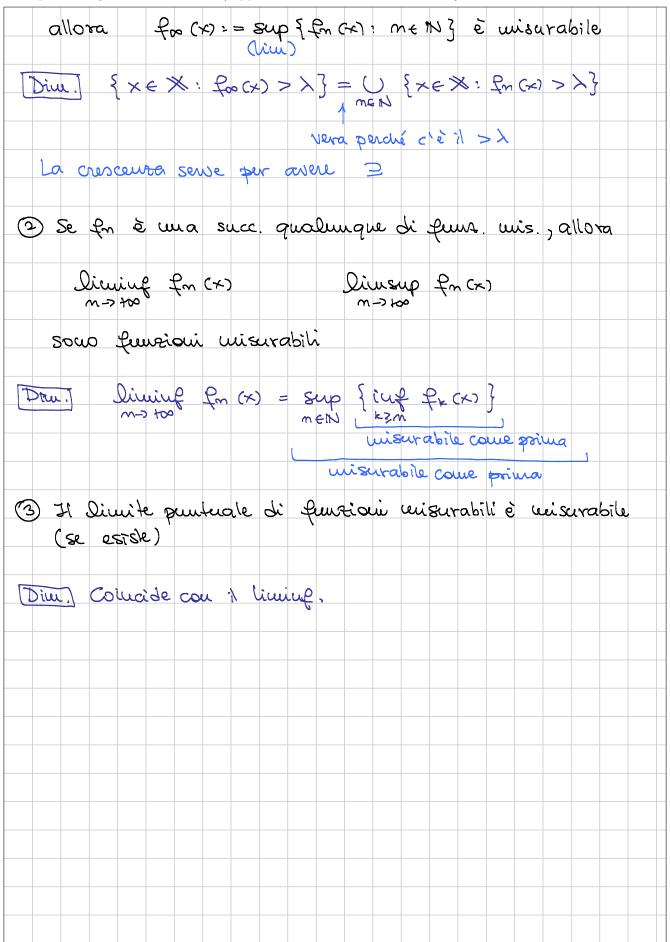
Lezione 134

Ţ	<i>Se</i> €.	5	Se .	Þer	CC	wo	7	ale	J _r	. <i>S</i> e	gui) o	rì	╾,	al	br	2 9	ώ	d	و ،	Ą	
																				me		
		-	_	b 1								O										
		<u>ل</u> م	+(+)-	0 (m	do	di	di	O.	Dar	Ste	ssa	Co	sa !								
		¥	3 {	>0	=	i E	ع>	ے ,	Д.	ک ع	2ε		+	- C	\wedge	\sim ($_3\Omega$)~	w ((Kε)	(≥	ε.
						0	pt.	_		a	pert	0										
							`															
F	eore	wo	2 \	G	li	cus'	iem	l u	sin	uno	abil'	it	u (PU.	sto	se	NS	<i>S</i> E c	∞	u	ua	
												(G)		•								
					١ .	\sim						tvo										
												del		ltro	r Ce	λ Nt2c	MF.	lou	е.			
								0														
							_				0											

Lezione 134

Lezione 135

Lan	v sp	ost	φ (S	si s	ક્ટ ક	stau	au	u	ولالو	- ìp	otes	si c	ا نلا	٦AF	(N –	-kc	LH()GC	RO!	
Ipoj	esi	:	C ((clui	uso	v ex	5V 1	cou	nde	me	u l a	ne e	ol
			(ti) (W. '	ou. R	, —3	Z'	0 ₁ 4	-∞ -	ر ا في	w	wa	Pr	૯ -	uù	.Suy	a,	Ċίς) e	
							_			e a					Œ	, 0) COO	ب _{لا} کر ا	٤		
							~ 	R	n e	. G	ટ			R	ι Λ	RJ	2	P	per	ī≠;	J .
				a						\sum_{p}^{N}				100							
<u>Oss</u> ,	<i>S</i> :	ব	ppli												_				a		
	ge	wen	rato	19	لعم	zi.	iut	emo	نللہ	, ci lor	<i>.</i> 00	Ø	0	uti	ene	. Q	٩ `	uu	io	i	
	qu	ell.	00	أمر	ಯ	8				SI					_					ù	
		•	eme																~		
ESET	AD (1	0	DI .	71	IAL	-[]			1.	o di					»u	len	, SU	rat	مالا		
<u>)s</u> ,	Lo	i U	uis	ura	g	i l	ebe	Sox	ne	ئ	ζW	savi	ìau	te.	per	tr	as\a	zai c)li		
	(k	oast	a t	ras	love	<i>j</i> _	nic	rga	im	euti	: 2	eQ.	tue.	400	l od	·)					
Cous'	: de : y	س (=	R =>	/Q *) -4	cio E O	ا کا	e c	tto 7uc	su rie	IR uto	la		Llan	io	æ	di	eq	υʻu	,	
														* ^	, (A	(l. e.	0 Si 5	abou a		
Per																					
Gro																					


Lezione 135

Droo	્	æ	V	710	N	ر م	wi.	zut	ab	i le	. S	<u>w</u>	ОШ	o 0	Jue	0	Zev	NOV	કા જ	n	
• 1																·	_ `				
`	Vm	; =	V	+9,	u.	À	×ιις	ra		R	=	1 (U.3)) '	٧m	(भःऽ	ziu	uta			
6	२ प्	ùι	di	Se	ę,	<i>982C</i>	u	шs	ura	bile											
			Ju.	(K	2)	=	r > ∑	ر ار ار ار	m (Vm	D Fut	ri la	z 5t ≠ 4	೬ಽಽ ೯	» (L	ب ۶	wro	,			
•		mer	۵	٦,	roq	iou	ali		r.,	Nz	,	., N	-n ,		tu	L	ر, آ) ૯		_ Y	D .
•												, (Ξ ∑	Ο,	2]	ę	- 9	wi	ndr		
	2 3	ار ج	r (U->I	V	n) sow	= A Sgir	u z	ر آر د	2	Vm Da	\\ \sigma_{\infty}	e 7	60 Je	9w + 00	امنا	ī				
FUN Sia		ואכ	4	LIS(ASC.	BIL	1	Si	α	()	≪ , '	Μ,	, J.L.) (uw	s c)O/A	<i>10</i> 0	<i>ب</i> د ر	m 2c	ιro
<i>5</i> (0				ද :	>	\ -	->	Γ.	- «	+ رد	.~	3	(૧	stv	uui`	CO	шр	usi	>		
Sic	لمنح	ا ۔	he	4	کھ	m	Su.	rab	ile	∕}/	ی										
			{ ×	(€)	×	: _	? (×	.) <	λ	} ∈	ΛΥ	υ		A	λε	R	,				

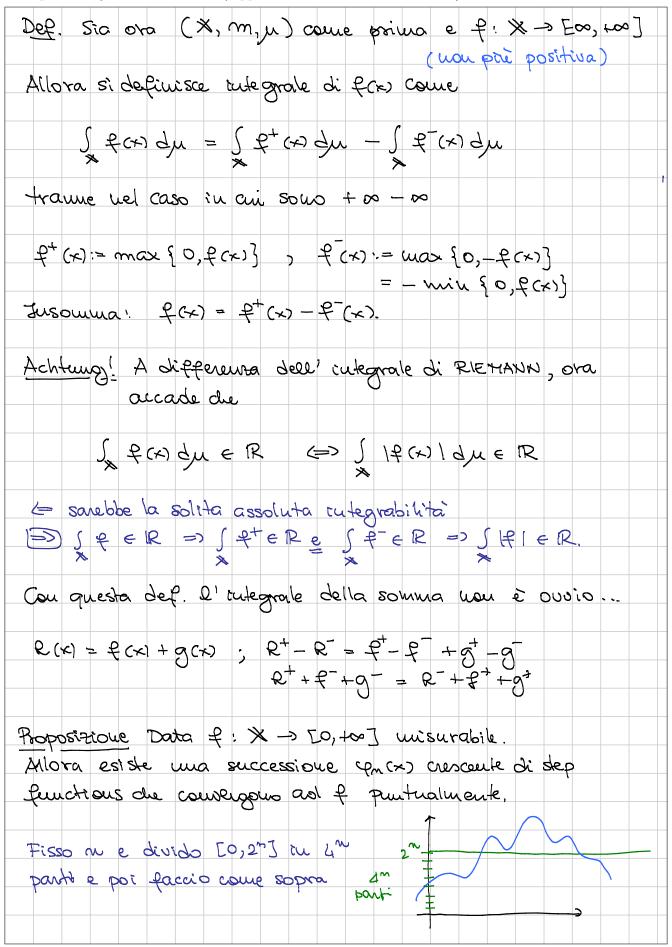
Lezione 135

Propositione	Nello desso	setting della def. sous fatti equiv.
{ x e x : 4	$(x) < \lambda $ $\in M$	V YXER
	> \(\)	9
	> X	
{ x e X : :	PCAEAJEM	N 4 A & B(R)
Dim. {xe	*: {(x) z }}	= { x ∈ x ; £ (x) < x}
{×e≫:	早(*) > > } =	: 0 {x ∈ x: 2 (x) ≥ x + ± }
Le controinne	mogini degli	cutenalli stamo in me facilmente
si amira ai	Boreliani.	-00
Proprietà delle	le delle	Pensisei misurabili
	rabile => 121	
· •	1 1 1	ente => cf misurabile
	ci sous problec	ui di ±∞, la somma di 2 2bile
{xe X: \$	(x) +g (x) > > }	$\} = \bigcup_{a,b>\lambda} \{x \in X: f(x) > a, g(x) > b\}$
		(a₁b) ∈ Q² m
(4) analogo	per il prodotto	(auche via quadroto
		$(2+9)^2 = 2^2 + 2^2 + 2 + 29$
PROPRIETÀ M	MPORTANTI	
3 Se fm (x) é una succ	essione crescent d' funcioni misur.
cioè (2n+1 (x) > fm (=	essione crescent d' funcioni misur.,

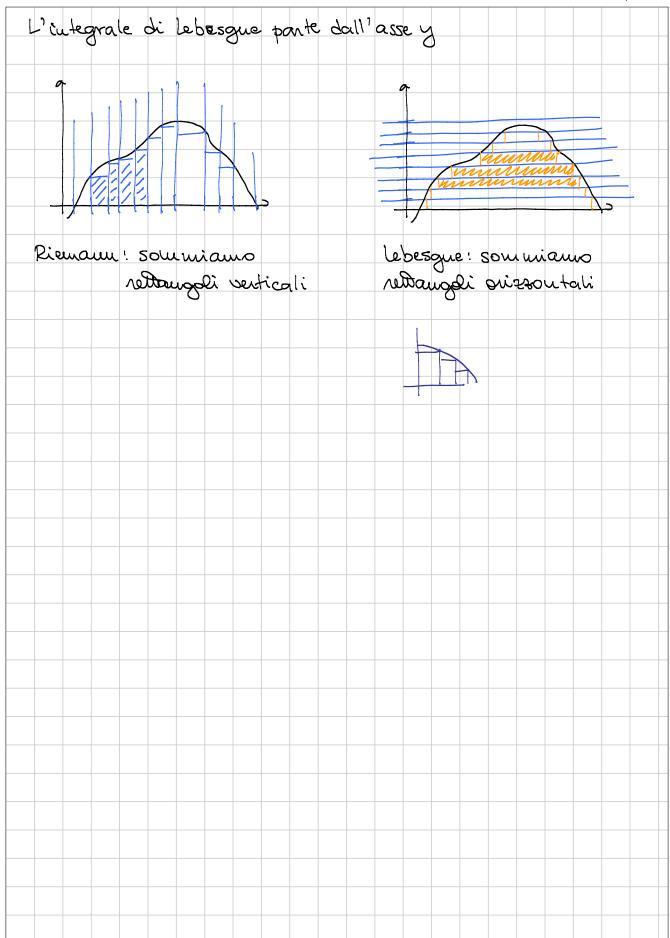
Lezione 135

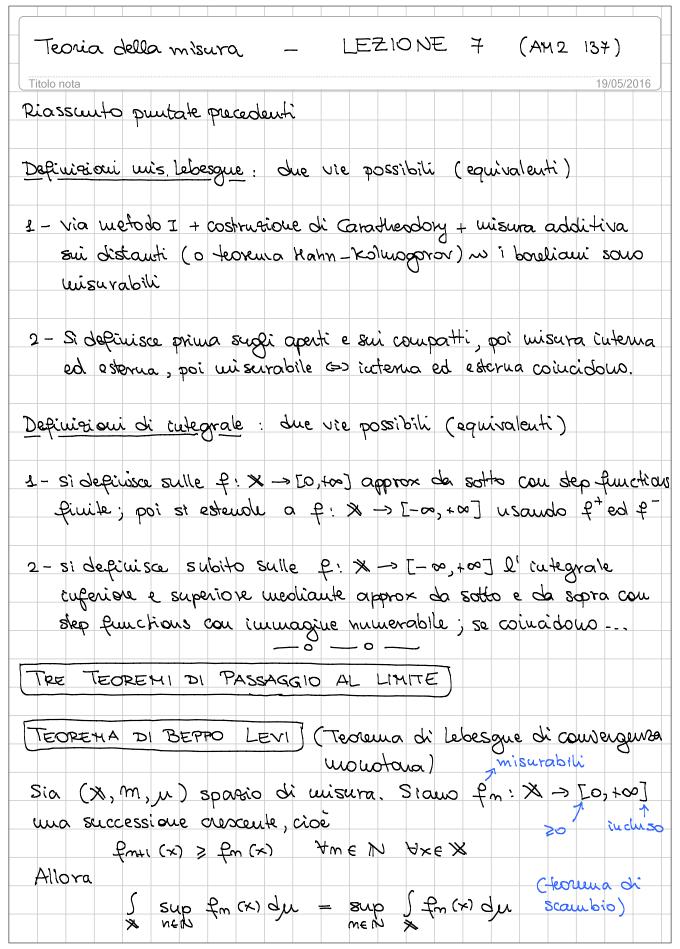
Lezione 135

Teoria della misura –	LEZIONE	6	(AM2	136)
Fitolo nota				18/05/2016
DEF. DI INTEGRALE				
Def. (Step function) Sia (Oua step function à una c				
caratteristiche, quiudi del		-ficu	ia) or to	whou
$\varphi(x) = \sum_{k=1}^{m} C_k \mathcal{I}_{k}$	tk (x)			
Jove	so xeA			
dove 1/4 (x) = { 0	se X&A			
e Ai,, Ak solo uisura	<i>bl W</i> .			
DSS (Solita seccatura) Ogui	dep function	φ (×	si può s	nivere
shupen osium obam u	. Ai disgiunti			
se ho 7/1 [0,2] + 5/1 [1,3]				
LO,2] - LI,5]				
= 71[0,1) + 12121,23	+ 5 11 (2,3))
$\varphi(x) = \sum_{\lambda \in \varphi(x)} \lambda 1$	x c % 2 (0 (x) = \ }	(x)		
λεφ(%)	,			
Equivalente Una step fun	chique à una s	0 ×	-> 12:	
Con commos		۲. ۶۰	- 11	- BULY CLEVE
9				_
Def. Sx 4(x) du :=	λεφ(%) λμ{	×	: 6(x) = y	\}

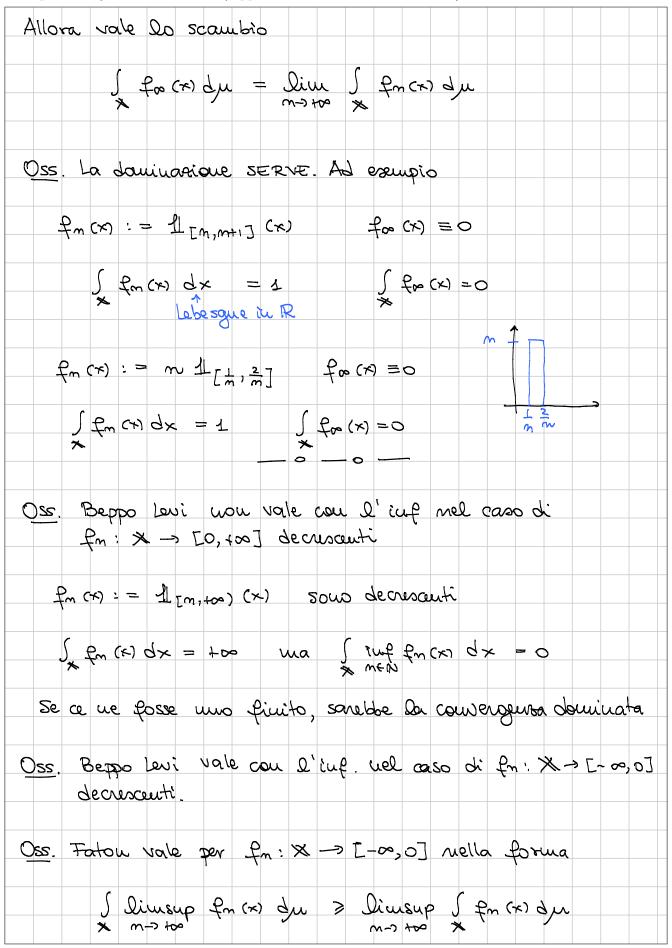

Lezione 136

			at Teoria detta Mis		31
Det pis	<u>.</u> Awu	rettianno Step	function o	e immagine humer	ત્
				con la serie, almeno	
	se sa	serie comon	re assolutame	eute.	
Def. di	utegrale	per feurzioe	ui positive)	richs	0
Dovlo (>	«,m,u) spario di u	uisura, e d	ata $f: X \rightarrow [0, +\infty]$	
wisural	nag bis	yamp			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
(Pc~> -\.	= S. m 3	(1000 4	(0 (0) < P(0) Hx 6 X	
*	4(~) 0)	1 := Sup {	× (7, G).	(p(x) ≤ f(x) & x ∈ X (p(x) ≤ f(x) & x ∈ X	
				6(x) exp time thou ?	
F 0 11			0 -	<u> </u>	
Def. alter	nativa	(x, m, μ)	2 4, % >	Lo, too J come sopra.	
J 20	(x) du :	= cuf { } c	و (۱۲ کار : ۱۹ و ۱	$(x) > P(x) \forall x \in X$ $(x) > P(x) \forall x \in X$	
*		, ,	رو (x) s.f. humerabile }	
S P	E) du:	= Sup { }		(x) < P(x) }	
* *					
(1)a	0- 2000	Pana Guicha	50 9 50 400	è wisurabile.	
Cittle Sio	20 703	Town and	36 7 6 7 6 6 6 6	C 15 contact 5(-5); (f)	
	7 0	W - T-	. 7	1 .1	
Teorema) 26 £	: X -> Lo,	to J & uusu	rabile, allora	
	(-			\tag{\text{\tin}\exiting{\text{\ter{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\ti}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\ti}\tintt{\text{\text{\text{\texi}\text{\text{\texi}\text{\t	
	J & C	x) du =)	\$ (x) du =	J & co gn	
_	/~				
Dem. M	olto fac	cile: prima c	iguaglianta (quello de rasgiunos	
				cou le somme	
	miali).				
)		livrostrare on	seconda ag	un Diaura.	
711	ba 0	51 CC 20 11	<u>- </u>	2 -1 = 120	
	July N	11 Caso 14	ari S* * & c	KIGM = +00	1
	e Orman	+ grawle).			


Lezione 136


Lezione 136

Lezione 136


Lezione 136

Lezione 137

Oss, L	HS e RH:	s possous v	aleve + ∞		
OS5. Se	2 fm (x)	= 11 _{Am} (x), c i passaggio	al limbe d	2 An ed é	: il konuna
		OJ Sia (*) J misurabi			
	living	fm (x) du	< Diving m->+00	S for (x) d)	J.
		1 < shetto		emago [5,0.	% = R
	fm (x) =	(4) [1,2] (x) 25 w	dispani	
		JVERGENZA			
funzioui Supponi	i wisura	sp. di duisum	ucoli di seg		
(i) esisk		10 PUNTUAL: == Din f		∀× ∈ ×	
(71) esis		~> [o, +∞]			
	7. 0	< q (x)	» ∀×∈×,	Yn∈N.	"Do un variou
		J			

Lezione 137

Lezione 137

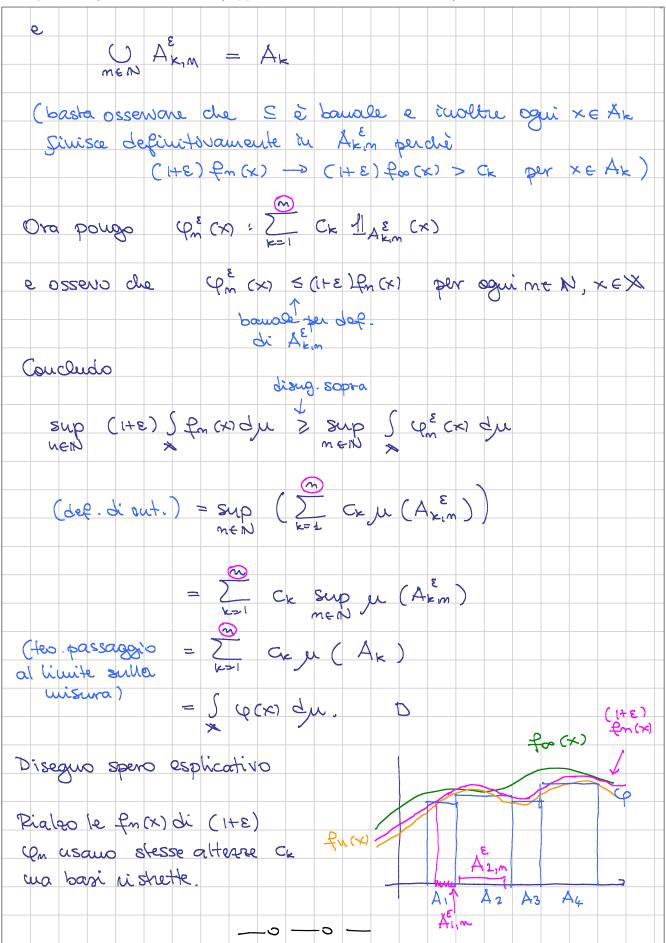
Deu. Fortou doto Beopo Levi Pouiamo gmco: = inf fr cos dx e x dm f N Allora gmcx) & fr cos dx e x e per egui k z m, quindi e facendo l'tuf su k I gmcx) du & inf I fr cos du x zm x Ossenso due gmcx è una successione crescente e Diming fmcx = sup gmcx dx Martin def ciming Allora Allora (Beopo levi) = sup gmcx du x men gmcx du (st) & sup la gmcx du (st) & sup la gmcx du men levi fr cos du (def d liminf) = liming f fr cos du men levi fr cos du (def d liminf) = liming f fr cos du men levi fr cos du																		10/20.
gmco: = inf fx co	Dia. F	atou	date	o Bet	po L	evi		70	uia	u								
Allora gm (x) \leq \frac{1}{2} (x) \text{ \text{\tex{\tex																		
Allora gm (x) \leq \frac{1}{2} (x) \text{ \text{\tex{\tex					, 4					11.	0 0	~			_	1		
Allora gm (x) \leq \frac{1}{2} (x) \text{ \text{\tex{\tex		$\int_{\mathcal{M}} \mathcal{C}_{\mathcal{K}}$. =	LUE X	2 1	-k	(*)			4	x E	X		m.	+ 1	2		
quiudi Sam (x) du Le faculdo l' truf su k Sam (x) du Light Street du Reservo du gm (x) è una successione crerente e Diminf Pm (x) = sup gm (x) Met Diminf Allora Allora Allora (Beppo Levi) = sup gm (x) du Met				~ 0 /V														
quiudi Sam (x) du Le faculdo l' truf su k Sam (x) du Light Street du Reservo du gm (x) è una successione crerente e Diminf Pm (x) = sup gm (x) Met Diminf Allora Allora Allora (Beppo Levi) = sup gm (x) du Met	Allora	a_	(x)	< P.	(%)			A×	4	×	٩	Der	. 100×	ii	k	2 M	,	
San(x) du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												1	0					
e facendo l'enf su k \[\int g_m (x) d_u \leq \text{tuf} \int \frac{f_x (x)}{2} d_u (*) \] Osservo die g_m (x) \(\cdot \) una successione crencente e Diming \(\frac{f_m (x)}{m^2 + p^2} = \frac{sup}{men} \) g_m (x) \[\frac{def. di Diming}{d} \] (Beppo levi) = \frac{sup}{men} \(\frac{g_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \) \(\frac{f_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \)	quition	-																
e facendo l'enf su k \[\int g_m (x) d_u \leq \text{tuf} \int \frac{f_x (x)}{2} d_u (*) \] Osservo die g_m (x) \(\cdot \) una successione crencente e Diming \(\frac{f_m (x)}{m^2 + p^2} = \frac{sup}{men} \) g_m (x) \[\frac{def. di Diming}{d} \] (Beppo levi) = \frac{sup}{men} \(\frac{g_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \) \(\frac{f_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \)																		
e facendo l'enf su k \[\int g_m (x) d_u \leq \text{tuf} \int \frac{f_x (x)}{2} d_u (*) \] Osservo die g_m (x) \(\cdot \) una successione crencente e Diming \(\frac{f_m (x)}{m^2 + p^2} = \frac{sup}{men} \) g_m (x) \[\frac{def. di Diming}{d} \] (Beppo levi) = \frac{sup}{men} \(\frac{g_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \) \(\frac{f_m (x)}{men} \) du \[\text{men} \) \(\frac{f_m (x)}{men} \)			an (K) d	M.	<] :	Pk 1	(K)	Ju P								
Sanco du e cut strondu (*) Diming fin (x) = sup gn (x) Allora Diming fin (x) = sup gn (x) Allora Def. di Diming Allora (Beppo Levi) = sup gn (x) du men x men x (te) & sup cut strondu men x (def. di Diminf) = Diminf strondu men x (def. di Diminf) = Diminf strondu men x (def. di Diminf) = Diminf strondu men x		×	0				>											
Sanco du e cut strondu (*) Diming fin (x) = sup gn (x) Allora Diming fin (x) = sup gn (x) Allora Def. di Diming Allora (Beppo Levi) = sup gn (x) du men x men x (te) & sup cut strondu men x (def. di Diminf) = Diminf strondu men x (def. di Diminf) = Diminf strondu men x (def. di Diminf) = Diminf strondu men x			11															
Ossenso die gm (x) è una successione cressente e Diming 2m (x) = sup gm (x) \forall x \in N Men def. di Diming Allora (Beppo Levi) = sup gm (x) du men x men x (to) \le sup men \forall fr (x) du men x hen x fr (x) du (def. di Diming) = Diming \forall fm (x) du men x x x x x x x x x x x x x x x x x x x	e face	ngo	U' BU	f su	k													
Ossenso die gm (x) è una successione cressente e Diming 2m (x) = sup gm (x) \forall x \in N Men def. di Diming Allora (Beppo Levi) = sup gm (x) du men x men x (to) \le sup men \forall fr (x) du men x hen x fr (x) du (def. di Diming) = Diming \forall fm (x) du men x x x x x x x x x x x x x x x x x x x																		
Ossenso die gm (x) è una successione cressente e Diming 2m (x) = sup gm (x) \forall x \in N Men def. di Diming Allora (Beppo Levi) = sup gm (x) du men x men x (to) \le sup men \forall fr (x) du men x hen x fr (x) du (def. di Diming) = Diming \forall fm (x) du men x x x x x x x x x x x x x x x x x x x			7 ~	N 2	<	1	φ	(P	_ (~	5 2					*		
Ossenso die gm (x) è una successione cressente e Diming 2m (x) = sup gm (x) \forall x \in N Men def. di Diming Allora (Beppo Levi) = sup gm (x) du men x men x (to) \le sup men \forall fr (x) du men x hen x fr (x) du (def. di Diming) = Diming \forall fm (x) du men x x x x x x x x x x x x x x x x x x x		*	Ju r	ر کی ا		K	SW	ر *	+	R CL	,				_			
Diming In (x) = sup gm (x) $\forall x \in \mathbb{N}$ Allora Siming In (x) du = Sup gm (x) du * mon too (Beppo Levi) = sup gm (x) du men) * gm (x) du (tx) \leq sup \text{Sup (u)} \rightarrow \frac{1}{2} \text{K} (x) du men) * \text{Result} (def. di Diming) = Diming \infty \frac{1}{2} \text{M} (x) du m-> +00 **																		
Diming In (x) = sup gm (x) $\forall x \in \mathbb{N}$ Allora Siming In (x) du = Sup gm (x) du * mon too (Beppo Levi) = sup gm (x) du men) * gm (x) du (tx) \leq sup \text{Sup (u)} \rightarrow \frac{1}{2} \text{K} (x) du men) * \text{Result} (def. di Diming) = Diming \infty \frac{1}{2} \text{M} (x) du m-> +00 **	Ossewo	de	م م	m (x)	e	uu	a	suc	روع	0,2	ue	CV	war	Ne	و	,		
Allora September of the control of			0															
Allora September of the control of		0-	. ^	0										1	_ 1			
Allora September of the control of		Jum -	ing	4m	(K)	_	80	P.	3	ا ریم	7)			X	$\leftarrow 1$	2		
Allora September of the control of		(0)	100			1	me	12										
Sliving for (x) du = Sup gor(x) du * no too (Beppo Levi) = Sup gor(x) du men * (t) Sup cuf Speculus men +2n * (def. di Diving) = Diving Speculus no too no too no too					90	₽.c	y: W	imi	uf									
Sliving for (x) du = Sup gor(x) du * no too (Beppo Levi) = Sup gor(x) du men * (t) Sup cuf Speculus men +2n * (def. di Diving) = Diving Speculus no too no too no too	XII																	
(Beppo Levi) = Sup S gm(x) du men x (sef. di Diminf) = Diminf S fm (x) du m->+2m x	Allora				-	308	, Qì	wie	f									
(Beppo Levi) = Sup S gm(x) du men x (sef. di Diminf) = Diminf S fm (x) du m->+2m x																		
(Beppo Levi) = Sup S gm(x) du men x (sef. di Diminf) = Diminf S fm (x) du m->+2m x		Dimi	مه ع	2m (x)	9 m	=	- (5	up	a	n Cx	29						
(Beppo Levi) = Sup S gm(x) du men x (sef. di Diminf) = Diminf S fm (x) du m->+2m x	*	かった	×				>	N	new	0								
(def. di Diminf) = Diminf S fm (x) du (def. di Diminf) = Diminf S fm (x) du m->+000 >>																		
(def. di Diminf) = Diminf S fm (x) du (def. di Diminf) = Diminf S fm (x) du m->+000 >>																		
(def. di Diminf) = Diminf S fm (x) du (def. di Diminf) = Diminf S fm (x) du m->+000 >>			(Bep	00 Les	(;	=	· &	up		0	S C	so d	Lu					
(def. di Diminf) = Diminf S fm (x) du (def. di Diminf) = Diminf S fm (x) du m->+000 >>			1	T			m	EN	*	, c)							
(def. di Diminf) = Diminf J fm (x) du m-> +00 x																		
(def. di Diminf) = Diminf J fm (x) du m-> +00 x				(♠)		<	۶۰	up	0	uf		1 4	k (x) q	μ			
							m	e M	K	5m		×						
							_			1								
		(gol	.di	Dimi	4)	-	<u>\</u>	Llw	iuf	7	7	m C	c) q	μ,				
							٥	ν-) :	100	7								
						- 0		_ c	· –									

Lezione 137

Variau	he di'	Bepp	s levi	per	succ	. decr	العجا	ut-					
uisu	n,u) .rabili							· [-o	0+ ره	o] d	ecus	œuti	ڡ
Suppo	maur	o du	ر پر	₽1 C×	J gm	. < +	∞ .						
Allora		(<i>C</i>					
	;) iu > ~	17 ((x)	dju	= t	en ;	× / / /	(*)	д×			
Dim.)	Basta	fare	. le	diff	Augre	e, ci	ં કર	pane					
	9n ((X):=	: 4,	(*) -	2 m C	; ~) .							
Allora	le (en:	× –	ο Σο, ·		Souc	s a	wa	Succ	. cre	sant	e e	
	<u>S</u>	روس ر	k) dj	∪ =			_	- ∫ <u>4</u> *	2m (1	es gr	٨		
Applico	Верр	o Le	·.		nu	wero							
>	Q00 ((x) d	μ =	- Su me	φ.	S (qn ≫	, (×)	du					
Ma	RHS								(*)	du			
٩	LHS												
				a du					a ju				
Sempli.	ficaus		J 2,	(K) q	u '	uo (la +	િકાં -					

Lezione 137

Varia	nte c	ان ^ب ا	Tal	ou	_b&	(i	\ \i	iws			W 11								,	
(≫, r Suppo							ra	, ±	ξ _ω	; >	X -] د	&	o, tv	[∞	•				
tale							ζ.	-⇒ '	E c	4 ر	_∞_	3								
	m CX					<i>A</i> -	×÷	*	, ,	+mt	εN									
\ > *	904	() d,	۷.	< +	_000															
Allora	2		S.	lic m-	WSt.	LP	₽r	, ('X	ا ط	u	>	Di	msr	ф	<u></u>	ţn	(*)	gu	u	
Drun.]	Ca	suc										∧	-> t*	<i>y</i> u	_					
	Qn.	(*)	70	9	(X)		L m	(x)		C	lm '	. ×		> [(٠,٠٠٠	~]			
e app	ماناده	آ١	Fo	rots	ا د	las	S10	0	alla	λ .	Qm	3	.0	do	po	an	u '	922c	Wat	0
(∵ ~->	ing	C	_{اس} ([x]	7	3	(*)	_	Di	u Se	ip:	fm 1	(X)						
	(M-)	402					_ 0			0		_								

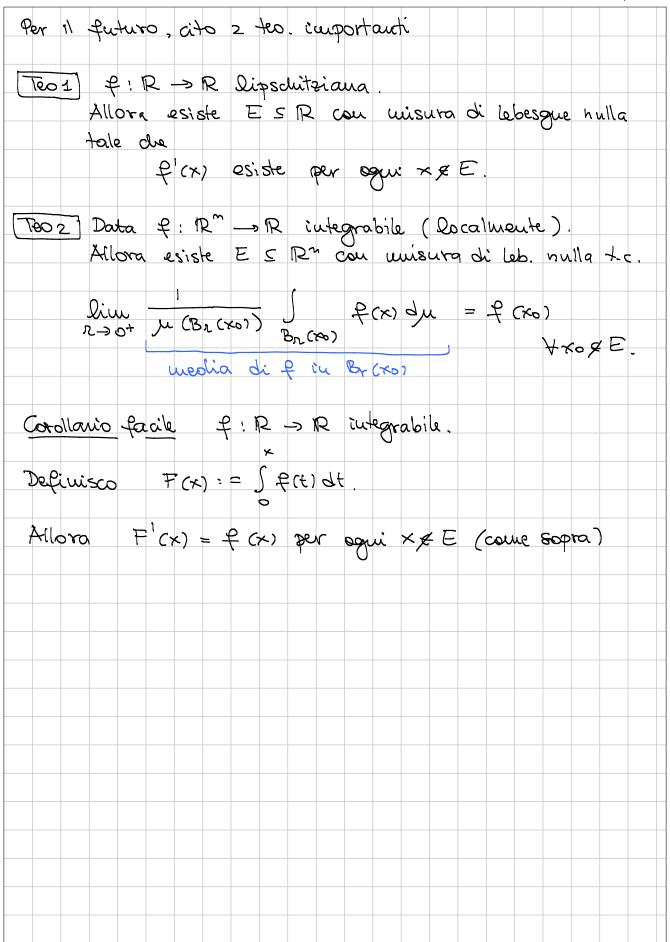

Lezione 137

Teoria o	Jella	. w	isu	ra	_	-	L	E	ZIC	1/1	Ξ	8		(A	M2	_ \	38))
Titolo nota																19	/05/20)16
Dim. como	ngen	Aa (mok	ua	Ha	der	10	For	tou	7								
	-0-																	
Ipolesi	١.	en c	ے \ د	a	(×)				(O) (X	2 4	ıı	۷.	100				
70, 01		\ C .		Ü					%	J.c.	-							
5) -1					__	_0												
St diwosh	a p	ia c	u se	wer	are	, ex	~											
C 0.					_			C	_									
S living	4	n (K)	gh	€	نلا	wi	nf.	J	4	۸ (۲٪	di	٨						
	000	ia	→	٤,	Diu	LSU	ρ.	\ \$	m (7	r) 9	M							
					(J-)	100	>	•										
				<	5	Diw	SW	p £	m (ل ا) (4m							
					~	W->	+00											
42120 02	:\	08	9_	C.C.		(DI)	~/~	1121	= >		ll o	~	D>	می	1_L	10		
Se esiale	,	n-7 70	b tu	()		110	-1-		ر عد			-11.	7	ر. . ا.	1.1	,3		
								رمیا							4	0.		
Le due di	suge	goar	iaw	ke '	6	(4e r	alı '	So	w	90	casi	+ 1	oct	DW.				
o Quella	cou	-1/	lim	sup	é	طل	ne.	mia	nte	ď	F	ots	W	દ ડ	fra	40	L	
Da dow	ina	wois																
				Pm	(4)	<	Q	(x)		(Da	Swi	ua	٠. ٥	Jall'	at	6)		
							O											
o Quella	C	15	Cia	ιμρ	Ď,	71	For	tou	اے	059	ico	C	anli	cat	~	G		
	٠		30-00	J.				, , ,			,.00	- 00	L P.					
(0 (
وس (۲	+) - =	= 7	m CX	-) +	3	(*)												
																	-	
Queste	wos	0	20	per	di	[- 4	2 ~ 1	(*)	>	- 6	7 (*	-)	(D	SW.	da	ba	222
					0			0										

Lezione 138

	Coroo de Theatas Mattheward 2 11.11. 2010/2010
Dim. consergenta mondona	fn (x) ≥0 fn (x) 1°
Tesi: Soup for (x) du	= sup \ \ \mathcal{L}_n (x) d_11
Di Facile perché forces	> Pm (x) \\ \tau \cdot \
\$ 20 (x) du 3 5 £	Em (x) du 7m EM
e ora basta fare il sup i	tu M.
[\le Volendo posso Suppone Sia \(\varphi\): \(\times\) \(\times\)	una qualinque step function
con immagine finita $ \varphi(x) = \sum_{k \geq 1} C_k 1_{A_1} $	
	. E × disgianti misurabili.
S φ(x)dx ≤ sup men	5 fm (x) dx.
In realtà mi basta di	mostrare che per ogni E >0 vale
J Q(x) dx & sup mein	(1+E) J Pm (2) dx
For agui m eN pougo	
$A_{k,m}^{\varepsilon} := \left\{ \times \in A_{k} : (1+\right.)$	
Ossewo che Arn è cresc	cente rispetto ad n (fin somo 1)

Lezione 138


Lezione 138

Back to au	volisi 2 Teo	remi di continu integrali dipenol	ità e derivabilità unti da parametro.
(×, m, u)		, (a,b) & R	
4	?: (a,b) × *	→ R	
e pouiamo	$\varphi(t) := \int$	{ (t,x) du	integro in ×
[Lameros]	(Confinnità)	Setting come	Sopra
Ci) per agui	te (a,b) la	Cemaione × →	2 (t, x) è misurabile,
(1i) per agui	(× < × & (Remaione t ->	£ (t,x) è continua in (a,b),
(100) 62/846		5, →05] take 04	
	$\int g(x) dx < g(x)$	the (aik) 4×∈×
		è continua.	
Dim J Prend	o una qualu	ique succ.	
	a,6) = tm -	> t∞ ∈ (anb)	
e wostoo	due (p (tm)	-> φ (too), α	rice - Dimite puntuale
	(tn, x) du (x)	· • •	- limite puntuale 2) du (x)

Lezione 138

Stampato integrate dette tezioni (Appendice di Teoria detta Misara)	40
Teorema 2) Stesso setting.	
Suppositions de	
(i) stesso (i) di prima	
(ii) per ogni x ∈ × la funcione t -> f (t,x) è derivab	ile
λu (a,b)	
(iti) per agui té (a,6) d'integrale & f (6,x) du (x) E IR	
(iv) esiste o. × → [o,+o] t.c.	
Journasi	oue
Jacob della	
12, (6x) \leq a(x) \forall \forall \eq (016) \forall \times \leq \times	
$ \mathcal{L}_{\xi}(\varepsilon, x) \leq g(x)$ $\forall t \in (a, b) \forall x \in X$	
Allora (e: (a,b) -> PR è derivabile e vale	
$\varphi'(t) = \int \mathcal{L}_t(t, \pi) d\mu(\pi) \qquad \forall t \in (a, b)$	
Diw.) Preudo to E (a.b), preudo una succ. Rn ->0 e	
uostro die	
lin ((totRn) - () (to) = S ft (to, x) du (x)	
lin	
L'argoniento del LHS è	
J (to+Rn, x) - ₽ (to, x) Qu (x)	
3m(x) & om (x) -> ft (to,x) PONTUALME	NTE
Se trovo una dominazione per qui (x) souo Ok	
Ign (x) = ft (qualde parte, x) s g (x) per la	
dominazione	

Lezione 138

Lezione 138