Compitino n.1 13/11/2009 TEMPO A DISPOSIZIONE: 90 minuti

(Cognome)										(Nome)								(N	umei	ro di	ma	trice							

PRIMA PARTE

 $PUNTEGGIO: risposta mancante = 0 ; \quad risposta esatta = +2 \quad risposta sbagliata = -2$ calcoli e spiegazioni non sono richiesti

• Dire se le seguenti proposizioni sono vere o false:

Proposizione	Vera	Falsa
$z = 1 + i \Longrightarrow z^4 = 4$		
I vettori $\begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ costituiscono un insieme di generatori di \mathbb{R}^3		
Siano v_1 , v_2 due vettori linearmente dipendenti di uno spazio vettoriale V .		
Allora v_1 , v_2 , v_3 sono sicuramente linearmente dipendenti $\forall v_3 \in V$.		
Il sottoinsieme di \mathbb{R}^2 $W = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 : x_1 = 1 \right\}$		
è un sottospazio vettoriale di \mathbb{R}^2		

• $i^{401} =$	

$$ullet z = 1 + 2i , w = 1 + i \implies z \cdot \overline{w} =$$

• Scrivere nella forma z = x + iy il seguente numero complesso:

$$z = e^{\log 2 + i\frac{\pi}{4}} \qquad \Longrightarrow \qquad z = \boxed{}$$

• Determinare la dimensione del seguente sottospazio vettoriale di \mathbb{R}^3 :

$$W_1 = \langle \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \\ 6 \end{pmatrix} \rangle$$

$$\dim(W_1) = \boxed{}$$

SECONDA PARTE

I risultati devono essere giustificati attraverso calcoli e spiegazioni

Esercizio 1.[punteggio: 0-3]

Sia z_0 il numero complesso $z_0 = 2 + i2\sqrt{3}$.

- (i) Disegnare nel piano di Gauss l' insieme $\left\{z\in\mathbb{C}: |z-z_0|\leq 2\right\}$ (ii) Determinare la parte reale e la parte immaginaria di z_0^{-1} .

Esercizio 2.[punteggio: 0-3]

Determinare il polinomio monico $P(x) \in \mathbb{R}[x]$ di grado 2 che ha come radice il numero 2+i

Esercizio 3. [punteggio: 0-6]

Si determinino le soluzioni complesse del seguente sistema:

$$\begin{cases} (z+4)^4 = -2500 \\ e^{\pi z} = -e^{\pi} \end{cases}$$

(suggerimento: $2500 = 5^4 \cdot 2^2$)

Esercizio 4. [punteggio: 0-4]

Dati W e Z i seguenti sottospazi vettoriali di \mathbb{R}^3 :

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : 2x_1 - x_2 - 4x_3 = 0 \right\}, \quad Z = \left\langle \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\rangle.$$

Determinare una base di W , una base di Z e una base di $W\cap Z$.