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Active Circuits With Diodes: Topological
Conditions Sufficient to Determine

the State of a Diode
Maurizio Ciampa

Abstract— Let N be a circuit composed of a finite number
of positive and negative linear resistors, ideal diodes, nullators,
norators and independent current and voltage sources. In this
article, we consider the problem to determine, without any
numerical computation, the state of a diode of N. We propose a
set of topological conditions such that, when verified by a diode
of N, the state of the diode is determined and the same in all the
solutions of N. Our results may simplify, sometimes dramatically,
the usual trial-and-error procedure to find the solutions of N.

Index Terms— Nonlinear circuits, resistive circuits, active cir-
cuits, ideal diodes, piecewise linear circuits, dc analysis, topolog-
ical conditions.

I. INTRODUCTION

IN THIS article we consider circuits composed of a finite
number of positive linear resistors, negative linear resistors,

ideal diodes, nullators and norators (usually, but not necessar-
ily, in equal number), and nonzero independent voltage and
current sources. We assume, without loss of generality, that
the values of all the sources are positive.

The symbols and the reference directions adopted for the
current and voltage for each component are represented in
Fig. 1. Let us observe that the reference directions adopted for
the current and voltage sources are not the usual associated
reference directions. The constitutive relation for each ideal
diode is:

v � 0, i � 0, vi = 0

A solution of a circuit N is a pair (i, v) ∈ Rρ × Rρ , where
ρ is the number of branches of N , such that the column i of
the branch currents and the column v of the branch voltages
verify Kirchhoff’s Laws and the constitutive relation of each
component. The set of all the solutions of N will be denoted
by S(N). Of course, if N has no solution, then S(N) is the
empty set.

Let s ∈ S(N). We say that a diode of N “is in the open
state in s” (resp.: “is in the closed state in s”) if the current i
and the voltage v of the diode, in s, are such that i = 0 and
v � 0 (resp.: v = 0 and i � 0). Let us observe that, if D is a
diode of N , the statements “the diode D is in the open state
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Fig. 1. Symbols and reference directions: (a) voltage source, (b) current
source, (c) positive linear resistor, (d) negative linear resistor, (e) nullator,
(f) norator, (g) diode.

in s” and “the diode D is in the closed state in s” are both
correct if and only if, in s, it is both i = 0 and v = 0.

Let N be a circuit and let d � 1 be the number of ideal
diodes in N . A general and elementary procedure to find
S(N) is the following [1, Section 16.3.1], [2, Section 2-7],
[3, Example 4.2]:

For each of the 2d combinations of states of the diodes, repeat:

(a) replace in N each open diode by an open circuit and each
closed diode by a short circuit, and find the solution set
of the linear circuit obtained,

(b) among these solutions, find those consistent with the
combination of states of the diodes under consideration.

Obviously, if no solution is found, then N has no solution,
otherwise each of the solutions found is a solution of N , and
every solution of N is found in this way.

A drawback of this procedure is its complexity, exponential
in the number d of diodes. The exponential complexity is
essentially due to the fact that, despite the procedure being
very familiar in electronic textbooks, no simple and rigor-
ous technique has been found to predict the state, open or
closed, of some of the diodes of N (to predict the state
of a diode D of N to be open [resp. closed] means: to
establish, without any numerical computation, that if s is
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Fig. 2. Circuit N of Example 1.

a solution of N , then the diode D is in the open [resp.
closed] state in s). Indeed, only to mention two very good
and widespread electronics textbooks, the unique technique
suggested to predict the state of some of the diodes is by an
educated guess driven by experience [2, p. 53], or by practice
[4, p. 103-104].

The aim of this article is to provide some simple topological
conditions, sometimes applicable by inspection, sufficient to
predict the state of some diodes of N . By their topological
nature, the conditions are independent of the actual value of
the resistances and sources.

To understand how our results may be used to reduce the
complexity of the elementary procedure, let us consider the
following two simple examples.

Example 1: Let N be the circuit of Fig. 2, and let R1 >
0, R2 > 0 and E > 0 be the value of the resistance of the
positive linear resistors PR1, PR2, and of the voltage source
VS, respectively. Let v1 and i1 (resp. v2 and i2) be the voltage
and current of D1 (resp. D2).

Using either Theorem 2 or Corollary 1 of Section III, we can
predict the state of the diode D1 to be closed and the state of
D2 to be open. This means that either N has no solution,
or for every solution s of N , in D1 the current is i1 � 0 and
the voltage is v1 = 0, and in D2 the current is i2 = 0 and the
voltage is v2 � 0.

To find all the solutions of N , it is now sufficient to analyse
only one linear circuit, L, instead of the 22 required by the
elementary procedure: the circuit obtained by replacing in N
the diode D1 by a short circuit and D2 by an open circuit.

The linear circuit L has a unique solution, s, and in s it is:
v1 = 0, i1 = E/R1

and:
v2 = 0, i2 = 0

For every positive value of the resistances and source, this
solution is consistent with the combination of states of the
diodes, hence N has a unique solution.

Observe that, in s, the diode D2 is both in the open and
in the closed state. Hence s is also a solution, consistent with
the combination of states of the diodes, of the linear circuit
obtained assuming both D1 and D2 in the closed state.

Example 2: Let N be the circuit of Fig. 3, and let R >
0, R∗ < 0, E > 0 and J > 0 be the value of the resistance of
the positive linear resistor PR, of the resistance of the negative
linear resistor NR, of the voltage source VS and of the current
source CS, respectively. Let v1 and i1 (resp. v2 and i2) be the
voltage and current of D1 (resp. D2).

Using Theorem 1 of Section II, we can predict the state of
the diode D1 to be open. This means that either N has no

Fig. 3. Circuit N of Example 2 and of Example 3 of Section IV.

solution, or for every solution s of N , in D1 the current is
i1 = 0 and the voltage is v1 � 0.

To find all the solutions of N , it is now sufficient to
analyse only two linear circuits instead of the 22 required by
the elementary procedure. The first linear circuit, L1, is that
obtained by replacing in N the diode D1 by an open circuit
and D2 by a short circuit. The second linear circuit, L2, is that
obtained by replacing in N the diode D1 again by an open
circuit and D2 by an open circuit.

For the linear circuit L1, we have three different cases:
(1) If R + R∗ �= 0, then L1 has a unique solution, s�, and in

s� it is:
v �

1 = R∗

R + R∗ (R J − E), i �
1 = 0

and:
v �

2 = 0, i �
2 = − E + R∗ J

R + R∗

(2) If R + R∗ = 0 and E + R∗ J = 0, then L1 has an infinite
number of solutions. Precisely, for every α ∈ R there is
a unique solution, sα , and in sα it is:

vα,1 = −(Rα + E), iα,1 = 0

and:
vα,2 = 0, iα,2 = α

(3) If R + R∗ = 0 and E + R∗ J �= 0, then L1 has no
solutions.

The linear circuit L2, for every value of the components,
has a unique solution, s��, and in s�� it is:

v ��
1 = −E, i ��

1 = 0

and:
v ��

2 = −(E + R∗ J ), i ��
2 = 0

The actual number of solutions of N depends on the value
of the components.

For example, let R = 1� and R∗ = −2�, so that R+ R∗ �=
0.

If E = 3V and J = 1A, then we have:
v �

1 = −4, i �
1 = 0, v �

2 = 0, i �
2 = 1

and:
v ��

1 = −3, i ��
1 = 0, v ��

2 = −1, i ��
2 = 0

Both s� and s�� are consistent with the combination of states
of the diodes, hence N has two solutions. The state of D1 is
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open in both solutions, and the state of D2 is closed in s�, and
open in s��.

If E = 1V and J = 1A, then we have:
v �

1 = 0, i �
1 = 0, v �

2 = 0, i �
2 = −1

and:
v ��

1 = −1, i ��
1 = 0, v ��

2 = 1, i ��
2 = 0

Both s� and s�� are not consistent with the combination of states
of the diodes, and N has no solutions.

If E = 2V and J = 1A, then we have s� = s�� and:
v �

1 = −2, i �
1 = 0, v �

2 = 0, i �
2 = 0

In this case, s� is consistent both with the combination of states
of the diodes relative to L1 and with the combination of states
of the diodes relative to L2. Hence N has only one solution,
in which the state of D1 is open and the state of D2 is both
open and closed.

Finally, let R = 1�, R∗ = −1�, E = 1V and J = 1A.
In this case it is R + R∗ = 0 and E + R∗ J = 0. Then:
(i) for every α ∈ R the circuit L1 has a unique solution, sα,

and in sα it is:
vα,1 = −(α + 1), iα,1 = 0

and:
vα,2 = 0, iα,2 = α

(ii) in the unique solution of the circuit L2 it is:
v ��

1 = −1, i ��
1 = 0, v ��

2 = 0, i ��
2 = 0

In this case:
(a) the solution sα of L1 is consistent with the combination

of states of the diodes if and only if α � 0,
(b) the solution of L2 is consistent with the combination of

states of the diodes.

Hence N has an infinite number of solution and for every
s ∈ S(N) the state of D1 is open and the state of D2 is closed
in s.

For the same class of circuits considered in the present
paper, Fosséprez, Hasler and Schnetzler discovered, in [5], a
subtle and deep topological condition necessary and sufficient
to identify the combinations of states of the diodes such that,
for every value of the resistances and sources, the related linear
circuit has no solutions consistent with the states of the diodes.
This result can be used to determine, without any numerical
computation, the minimum set of linear circuits to be solved
in the elementary procedure: each of the linear circuits corre-
sponding to combinations of states satisfying the topological
condition, must not be solved, and all the remaining linear
circuits must be solved. Unfortunately, to determine all the
solutions of N with this technique, apart from the solution of
the minimum number of linear circuits, the topological check
must be repeated for each of the 2d combinations of states, i.e.
2d times. Then, even if the number of linear circuits to solve
has been minimized, there is no reduction of complexity.

Some more favorable results are known for circuits com-
posed of positive linear resistors, ideal diodes and independent

Fig. 4. A two-port equivalent to a VCCS, and its constitutive equations.
R > 0 is the resistance of PR.

voltage and current sources (i.e.: without active components).
In [6], the authors proved a simple condition sufficient to
predict the state of a diode. Precisely, if the diode is part of a
suitable loop (resp.: of a suitable cut-set) then it is in the closed
(resp.: open) state. This result is attractive, but it can be applied
only if the circuit is a one-port composed by ideal diodes, short
circuits, and open circuits, excited by an independent voltage
source in series with a positive linear resistor. Finally, in [7]
we proved three pairs of topological conditions sufficient to
predict the state of a diode; these results are summarized, and
slightly improved, in Section III.

The results of the present paper are attractive, with respect
to those allowed by [5], because our topological condition
concerns the state of each of the diodes of the circuit, one at
a time. Whenever one of the diodes verifies the condition, i.e.
the state of the diode has been predicted, we avoid, in one shot,
the solution of all the linear circuits related to the combinations
of states in which the diode has not the predicted state: we
halve the number of linear circuits to be solved to find all the
solutions of N . This property allows us, as shown in Section V,
to obtain a procedure, to find the solutions of N , in which our
topological check must be repeated, at worst, only d(d + 1)/2
times, and 2d−δ linear circuits must be solved, where δ is the
number of diodes whose state has been predicted.

Remark 1: Our results can be applied to any circuit com-
posed of a finite number of multiport or multiterminal ele-
ments, as long as each of such elements is equivalent to
the connection of a finite number of positive linear resis-
tors, negative linear resistors, ideal diodes, nullators, norators,
and independent voltage and current sources. For example,
in Fig. 4 it is shown a two-port composed of two nullators,
two norators and one positive linear resistor, equivalent to a
voltage controlled current source (VCCS). Similar equivalent
circuits for all the linear controlled sources and also for other
linear active elements can be found in [8], and for some
nonlinear one-ports in [9, Sect. 3.1 and 3.2]. An example of
application of our results to the analysis of a circuit containing
nonlinear one-ports of the above kind, is given in Example 5
of Section IV, where for each diode of the circuit the constant-
voltage-drop model is adopted.

The paper is structured as follows: in Section II, we propose
our set of conditions. In Section III, we consider the particular
case of circuits composed of positive linear resistors, ideal
diodes and nonzero independent sources, and we summarize
and slightly improve our previous results of [7]. In Section IV,
we propose some simple examples to show how our conditions
can be used iteratively to analyse a circuit, and also to analyse
circuits in which, for the diodes, a more complex model than
the ideal one has been adopted. In Section V we summarize
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our results and we outline the first steps of our future work. In
the Appendix we state and prove a lemma used in the proof
of Corollary 1.

II. THE TOPOLOGICAL CONDITIONS

This section contains our main results concerning circuits
with active components.

Let N be a circuit. A loop of elements of type X1, . . . , Xk

(resp.: a cut-set of elements of type X1, . . . , Xk) is a loop
(resp.: a cut-set) of N whose elements can be partitioned into
k disjoint subsets S1, . . . , Sk – each one may be empty – such
that: for j = 1, . . . , k, the set Sj contains only elements of
type X j .

The following definition introduces the topological notions
necessary to state our results.

Definition 1: Let N be a circuit.
A loop (resp.: a cut-set) of N is admissible if all the diodes

in the loop (resp.: in the cut-set), oriented as the reference
direction of the current, have the same orientation in the loop
(resp.: in the cut-set).

Let D be a diode, S be an independent source, and α be a
loop or a cut-set of N .

The diode D and the source S are equi-oriented in α
(resp.: anti-oriented in α) if: α contains both D and S, and
the elements D and S, oriented as the reference direction of
the current, have the same orientation in α (resp.: have the
opposite orientation in α).

Finally, let α be a loop (resp.: a cut-set) of N containing
D. Define the following partition of the elements of α:

Pα : the set of all the positive linear resistors, and of all the
independent voltage (resp.: current) sources Sk such that
Sk and D are anti-oriented in α;

Nα : the set of all the negative linear resistors, and of all the
independent voltage (resp.: current) sources Sk such that
Sk and D are equi-oriented in α;

Zα : the set of all the diodes, and of all the nullators;
Iα : the set of all the independent current (resp.: voltage)

sources, and of all the norators.

We can now state and prove our main result.
Theorem 1: Let N be a circuit containing at least one diode,

and let D be one of the diodes of N . The following statements
hold:

(1a) If D is part of an admissible loop of diodes and
nullators, then, for every s ∈ S(N), the diode D is in
the closed state in s;

(1b) Let D be not part of a loop as in (1a), and let M be
the set of all the admissible loops μ containing D and
such that:
(i) μ contains no nullators and for every current source

CS in μ, D and CS are equi-oriented in μ;
(ii) it is: (Iμ �= ∅) or (Pμ �= ∅ and Nμ �= ∅)

If the set M is empty, then, for every s ∈ S(N), the
diode D is in the open state in s;

(2a) If D is part of an admissible cut-set of diodes and
nullators, then, for every s ∈ S(N), the diode D is in
the open state in s;

(2b) Let D be not part of a cut-set as in (2a), and let T be
the set of all the admissible cut-sets θ containing D and
such that:
(i) θ contains no nullators and for every voltage source

VS in θ , D and VS are equi-oriented in θ ;
(ii) it is: (Iθ �= ∅) or (Pθ �= ∅ and Nθ �= ∅)

If the set T is empty, then, for every s ∈ S(N), the
diode D is in the closed state in s.

Proof: Statement (1a) (resp.: (2a)) is an immediate con-
sequence of the application of the KVL (resp.: KCL) to the
admissible loop (resp.: cut-set) of diodes and nullators: the
sum of non-positive voltages (resp.: currents) must be zero,
hence all the voltages (resp.: currents) must be zero. Thus, for
every s ∈ S(N), all the diodes of the admissible loop (resp.:
cut-set) are in the closed (resp.: open) state in s.

The proof of Statements (1b) and (2b) uses the following
Colored-Branch Theorem1:

Let us consider a partially oriented graph, containing at
least one oriented branch. Let each of the oriented branches
of the graph be green colored, let the set of the non-oriented
branches be arbitrarily partitioned into two disjoint sets –
each one may be empty –, and let the branches of the first of
these two sets be red colored and those of the second set be
blue colored.

Then, each one of the green colored branches satisfies one
of the following two mutually exclusive statements:

(a) it is part of a uniform loop2 of green and red branches;
(b) it is part of a uniform cut-set of green and blue branches.

Proof of statement (1b). Let D be a diode of N not part of
an admissible loop of diodes and nullators. The statement to
prove is equivalent to: If there exists s ∈ S(N) in which the
current in D is positive, then the set M is not empty, i.e.: in
N there exists an admissible loop μ such that:
(i) it contains no nullators and for every current source CS

in μ, D and CS are equi-oriented in μ;
(ii) it is: (Iμ �= ∅) or (Pμ �= ∅ and Nμ �= ∅)

Let s ∈ S(N) be such that in s the current in D is positive.
Let G be a non-oriented copy of the graph of N . Once
numbered the nodes and the branches of G as those of N , let
define a partial orientation of the branches of G as follows: If
the current in the j -th branch of N is positive (resp.: negative)
in s, then define the orientation of the j -th branch of G to be
the same of (resp.: the opposite to) the reference direction of
the current in the corresponding branch of N ; If the current
in the j -th branch of N is zero in s then the j -th branch of
G is not oriented. Finally, let the oriented branches of G be
green colored, and the non-oriented branches be blue colored.

Let δ be the branch of G corresponding to the branch
of N containing D. The branch δ is green colored. By the
Colored-Branch Theorem applied to G , one of the following
two mutually exclusive statements holds: (a) δ is part of a

1A proof of the Colored Branch Theorem can be found in [6, Section II]
or [10, Theorem 3.1.11].

2A uniform loop (resp.: a uniform cut-set) of a partially oriented graph, is a
loop all whose oriented branches have the same orientation in the loop (resp.:
in the cut-set).
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uniform loop μ� of green branches; (b) δ is part of a uniform
cut-set θ � of green and blue branches.

Statement (b) is false, otherwise the KCL applied to θ
(the cut-set of N corresponding to θ �) would not be satisfied
(remember that all the green branches in θ � have the same
orientation in the cut-set, and that the current in the branches
of N corresponding to the blue branches is zero). Hence,
statement (a) holds.

Let μ be the loop of N corresponding to μ�. Obviously,
μ is admissible and verifies statement (i). Moreover, since μ
is not an admissible loop of diodes and nullators, we have:
Pμ ∪ Nμ ∪ Iμ �= ∅ and, since s = (i, v) is a solution of N ,
by the KVL applied to μ it is:∑

j∈P∗
μ

|v j | −
∑
j∈N∗

μ

|v j | +
∑
j∈I ∗

μ

(−1)σ j v j = 0

where: P∗
μ, N∗

μ and I ∗
μ are the set of the j such that branch j

of N is in Pμ, Nμ and Iμ, respectively, and each σ j ∈ { 0, 1 }.
Moreover: if j ∈ P∗

μ or j ∈ N∗
μ, then v j �= 0. Hence the

equation above implies:
Pμ ∪ Iμ �= ∅ and Nμ ∪ Iμ �= ∅

and this statement is equivalent to (ii).
Statement (1b) is proved.
Proof of statement (2b). Let D be a diode of N not part of

an admissible cut-set of diodes and nullators. The statement
to prove is equivalent to: If there exists s ∈ S(N) in which
the voltage in D is negative, then the set T is not empty, i.e.:
in N there exists an admissible cut-set θ such that:
(i) it contains no nullators and for every voltage source VS

in θ , D and VS are equi-oriented in θ ;
(ii) it is: (Iθ �= ∅) or (Pθ �= ∅ and Nθ �= ∅)

Let s ∈ S(N) be such that in s the voltage of the diode D is
negative. Let G be a non oriented copy of the graph of N . Once
numbered the nodes and the branches of G as those of N , let
define a partial orientation of the branches of G as follows: If
the voltage in the j -th branch of N is positive (resp.: negative)
in s, then define the orientation of the j -th branch of G to be
the same of (resp.: the opposite to) the reference direction of
the voltage in the corresponding branch of N ; If the voltage
in the j -th branch of N is zero in s then the j -th branch of
G is not oriented. Finally, let the oriented branches of G be
green colored, and the non-oriented branches be red colored.

Let δ be the branch of G corresponding to the branch
of N containing D. The branch δ is green colored. By the
Colored-Branch Theorem applied to G , one of the following
two mutually exclusive statements holds: (a) δ is part of a
uniform loop μ� of green and red branches; (b) δ is part of a
uniform cut-set θ � of green branches.

Statement (a) is false, otherwise the KVL applied to μ
(the loop of N corresponding to μ�) would not be satisfied
(remember that all the green branches in μ� have the same
orientation in the loop, and that the voltage in the branches of
N corresponding to the red branches is zero). Hence, statement
(b) holds.

Let θ be the cut-set of N corresponding to θ �. Obviously,
θ is admissible and verifies statement (i). Moreover, since θ

is not an admissible cut-set of diodes and nullators, we have:
Pθ ∪ Nθ ∪ Iθ �= ∅ and, since s = (i, v) is a solution of N ,
by the KCL applied to θ it is:∑

j∈P∗
θ

|i j | −
∑
j∈N∗

θ

|i j | +
∑
j∈I ∗

θ

(−1)σ j i j = 0

Moreover: if j ∈ P∗
θ or j ∈ N∗

θ , then i j �= 0. Hence the
equation above implies:

Pθ ∪ Iθ �= ∅ and Nθ ∪ Iθ �= ∅

and this statement is equivalent to (ii).
Statement (2b) is proved.
Remark 2: Linearity of the resistors is not essential in the

proof of Theorem 1. Let P+ (resp.: P−) be the set of
the resistive one-ports such that, assuming associate reference
directions for the port voltage v and the port current i , for
every v, i in the constitutive relation it is: vi � 0 (resp.:
vi � 0) and vi = 0 if and only if both v = 0 and
i = 0.3 Theorem 1 holds for the class of the circuits composed
of a finite number of P+ one-ports, P− one-ports, ideal
diodes, nullators, norators and independent voltage and current
sources.

Moreover, by their topological nature, the conditions of
Theorem 1 are independent of the constitutive relations of the
resistors and the positive values of the sources, and the same
holds for their consequences.

III. RDS CIRCUITS

In this section we consider RDS circuits i.e. circuits com-
posed of a finite number of positive linear resistors, ideal
diodes, and nonzero independent voltage and current sources.
For this class of circuits, Theorem 1 can be simplified in the
forthcoming Theorem 2, and we can give an additional con-
dition sufficient to determine the state of a diode, formulated
as Corollary 1.

The following statement, a slight refinement of Theorem 1
of [7], is simply a reformulation of Theorem 1 above in the
case of an RDS circuit.

Theorem 2: Let N be an RDS circuit containing at least
one diode, and let D be one of the diodes of N . The following
statements hold:

(1a) If D is part of an admissible loop of diodes, then, for
every s ∈ S(N), the diode D is in the closed state in s;

(1b) Let D be not part of a loop as in (1a), and let M be
the set of all the admissible loops μ containing D and
at least one independent source, and such that:
(i) For every independent current source CS in μ, it is:

D and CS are equi-oriented in μ;
(ii) If there are no independent current sources in μ,

then μ contains:
(iia) at least one independent voltage source VS such

that: VS and D are equi-oriented in μ;
(iib) at least one resistor, or at least one independent

voltage source VS such that VS and D are
anti-oriented in μ.

3P+ is the class of the strictly passive resistive one-ports.
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If the set M is empty, then, for every s ∈ S(N), the
diode D is in the open state in s;

(2a) If D is part of an admissible cut-set of diodes, then, for
every s ∈ S(N), the diode D is in the open state in s;

(2b) Let D be not part of a cut-set as in (2a), and let T be
the set of all the admissible cut-sets θ containing D and
at least one independent source, and such that:
(i) For every independent voltage source VS in θ , it is:

D and VS are equi-oriented in θ ;
(ii) If there are no independent voltage sources in θ ,

then θ contains:
(iia) at least one independent current source CS such

that: CS and D are equi-oriented in θ ;
(iib) at least one resistor, or at least one independent

current source CS such that CS and D are
anti-oriented in θ .

If the set T is empty, then, for every s ∈ S(N), the
diode D is in the closed state in s.

The following definition allows us to formulate the forth-
coming Corollary 1, which provides an additional condition
sufficient to determine the state of a diode. Such condition
was inspired by Theorem 0 of Duffin’s paper [11], and it is
more intuitive and less cumbersome – but also less powerful
– than that established in the previous Theorem 2.

Definition 2: We say that a diode D of an RDS circuit N is
totally equi-oriented (resp.: totally anti-oriented) if: for every
source S of N , the diode D and the source S are equi-oriented
(resp.: anti-oriented) in any loop containing both the
elements.

Observe that this definition uses only the notion of loop, and
that it has the following particularly simple practical meaning:
a diode is totally equi-oriented when all the sources push
the current in the forward direction of the diode, and it is
totally anti-oriented when all the sources push the current in
the reverse direction.

Corollary 1: Let N be an RDS circuit containing at least
one diode, and let D be one of the diodes of N . The following
statements hold:

(1) If D is not part of an admissible loop of diodes, and D is
totally anti-oriented, then, for every s ∈ S(N), the diode
D is in the open state in s;

(2) If D is not part of an admissible cut-set of diodes, and
D is totally equi-oriented, then, for every s ∈ S(N), the
diode D is in the closed state in s.

Proof: To prove Statement (1), assume D be not part of
an admissible loop of diodes. If here exists s ∈ S(N) such that
in s the current of the diode D is positive, then by Statement
(1b) of Theorem 2, there exists a loop μ and a source S such
that S and D are equi-oriented in μ, hence D is not totally
anti-oriented.

To prove Statement (2), assume D be not part of an
admissible cut-set of diodes. If here exists s ∈ S(N) such that
in s the voltage of the diode D is negative, then by Statement
(2b) of Theorem 2, there exists a cut-set θ and a source S
such that S and D are equi-oriented in θ . By Lemma 2 of the
Appendix, this last condition is equivalent to the existence in

Fig. 5. Circuit N of Example 4.

N of a loop μ such that S and D are anti-oriented in μ, i.e.:
to be D not totally equi-oriented.

Corollary 1 is proved.

IV. EXAMPLES

In this section, we propose some examples. Examples 3
and 4 show how Theorem 1 can be used to predict the state
of the diodes of two simple circuits. In particular, Example 4
shows how the theorem can be used iteratively. Example 5
shows how the results of Section III can be used to study a
circuit in which, for the diodes, a slightly more complex model
than the ideal one has been adopted.

Example 3: Let N be the circuit of Example 2 of Section I,
represented in Fig. 3. The circuit contains neither an admissi-
ble loop of diodes and nullators, nor an admissible cut-set of
diodes and nullators. Hence no one of the diodes satisfies the
hypothesis of statement (1a) or (2a) of Theorem 1. Instead,
D1 satisfies the hypotheses of statement (1b) of the same
theorem. Indeed, the only admissible loop μ containing D1
is that composed by D1, PR and VS. It is Iμ = ∅, Nμ = ∅

and Pμ = {PR, VS} (the voltage source VS and the diode
D1 are anti-oriented in μ). Hence, the set M relative to D1
is empty. Then, for every value of the components and every
s ∈ S(N), the diode D1 is in the open state in s.

Finally, the diode D2 satisfies neither the hypotheses of
condition (1b) nor those of condition (2b). Indeed, D2 is part
of the admissible loop μ composed by D2, PR, VS, and NR.
Hence Iμ = ∅, Pμ = {PR, VS} and Nμ = {NR}, and the
set M is not empty. Moreover, D2 is part of the admissible
cut-set θ composed by D2, D1 and VS. Hence Iθ = {VS},
Pθ = Nθ = ∅, and the set T is not empty. Thus, Theorem 1
gives no information about the state of D2.

The actual solutions of N has been found in Example 2 of
Section I.

Example 4: Let N be the circuit of Fig. 5. The circuit
contains neither an admissible loop of diodes and nullators,
nor an admissible cut-set of diodes and nullators. Hence no
one of the diodes satisfies the hypothesis of statement (1a) or
(2a) of Theorem 1. Moreover, it is easy to check by inspection
that each of the diodes D1, D3 and D4 satisfies the hypotheses
of statement (1b) of the same theorem (e.g.: the loop μ
composed by D4, R3, R1, VS, R2 is the unique admissible loop
containing D4, and for such loop it is both Iμ = ∅ and
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Nμ = ∅). Hence, for every value of the components and every
s ∈ S(N), the diodes D1, D3 and D4 are in the open state in
s. Concerning the diode D2, the hypotheses of statement (1b)
are false by the existence of the loop D2, R3, R1, VS, R2,
No, R4, and the hypotheses of statement (2b) are false by the
existence of the cut-set D2, R1, R2, No. Hence Theorem 1
gives no information on the state of D2.

The state of D2 can be determined by applying Theorem 1
to the circuit obtained from N by suitably eliminating D1, D3
and D4, whose state has been determined. Such technique is
described by the following statements.

Remark 3: Let N be a circuit containing at least one diode.
Using Theorem 1, we can try to predict the state of each of
the diodes of N . Let P be the set of all the diodes of N
which satisfy the hypotheses of at least one of the statements
(1a) – (2b), i.e. the set of all the diodes whose state can be
predicted using Theorem 1. The set P can be partitioned into
the union of two disjoint subsets O and C – each one may
be empty – such that O (resp. C ) contains only diodes whose
state has been predicted to be open (resp. closed). Observe
that obviously such a partition always exists and it may not be
unique. Indeed, a diode may satisfy both hypotheses sufficient
to predict its state to be open and hypotheses sufficient to
predict its state to be closed.

Definition 3: Let N be a circuit with ρ branches and ν
nodes. Let D be a diode of N and n�, n�� be the terminal nodes
of D.

The circuit obtained from N by deleting D is the circuit,
with ρ−1 branches and ν nodes, obtained from N by deleting
the branch containing D and maintaining the nodes n� and n��.
The circuit obtained from N by contracting D is the circuit,
with ρ − 1 branches and ν − 1 nodes, obtained from N by
deleting the branch containing D and then identifying the
nodes n� and n��.

Lemma 1: Let N be a circuit containing at least one diode,
and let O and C be two disjoint sets, not both empty, where
O and C contain diodes of N whose state is known to be
open and closed, respectively, in every s ∈ S(N). Finally, let
N∗ be the reduced circuit obtained from N by deleting all
the diodes in O , and contracting all the diodes in C . The
following statement holds:

If D is a diode of N∗, and for every s∗ ∈ S(N∗) the state
of D is open (resp.: closed) in s∗, then D is a diode of N , and
for every s ∈ S(N) the state of D is open (resp.: closed) in s.

Proof: Obviously D is a diode of N . The proof of the
statement, by contradiction, is obtained using the following
easily proved fact: If there exists s ∈ S(N) in which the
current in D is positive (resp.: the voltage in D is negative)
then there exists s∗ ∈ S(N∗) in which the current in D is
positive (resp.: the voltage in D is negative).

Continuation of Example 4: Let N∗ be the circuit of Fig. 6,
obtained from N (Fig. 5) by deleting the diodes D1, D3 and
D4. The circuit contains neither an admissible loop of diodes
and nullators, nor an admissible cut-set of diodes and nullators.
The diode D2 satisfies the hypotheses of statement (2b) of
Theorem 1 applied to N∗ (observe that the branches D2, R1,
R2, No does not define a cut-set). Hence, for every value of
the components and every s∗ ∈ S(N∗), the diode D2 is in

Fig. 6. Circuit N∗ of Example 4.

Fig. 7. One-port realization of the constant-voltage-drop model.

the closed state in s∗. By Lemma 1, for every value of the
components and every s ∈ S(N), the diode D2 is in the closed
state in s.

Now, to find all the solutions of N it is sufficient to analyse
one linear circuit instead of the 24 required by the elementary
procedure: the linear circuit obtained by replacing in N the
diodes D1, D3 and D4 by open circuits and D2 by a short
circuit. We conclude that for every value of the components,
N has a unique solution, s, and, in s, it is: v = i = 0 for both
D1 and D2, and v < 0, i = 0 for both D3 and D4.

Example 5: The ideal diode is the simplest model for a
diode. Many more complex models can be realized by RDS
one-ports, hence all the circuits composed of such one-ports,
positive linear resistors, negative linear resistors, nullators,
norators and independent voltage and current sources, can
be studied as circuits composed of positive linear resistors,
negative linear resistors, ideal diodes, nullators, norators and
independent voltage and current sources. Hence, the results
of Sections II and III can be applied to circuits in which the
diodes are modeled as RDS one-ports.

As an example, let N be a Graetz bridge in which each diode
is modeled by the constant-voltage-drop model. This model is
realized by the RDS one-port of Fig. 7, whose constitutive
relation is:

v − 	 � 0, i � 0, (v − 	) i = 0

where the positive value 	 of VS represents the voltage drop
in the forward-conducting diode.

The circuit N above is represented in Fig. 8. The circuit con-
tains neither an admissible loop of diodes, nor an admissible
cut-set of diodes, and in every admissible loop μ containing
D2 (resp.: D4), the diode D2 (resp.: D4) and each voltage
source contained in μ are anti-oriented. Hence, by statement
(1b) of Theorem 2, for every value of the components and
every s ∈ S(N) the diodes D2 and D4 are in the open
state in s. Instead, neither D1 nor D3 verify the topolog-
ical conditions required by Corollary 1 or by Theorem 2.
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Fig. 8. Circuit N of Example 5.

Fig. 9. Circuit N∗ of Example 5.

Fig. 10. Circuit M of Example 5.

Hence these statements give no information about the state
of D1 and D3.

Consider now the circuit N∗ of Fig. 9, obtained from N
by deleting D2 and D4, and apply the v-shift property source
transformation (see [9, Chapter 12, Section 1.1]) to the cut-set
VS1, VS5 to shift VS1, and then to the cut-set VS3, VS5 to
shift VS3. Finally, replace the series connection of the three
sources VS5, VS1 and VS3 by a single source VS6. The circuit
M obtained is represented in Fig. 10. Obviously, as far as it
concerns the state of the common diodes, the circuits N∗ and
M are equivalent.

For every k, let Ek be the value of the voltage source VSk ,
so that E6 = E5 − E1 − E3.

If E1, E3 and E5 are such that E5 − E1 − E3 > 0, then
it is E6 > 0. The circuit contains neither an admissible
loop of diodes, nor an admissible cut-set of diodes, and both
D1 and D3 are totally equi-oriented. Then, by Corollary 1,
independently of the value of the components, both diodes
are in the closed state in every solution of M , hence in every
solution of N .

If E1, E3 and E5 are such that E5 − E1 − E3 < 0, then
it is E6 < 0. Let M � be the circuit obtained from M by
changing the orientation of VS6. This new circuit contains
neither an admissible loop of diodes, nor an admissible cut-set
of diodes, and both D1 and D3 are totally anti-oriented. Then,
by Corollary 1, independently of the value of the components,
both diodes are in the open state in every solution of M �, hence
in every solution of N .

Finally, if E1, E3 and E5 are such that E5 − E1 − E3 = 0
then it is E6 = 0. Let M �� be the circuit obtained from
M by contracting VS6. This new circuit contains neither an
admissible loop of diodes, nor an admissible cut-set of diodes,
and both D1 and D3 are both totally anti-oriented and totally
equi-oriented (there is a unique loop, and it contains both
diodes and no sources). Then, by Corollary 1, independently
of the value of the components, both diodes are both in the
closed state and in the open state in every solution of M ��,
hence in every solution of N . Therefore, for both diodes it is
v = i = 0.

In each of the above cases, to find all the solutions of N
it is sufficient to analyse one linear circuit instead of the
24 required by the elementary procedure: that obtained by
replacing in N the diodes by the suitable combination of open
and short circuits.

V. CONCLUSION

Let N be a circuit composed of a finite number of positive
and negative linear resistors, ideal diodes, nullators, norators
and nonzero independent current and voltage sources, and
let N contain at least one diode, D. We have given some
topological conditions sufficient to predict the state of D,
i.e. to ensure that for every solution s of N , the diode D
is in the open (resp.: closed) state. We also specialized our
conditions to the case of N being an RDS circuit, i.e. a circuit
composed of a finite number of positive linear resistors,
ideal diodes and nonzero independent current and voltage
sources.

In some examples, we have demonstrated how our condi-
tions can be applied, by inspection, to analyse simple circuits.
In particular, we have shown how our technique can be
iterated, as soon as the state of some diodes has been predicted,
by analysing a suitable reduced circuit. In a final example,
we have applied our results to analyse a circuit in which
the diodes have been modeled by a constant-voltage-drop
model.

When N is a more complex circuit, an algorithm must be
devised to analyse N using our conditions.

Let us assume to have a procedure, TEST, which operates on
a circuit M , containing m > 0 diodes, by applying Theorem 1
to each of its diodes, and returns the set P of the diodes of
M whose state has been predicted, partitioned as P = O ∪C ,
where O (resp. C ) contains only diodes whose state has been
predicted to be open (resp. closed), as described in Remark 3.
Observe that the procedure TEST must check m times the
hypotheses of conditions (1a) − (2b) of Theorem 1.

An example of algorithm which, to determine the solutions
of N , applies the procedure TEST to a suitable sequence
N1, . . . , Nt of circuits is the following:
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Notations used in the algorithm

k: a counter,
N j : the circuit on which the j -th execution of TEST will

operate,
d j : the number of diodes of N j ,

P j : the set of diodes of N j whose state has been predicted
applying TEST to N j ,

π j : the number of elements of P j ,
O j : the component of the partition of P j returned by TEST

applied to N j and containing only diodes whose state
has been predicted to be open,

C j : the component of the partition of P j returned by TEST
applied to N j and containing only diodes whose state
has been predicted to be closed;

Algorithm

(0) Set k = 1 and N1 = N (N1 contains d1 = d > 0 diodes);
(1) Apply the procedure TEST to Nk , denote by Pk the set

returned by TEST, i.e. the set of the diodes of Nk whose
state has been predicted, and by Ok ∪Ck its partition, let
πk be the number of elements of Pk ;

(2) If Pk �= ∅, then:
(i) if πk < dk then: construct the reduced circuit Nk+1

obtained from Nk by deleting all the diodes of Ok

and contracting all the diodes of Ck (Nk+1 contains
dk+1 diodes, where 0 < dk+1 = dk − πk < dk), set
k := k + 1 and go to step (1);

(ii) if πk = dk then go to step (4);

(3) If Pk = ∅, then the set of diodes of N whose state has
been predicted is:

P =
{

the empty set, if k = 1

P1 ∪ · · · ∪ Pk−1, if k > 1

which has:

p =
{

0, if k = 1

π1 + · · · + πk−1, if k > 1

elements; each diode of P has now a known state
assigned by the previous steps. To find the solutions of N :
for each of the 2d−p combinations of states of the d − p
diodes of N whose state has not been predicted, execute
steps (a) and (b) of the elementary procedure (2d−p linear
circuits must be solved and the algorithm terminates).

(4) The state of all the diodes of N has been predicted:
each diode of N has now a known state assigned by the
previous steps. To find the solutions of N , analyse the
linear circuit obtained from N by replacing each diode by
a short or open circuit as required by the predicted state
(only one linear circuit must be solved and the algorithm
terminates).

Let us observe that:
• The algorithm terminates after at most d executions of

TEST.
• The algorithm checks the hypotheses of conditions (1a)−

(2b) of Theorem 1 at least d times, and at most d(d+1)/2
times.

Indeed: If the algorithm terminates after one execution of
TEST, the statement in obvious.
If the algorithm terminates after t > 1 executions of
TEST, then the procedure TEST has been applied to the
circuits N1, . . . , Nt . Hence, the hypotheses of conditions
(1a)−(2b) of Theorem 1 have been checked d1 +· · ·+dt

times. Since d = d1 > · · · > dt � 0, then it is:

d � d1 + · · · + dt �
d−1∑
k=0

(d − k) = d(d + 1)/2

A realization of the algorithm, in particular of the procedure
TEST, is currently being studied.

APPENDIX

In this section, we state and prove Lemma 2, used in the
proof of Corollary 1.

Lemma 2: Let N be a circuit containing at least one inde-
pendent source and at least one diode. Let S be an independent
source and D be a diode of N .

The statements:
(i) there exists a loop of N in which D and S are equi-

oriented
(ii) there exists a cut-set of N in which D and S are anti-

oriented

are equivalent, and the statements:
(iii) there exists a loop of N in which D and S are anti-

oriented
(iv) there exists a cut-set of N in which D and S are equi-

oriented

are equivalent.
Proof: Let G be a non oriented copy of the graph of N and

let δ (resp.: γ ) be the branch of G corresponding to the branch
of N containing D (resp.: S). Let δ and γ be oriented as the
reference direction of the current in the corresponding branch
of N .

Proof of: (i) ⇒ (ii): Let μ be a loop of G in which δ
and γ are equi-oriented. Let the branches δ and γ be green
colored, the other branches of μ be red colored, and the
remaining branches of G be blue colored. Let G � be the
partially oriented graph obtained from G by inverting the
orientation of the green branch δ. The graph G � contains
a unique loop of green and red branches, but not uniform.
Hence, by the Colored-Branch Theorem applied to G �, the
green branch δ is part of a uniform cut-set θ � of green and
blue branches, necessarily containing also γ . The elements
D and S are anti-oriented in the cut-set of N corresponding
to θ �.

Proof of: (ii) ⇒ (i): Let θ be a cut-set of G in which δ and γ
are anti-oriented. Let the branches δ and γ be green colored,
the other branches of θ be blue colored, and the remaining
branches of G be red colored. The graph G contains a unique
cut-set of green and blue branches, but not uniform. Hence,
by the Colored-Branch Theorem, the green branch δ is part
of a uniform loop μ� of green and red branches, necessarily
containing also γ . The elements D and S are equi-oriented in
the loop of N corresponding to μ�.
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Similar arguments prove the remaining equivalence.
Lemma 2 is proved.
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