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Abstract. We show that the universal cover of a compact complex surface
X is the bidisk H × H, or X is biholomorphic to P1 × P1, if and only if
K2

X > 0 and there exists an invertible sheaf η such that η2 ∼= OX and
H0(X, S2Ω1

X(−KX) ⊗ η) 6= 0. The two cases are distinguished by the
second plurigenus, P2(X) ≥ 2 in the former case, P2(X) = 0 in the latter.
We also discuss related questions.

1. Introduction

The beauty of the theory of algebraic curves is deeply related to the manifold
implications of the:

Theorem 1.1 (Uniformization theorem of Koebe and Poincaré). A connected
and simply connected complex curve C̃ is biholomorphic to:

C̃ ∼=

 P1 if g = 0
C if g = 1
H if g ≥ 2

(H denotes as usual the Poincaré upper half-plane H = {τ ∈ C : Im(τ) >
0}, but we shall often refer to it as the ‘disk’ since it is biholomorphic to
{z ∈ C : ||z|| < 1}).

Hence a smooth (connected) compact complex curve C of genus g ≥ 1
admits a uniformization in the strong sense (iii) of the following definition:

Definition 1.2. A connected complex space X of complex dimension n admits
a uniformization if one of the following conditions hold:

(i) there is a connected open set Ω ⊂ Cn and a surjective holomorphic map
f : Ω → X (weak uniformization);

(ii) there is a connected open set Ω ⊂ Cn and a properly discontinuous
group Γ ⊂ Aut(Ω) such that Ω/Γ ∼= X (Galois uniformization).

If X is a complex manifold, there are two stronger properties:

(iii) there is a connected open set Ω ⊂ Cn and a surjective holomorphic
submersion f : Ω → X (étale uniformization);

(iv) there is a connected open set Ω ⊂ Cn biholomorphic to the universal
cover of X (strong uniformization).

Hence the universal cover of a compact complex curve is completely deter-
mined by its genus; in particular C̃ ∼= H if and only if g ≥ 2, i.e., “C is of
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general type”, and we get then an isomorphism of π1(C) with a Fuchsian group
Γ ⊂ Aut(H) ∼= PSL(2, R).

In higher dimension the condition that the universal cover be biholomorphic
to a bounded domain Ω is quite exceptional; but still in the Galois étale case,
where Ω/Γ ∼= X and Γ acts freely with compact quotient, we have, if Ω is
bounded, that the complex manifold X has ample canonical bundle KX (see
[Sieg73]), in particular it is a projective manifold of general type.

Even more exceptional is the case where the universal cover is biholomorphic
to a bounded symmetric domain Ω, or where there is Galois uniformization
(ii) of definition 1.2) with source a bounded symmetric domain, and there is a
vast literature on a characterization of these properties (cf. [Yau77], [Yau88],
[Yau93], [Bea00]).

The basic result in this direction is S.T. Yau’s uniformization theorem (ex-
plained in [Yau88] and [Yau93]), and for which a very readable exposition is
contained in the first section of [V-Z05], enphasyzing the role of polystability of
the cotangent bundle for varieties of general type. One would wish nevertheless
for more precise characterizations of the various possible cases.

For the sake of simplicity, we shall stick here to the case of smooth complex
surfaces, where the former problem boils down to two very specific questions.

Question. When is the universal cover of a compact complex surface X
biholomorphic to the two dimensional ball B2 := {z ∈ C2 : ||z|| < 1}, respec-
tively to the bidisk H×H ?

The first part of this question is fully answered by the well-known inequality
by Miyaoka and Yau (cf. [Miy77], [Yau77] [Miy82]). Setting, as usual, KX =
the canonical divisor, χ(X) := χ(OX) the holomorphic Euler characteristic
and P2(X) = h0(X, 2KX) the second plurigenus of X, we have the following
characterization:

Theorem 1.3 (Miyaoka-Yau). Let X be a compact complex surface. Then
X ∼= B2/Γ (with Γ a cocompact discrete subgroup of Aut(B2) acting freely on
B2) if and only if

(1) K2
X = 9χ(S);

(2) the second plurigenus P2(X) > 0.

The above well known characterization is obtained combining Miyaoka’s
result ([Miy82]) that these two conditions imply the ampleness of KX , with
Yau’s uniformization result ([Yau77]) which uses the existence of a Kähler
Einstein metric; quite remarkably, it is given purely in terms of certain numbers
which are either bimeromorphic or topological invariants.

In the case where X = H×H/Γ, with Γ a discrete cocompact subgroup of
Aut(H×H) acting freely, one has K2

X = 8χ(X).

But Moishezon and Teicher in [MT87] showed the existence of a simply
connected surface of general type (whence with P2(X) > 0) having K2

X =
8χ(X), so that the above conditions are necessary, but not sufficient. We
observe however that (and our contribution here is a by-product of our attempt



A CHARACTERIZATION OF SURFACES UNIFORMIZED BY THE BIDISK 3

to answer the latter question) it is still unknown if there exists a surface of
general type with χ(X) = 1, K2

X = 8 which is not uniformized by H×H.

The purpose of this note is to point out a precise characterization of compact
complex surfaces whose universal cover is the bidisk, and of the quadric P1×P1,
discussing whether some hypotheses can be dispensed with, and to pose an
analogous question in higher dimension. Our characterization, which is of
course based on Yau’s results, relies on the following crucial

Definition 1.4. Let X be a complex manifold of complex dimension n.

Then a special tensor is a non zero section 0 6= ω ∈ H0(X, SnΩ1
X(−KX)),

while a semi special tensor is a non zero section 0 6= ω ∈
H0(X, SnΩ1

X(−KX)⊗ η), where η is an invertible sheaf such that η2 ∼= OX .

We shall say that X admits a unique semi special tensor if moreover
dim(H0(X, SnΩ1

X(−KX)⊗ η)) = 1.

In fact, the existence of such tensors is a fundamental property of manifolds
strongly uniformized by the polydisk as we are now going to see.

Recall that the group of automorphism of Hn, Aut(Hn), is the semidirect
product of (Aut(H))n with the symmetric group Sn, hence for every subgroup
Γ of Aut(Hn) we have a diagram:

1 → (Aut(H))n → Aut(Hn) → Sn → 1⋃ ⋃ ⋃
1 → Γ0 ↪→ Γ → H → 1.

Proposition 1.5. Let X = Hn/Γ be a compact complex manifold whose uni-
versal covering is the polydisk Hn: then X admits a semi special tensor and
KX is ample, in particular Kn

X > 0.

Proof. In Hn take coordinates {z1, . . . , zn} and define

ω̃ :=
d z1 ⊗ · · · ⊗ d zn

d z1 ∧ · · · ∧ d zn

.

Observe that ω̃ is clearly invariant for (Aut(H))n and for the alternating sub-
group. Let η be the 2-torsion invertible sheaf associated to the signature
character of Sn restricted to H. Then clearly ω̃ descends to a semi special
tensor ω ∈ H0(X, SnΩ1

X(−KX)⊗ η).

The other assertions are well known (cf. [Sieg73] and [K-M71]). �

Remark 1.6. We observe that also (P1)n admits the following special tensor
ω, given on Cn ⊂ (P1)n by ω := d z1⊗···⊗d zn

d z1∧···∧d zn
.

In dimension two we have then the following

Theorem 1.7. Let X be a compact complex surface.

Then the following two conditions:

(1) X admits a semi special tensor;
(2) K2

X > 0

hold if and only if either



4 FABRIZIO CATANESE, MARCO FRANCIOSI

(i) X ∼= P1 × P1; or
(ii) X ∼= H×H/Γ (where Γ is a cocompact discrete subgroup of Aut(H×H)

acting freely ).

In particular one has the following reformulation of a theorem of S.T. Yau
(theorem 2.5 of [Yau93], giving sufficient conditions for (ii) to hold).

Theorem 1.8. (Yau) X is strongly uniformized by the bidisk if and only if

(1) X admits a semi special tensor;
(2) K2

X > 0;
(3) the second plurigenus P2(X) ≥ 1.

One can indeed be even more precise:

Theorem 1.9. X is strongly uniformized by the bidisk if and only if

(1*) X admits a unique semi special tensor;
(2) K2

X > 0;
(3*) the second plurigenus P2(X) ≥ 2.

X is biholomorphic to P1 × P1 if and only if (1*), (2) hold and P2(X) = 0.

It is interesting to see that none of the above hypotheses can be dispensed
with.

Remark 1.10. The following examples show the existence of surfaces which
satisfy two of the three conditions stated in Thm. 1.8, respectively in Thm.
1.9, but are not uniformized by the bidisk

(i) P1 × P1 satisfies (1*) and (2);
(ii) A complex torus X = C2/Λ satisfies (1) and (3), but neither (1*) nor

(3*) (obviously, it does not satisfy (2));
(iii) X = C1 ×C2 with g(C1) = 1, g(C2) = 2 satisfies (1*) and (3*), but its

universal cover is X̃ ∼= C×H.

The most intriguing examples are provided by

Proposition 1.11. There do exist properly elliptic surfaces X satisfying

• (1) X admits a special tensor;
• (3*) the second plurigenus P2(X) ≥ 2;
• q(X) := dim(H1(OX)) > 0;
• K2

X = 0;
• X is not birational to a product.

We would like to pose then the following

Question. Let X be a surface with q(X) = 0 and satisfying (1*) and (3*):
is then X strongly uniformized by the bidisk?

Concerning the above question, recall the following

Definition 1.12. Γ ⊂ Aut(Hn) is said to be reducible if there exists Γ0 as
above (i.e., such that γ(z1, ..., zn) = (γ1(z1), ..., γn(zn)) for every γ ∈ Γ0) and
a decomposition Hn = Hk ×Hh (with h > 0) such that the action of Γ0 on Hk

is discrete.
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For n = 2 there are then only two alternatives:

Remark 1.13. Let Γ ⊂ Aut(H2) be a discrete cocompact subgroup acting freely
and let X = H2/Γ. Then

• Γ is reducible if and only if X is isogenous to a product of curves, i.e.,
there is a finite group G and two curves of genera at least 2 such that
X ∼= C1 × C2/G. Both cases q(X) 6= 0, q(X) = 0 can occur here.

• Γ is irreducible and q(X) = 0 ( this result holds in all dimensions and
is a well-known result of Matsushima [Ma62]).

Let us try to explain the main idea of our main result. In order to do this,
it is important to make the following

Remark 1.14. A complex manifold X admits a semi special tensor if and only
if it has an unramified cover X ′ of degree at most two which admits a special
tensor.

Proof. Assume that we have an invertible sheaf η such that η2 ∼= OX , η 6∼= OX .
Take the corresponding double connected étale covering π : X ′ → X and
observe that

H0(X ′, SnΩ1
X′(−KX′)) ∼= H0(X, SnΩ1

X(−KX))⊕H0(X, SnΩ1
X(−KX)⊗ η).

Whence, there is a special tensor on X ′ if and only if there is a semi special
tensor on X. �

In dimension n = 2 things are easier, since the existence of a special tensor
ω is equivalent to the existence of a trace free endomorphism ε of the tangent
bundle of X.

Our proof of Theorem 1.7 consists essentially in finding a decomposition of
the tangent bundle TX as a direct sum of two line bundles L1 and L2, which
are the eigenbundles of an invertible endomorphism ε ∈ End(TX) (see §2 and
§3 for details), and then applying the results on surfaces with split tangent
bundles as given in [Bea00].

Since the results on manifolds with split tangent bundles hold in dimension
n ≥ 3, one has a characterization of compact manifolds strongly uniformized
by the polydisk under a very strong condition on the semi special tensor ω ∈
H0(X, SnΩ1

X(−KX) ⊗ η), which essentially corresponds to ask for the local
splitting of ω as the product of n 1-forms which are linearly independent at
each point. There remains the problem of finding a simpler characterization.

2. Preliminaries and remarks

Notation. X denotes throughout a compact complex surface. We use stan-
dard notation of algebraic geometry: Ω1

X is the cotangent sheaf, TX is the
holomorphic tangent bundle (locally free sheaf), c1(X), c2(X) are the Chern
classes of X; KX is the canonical divisor, and Pn := h0(X, nKX) is called
the n-th plurigenus, in particular for n = 1 we have the geometric genus of
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X pg(X) := h0(X, KX), while q := h1(X,OX) is classically called the irregu-
larity of X. Finally, χ(X) := χ(OX) = 1 + pg − q is the holomorphic Euler
characteristic.

With a slight abuse of notation, we do not distinguish between invertible
sheaves, line bundles and divisors, while the symbol ≡ denotes linear equiva-
lence of divisors.

First of all let us recall a result of Beauville which characterizes compact
complex surfaces whose universal cover is a product of two complex curves (cf.
[Bea00, Thm. C]).

Theorem 2.1 (Beauville). Let X be a compact complex surface. The tangent
bundle TX splits as a direct sum of two line bundles if and only if either X is
a special Hopf surface or the universal covering space of X is a product U ×V
of two complex curves and the group π1(X) acts diagonally on U × V .

Given a direct sum decomposition of the cotangent bundle Ω1
X
∼= L1 ⊕ L2,

Beauville shows that (L1)
2 = (L2)

2 = 0 (cf. [Bea00, 4.1, 4.2]) hence

KX ≡ L1 + L2 c1(X)2 = 2 · (L1 · L2) = 2 · c2(X)

The last equality corresponds to K2
X = 8χ(X).

Let us now consider the bundle End(TX) of endomorphisms of the tangent
bundle. We can write End(TX) = Ω1

X⊗TX and from the nondegenerate bilinear
map

Ω1
X × Ω1

X −→ Ω2
X
∼= KX

we see that TX = (Ω1
X)∨ ∼= Ω1

X(−KX). This exactly means that we have an
isomorphism End(TX) ∼= Ω1

X ⊗ Ω1
X(−KX).

Let us see how this isomorphism works in local coordinates (z1, z2). I.e., let

us see how an element
d zi⊗d zj

d z1∧d z2
in Ω1

X ⊗Ω1
X(−KX) acts on a vector of the form

∂
∂zh

. We have

d zi ⊗ d zj

d z1 ∧ d z2

( ∂

∂zh

)
=

{
d zj

d z1∧d z2
if h = i

0 if h 6= i

In turn,
d zj

d z1 ∧ d z2

evaluated on d zk gives
d zj ∧ d zk

d z1 ∧ d z2

.

Therefore a generic element
∑
i,j

aij
d zi ⊗ d zj

d z1 ∧ d z2

corresponds to an endomor-

phism, which, with respect to the basis
{

∂
∂z1

, ∂
∂z2

}
is expressed by the matrix(

−a12 −a22

a11 a21

)
In particular for the symmetric tensors (i.e., a12 = a21), respectively for the
skewsymmetric tensors (i.e., a12 = −a21, a11 = a22 = 0) the following isomor-
phisms hold:

S2(Ω1
X)(−KX) ∼=

{ (
−a −a22

a11 a

) }
;

∧2
(Ω1

X)(−KX) ∼=
{ (

b 0
0 b

) }
We can summarize the above discussion in the following
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Lemma 2.2. If X is a complex surface there is a natural isomorphism between
the sheaf S2(Ω1

X)(−KX) and the sheaf of trace zero endomorphisms of the
(co)tangent sheaf End0(TX) ∼= End0(Ω1

X).

A special tensor ω ∈ H0(S2(Ω1
X)(−KX)) with nonzero determinant det(ω) ∈

C yields an eigenbundle splitting Ω1
X
∼= L1

⊕
L2 of the cotangent bundle.

If instead det(ω) = 0 ∈ C, the corresponding endomorphism ε is nilpotent
and yields an exact sequence of sheaves

0 → L → Ω1
X → IZL(−∆) → 0

where L := ker(ε) is invertible, ∆ is an effective divisor, and Z is a 0-
dimensional subscheme(which is a local complete intersection).

We have in particular KX ≡ 2L−∆ and c2(X) = length(Z) + L · (L−∆).

Proof. We need only to observe that det(ω) is a constant, since
det(End(TX)) = det(End(Ω1

X)) ∼= OX .

If det(ω) 6= 0, there is a constant c ∈ C \ {0} such that det(ω) = c2, hence
at every point of X the endomorphism ε corresponding to the special tensor
ω has two distinct eigenvalues ±c.

Let ω ∈ H0(S2Ω1
X(−KX)), ω 6= 0, be such that det(ω) = 0. Then the

corresponding endomorphism ε is nilpotent of order 2, and there exists an
open nonempty subset U ⊆ X such that Ker(ε|U) = Im(ε|U). At a point p
where rank(ε) = 0, in local coordinates the endomorphism ε may be expressed
by (

a b
c −a

)
a, b, c regular functions such that a2 = −b · c

Let δ := G. C. D.(a, b, c). After dividing by δ, every prime factor of a is either
not in b, or not in c, thus we can write

−b = β2 c = γ2 a = β · γ

Therefore we obtain(
u
v

)
∈ Ker ε ⇐⇒

{
a · u + b · v = 0
c · u− a · v = 0

⇐⇒ γ ·u−β ·v = 0 ⇐⇒
(

u
v

)
=

(
β · f
γ · f

)
and, writing our endomorphism ε as ε = δ · α, we have

Im(α) =

{
β · γ · u− β2 · v = β · (γ · u− β · v)
γ2 · u− γ · β · v = γ · (γ · u− β · v)

Let Z be the 0-dimensional scheme defined by {β = γ = 0} and ∆ be the
Cartier divisor defined by {δ = 0}.

From the above description we deduce that the kernel of ε is a line bundle
L which fits in the following exact sequence:

0 → L → Ω1
X → IZL(−∆) → 0.

Taking the total Chern classes we infer that: KX ≡ 2L−∆ as divisors on X
and c2(X) = length(Z) + L · (L−∆). �
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Lemma 2.3. Let X be a complex surface and let X ′ be the blow up of X at a
point p. Then a special tensor ω′ on X ′ induces a special tensor

ω on X, and the converse only holds if and only if ω vanishes at p (in
particular, it must hold : det(ω) = 0).

Proof. First of all, ω′ induces a special tensor on X \ {p}, and by Hartogs’
theorem the latter extends to a special tensor ω on X.

Conversely, choose local coordinates (x, y) for X around p and take a local
chart of the blow up with coordinates (x, u) where y = ux. Locally around p
we can write

ω =
a(d x)2 + b(d y)2 + c(d x d y)

d x ∧ d y
.

The pull back ω′ of ω is given by the following expression:

a(d x)2 + b(u d x + x d u)2 + c(u d x + x d u) d x

x d x ∧ d u
=

=
d x2(a + bu2 + cu) + bx2 d u2 + (2bux + cx) d x d u

x d x ∧ d u
,

hence ω′ is regular if and only if a+bu2+cu
x

is a regular function.

This is obvious if a, b, c vanish at p, since then their pull back is divisible by
x. Assume on the other side that a, b, c are constant: then we get a rational
function which is only regular if a = b = c = 0.

�

Lemma 2.4. Let X be a compact minimal rational surface admitting a special
tensor ω. Then X ∼= P1 × P1 if det(ω) 6= 0.

Proof. Assume that X is a P1 bundle over a curve B ∼= P1, i.e., a ruled
surface Fn with n ≥ 0. Let π : X → B the projection.

By the exact sequence

0 → π∗Ω1
B → Ω1

X → Ω1
X|B → 0

and since on a general fibre F the subsheaf π∗Ω1
B is trivial, while the quotient

sheaf Ω1
X|B is negative, we conclude that any endomorphism ε carries π∗Ω1

B to
itself. If it has non zero determinant we can conclude by Theorem 2.1 that
X ∼= P1 × P1. Otherwise, ε is nilpotent and we have a nonzero element in
Hom(Ω1

X|B, π∗Ω1
B).

Since these are invertible sheaves, it suffices to see when

H0(OX(2π∗KB −KX)) 6= 0.

But, letting Σ be the section with selfintersection Σ2 = −n, our vector space
equals H0(OX(2Σ − (n + 2)F )). Intersecting this divisor with Σ we see that
(since each time the intersection number with Σ is negative) H0(OX(2Σ−(n+
2)F )) = H0(OX(Σ− (n + 2)F )) = H0(OX(−(n + 2)F )) = 0.

There remains the case where X is P2.

In this case ε must be a nilpotent endomorphism by Theorem 2.1, and it
cannot vanish at any point by our previous result on F1. Therefore the rank
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of ε equals 1 at each point. By lemma 2.2 it follows that there is a divisor L
such that KX = 2L, a contradiction.

�

3. Proof of Theorems 1.7 and 1.9

Proof. If X is strongly uniformized by the bidisk, then KX is ample, in partic-
ular K2

X ≥ 1 and, since by Castelnuovo’s theorem χ(X) ≥ 1, by the vanishing
theorem of Kodaira and Mumford it follows that P2(X) ≥ 2 (see [Bom73]).

Thus one direction follows from proposition 1.5, except that we shall show
only later that (1*) holds.

Assume conversely that (1), (2) hold. Without loss of generality we may
assume by lemma 2.3 that X is minimal, since K2

X can only decrease via a
blowup and the bigenus is a birational invariant.

K2
X ≥ 1 implies that either the surface X is of general type, or it is a rational

surface. In the latter case we conclude by lemma 2.4.

Observe that the further hypothesis (3) (obviously implied by (3*)) guaran-
tees that X is of general type.

Thus, from now on, we may assume that X is of general type and, passing
to an étale double cover if necessary, that X admits a special tensor.

By the cited Theorem 2.1 of [Bea00] it suffices to find a decomposition of
the cotangent bundle Ω1

X as a direct sum of two line bundles L1 and L2.

The two line bundles L1, L2 will be given as eigenbundles of a diagonizable
endomorphism ε ∈ End(Ω1

X).

Our previous discussion shows then that it is sufficient to show that any
special tensor cannot yield a nilpotent endomorphism.

Otherwise, by lemma 2.2, we can write 2L ≡ KX + ∆ and then deduce that
L is a big divisor since ∆ is effective by construction and KX is big because X
is of general type. This assertion gives the required contradiction since by the
Bogomolov-Castelnuovo-de Franchis Theorem (cf. [Bog77]) for an invertible
subsheaf L of Ω1

X it is h0(X, mL) ≤ O(m), contradicting the bigness of L.

There remains to show (1*). But if h0(X, S2Ω1
X(−KX)) ≥ 2 then, given a

point p ∈ X, there is a special tensor which is not invertible in p, hence a
special tensor with vanishing determinant, a contradiction.

�

4. Proof of proposition 1.11

In this section we consider surfaces X with bigenus P2(X) ≥ 2 (property
(3*)), therefore their Kodaira dimension equals 1 or 2, hence either they are
properly (canonically) elliptic, or they are of general type.

Since we took already care of the latter case in the main theorems 1.7 and
1.9, we restrict our attention here to the former case, and try to see when
does a properly elliptic surface admit a special tensor (we can reduce to this
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situation in view of remark 1.14). We can moreover assume that the associated
endomorphism ε is nilpotent by theorem 2.1.

Again without loss of generality we may assume that X is minimal by virtue
of lemma 2.3.

Proof. Let X be a minimal properly elliptic surface and let f : X → B be its

(multi)canonical elliptic fibration. Write any fibre f−1(p) as Fp =
∑hp

i=1 miCi

and, setting np := G.C.D.(mi), Fp = npF
′
p, we say that a fibre is multiple if

np > 1. By Kodaira’s classification ([Kod60]) of the singular fibres we know
that in this case mi = np,∀i.

Assume that the multiple fibres of the elliptic fibration are n1F
′
1, . . . , nrF

′
r,

and consider the divisorial part of the critical locus

Sp :=

hp∑
i=1

(mi − 1)Ci, S :=
∑
p∈B

Sp

so that we have then the exact sequence

0 → f ∗Ω1
B(S) → Ω1

X → IC ωX|B → 0,

where C is a 0-dimensional (l.c.i.) subscheme.

For further calculations we separate the divisorial part of the critical locus
as the sum of two disjoint effective divisors, the multiple fibre contribution and
the rest:

Sm :=
r∑

i=1

(ni − 1)F ′
i , Ŝ := S − Sm.

Let us assume that we have a nilpotent endomorphism corresponding to
another exact sequence

0 → L → Ω1
X → IZL(−∆) → 0,

in turn determined by a homomorphism

ε′ : IZL(−∆) → L,

i.e., by a section

s ∈ H0(OX(∆)) =

= H0(OX(2L−KX)) = H0(S2(L)(−KX)) ⊂ H0(S2(Ω1
X)(−KX)).

We observe that, since 2L ≡ KX + ∆, it follows that, if F is a general fibre,
then

L · F = ∆ · F = 0,

hence the effective divisor ∆ is contained in a finite union of fibres.

The first candidate to try with is the choice of L = L′, where we set L′ :=
f ∗Ω1

B(S).

To this purpose we recall Kodaira’s canonical bundle formula:

KX ≡ Sm + f ∗(δ) =
r∑

i=1

(ni − 1)F ′
i + f ∗(δ), deg(δ) = χ(X)− 2 + 2b,

where b is the genus of the base curve B.
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Then H0(OX(2L′−KX)) = H0(OX(f ∗(2KB− δ)+2S −Sm), and we search
for an effective divisor linearly equivalent to

f ∗(2KB − δ) + 2S − Sm = f ∗(2KB − δ) + 2Ŝ + Sm.

We claim that H0(OX(2L′ − KX)) = H0(OX(f ∗(2KB − δ)): it will then
suffice to have examples where |2KB − δ| 6= ∅.

Proof of the claim

It suffices to show that f∗OX(2Ŝ + Sm) = OB. Since the divisor 2Ŝ + Sm is
supported on the singular fibres, and it is effective, we have to show that, for

each singular fibre Fp =
∑hp

i=1 miCi, neither 2Ŝp ≥ Fp nor Sm,p ≥ Fp.

The latter case is obvious since Sm,p = (np − 1)F ′
p < Fp = npF

′
p.

In the former case, 2Ŝp =
∑hp

i=1 2(mi − 1)Ci, but it is not possible that ∀i
one has 2(mi − 1) ≥ mi, since there is always an irreducible curve Ci with
multiplicity mi = 1.

Q.E.D.for the claim

Assume that the elliptic fibration is not a product (in this case there is no
special tensor with vanishing determinant): then the irregularity of X equals
the genus of B, whence our divisor on the curve B has degree equal to 2b −
2− (1− b + pg(X)) = 3b− 3− pg.

Since χ(X) ≥ 1, pg := pg(X) ≥ b, and there exist an elliptic surface X with
any pg ≥ b ([Cat07]).

Since any divisor on B of degree ≥ b is effective, it suffices to choose b ≤
pg ≤ 2b−3 and we get a special tensor with trivial determinant, provided that
b ≥ 3.

Take now a Jacobian elliptic surface in Weierstrass normal form

ZY 2 − 4X3 − g2XZ2 − g3Z
3 = 0,

where g2 ∈ H0(OB(4M)), g3 ∈ H0(OB(6M)), and assume that all the fibres
are irreducible.

Then the space of special tensors corresponding to our choice of L cor-
responds to the vector space H0(OB(2KB − δ)) = H0(OB(KB − 6M)). It
suffices to take a hyperelliptic curve B of genus b = 6h + 1, and, denoting by
H the hyperelliptic divisor, set M := hH, so that KB − 6M ≡ 0 and we have
h0(OX(2L−KX)) = 1. We leave aside for the time being the question whether
the surface X admits a unique special tensor.
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