Dipartimento di Matematica Applicata « Ulisse Dini »

Problemi di Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Corso di Laurea in Ingegneria Nucleare e della Sicurezza e Protezione

a.a. 2009/2010

2 Sistemi di equazioni lineari

In questa Sezione, le frasi "(la procedura) XX termina su x" e "(la funzione) XX è definita in x" hanno lo stesso significato.

Problema 1

Dimostrare che se $A \in \mathbf{R}^{n \times n}$ è una matrice simmetrica definita positiva e $P \in \mathbf{R}^{n \times n}$ è una matrice di permutazione, allora $B = P^{\mathsf{T}}AP$ è simmetrica definita positiva.

(Suggerimento: utilizzare la definizione di matrice simmetrica definita positiva.)

Problema 2

Utilizzando la definizione, dimostrare che se $A \in \mathbf{R}^{n \times n}$ è una matrice simmetrica definita positiva allora per $k = 1, \dots, n$ si ha $a_{kk} > 0$.

Problema 3

Sia

$$A = \left[\begin{array}{rrr} -2 & 0 & 2 \\ 4 & 1 & 4 \\ 4 & 0 & 4 \end{array} \right]$$

Determinare EG(A).

Problema 4

Sia $A \in \mathbf{R}^{4\times 4}$, e siano r_1, \dots, r_4 le sue righe. Posto

$$B = \begin{bmatrix} r_1 \\ 2r_1 + r_2 \\ -r_1 + r_3 \\ -r_4 \end{bmatrix}$$

(1) determinare una matrice $H \in \mathbf{R}^{4\times 4}$ tale che

$$HA = B$$

- (2) decidere se la matrice trovata è l'unica che soddisfa la proprietà richiesta.
- (3) dopo aver verificato che H risulta invertibile, determinare H^{-1} . (Suggerimento: non calcolare l'inversa direttamente ma ragionando sulle righe di A e B e sul fatto che $H^{-1}B = A$.)

Problema 5

Sia $A \in \mathbf{R}^{n \times n}$ una matrice triangolare superiore invertibile.

- (1) Verificare che se $Ax = e_j$ allora $x_k = 0$ per k > j.
- (2) Verificare che A^{-1} è triangolare superiore.

Problema 6

Sia $A \in \mathbf{R}^{n \times n}$ una matrice triangolare superiore con $a_{kk} = 1$ per $k = 1, \dots, n$.

- (1) Verificare che se $Ax = e_j$ allora $x_j = 1$ e $x_k = 0$ per k > j.
- (2) Verificare che $B = A^{-1}$ è triangolare superiore con $b_{kk} = 1$ per $k = 1, \ldots, n$.

Problema 7

Per ogni $a \in \mathbf{R}$, si consideri la matrice

$$A(a) = \left[\begin{array}{rrr} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{array} \right]$$

- (1) Determinare l'insieme $T = \{ a \in \mathbf{R} \text{ tali che EG termina su } A(a) \}$, e per ciascun $a \in T$ indicare la fattorizzazione LR individuata da EG.
- (2) Descrivere come si possano utilizzare i risultati otenuti in (1) per determinare l'insieme $P = \{ a \in \mathbf{R} \text{ tali che } A(a) \text{ è definita positiva } \}.$

Problema 8

Si consideri la matrice simmetrica

$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 2 & 1 \\ 2 & 1 & 14 \end{bmatrix} \in \mathbf{R}^{3 \times 3}$$

- (1) indicare la fattorizzazione LR individuata da EG ed utilizzarla per decidere se A sia definita positiva;
- (2) detta S, D la fattorizzazione LR determinata in (1), indicare Δ diagonale ad elementi non negativi tale che $A = S\Delta S^{\mathsf{T}}$;
- (3) utilizzare i risultati ottenuti in (2) per determinare L triangolare inferiore tale che $A = LL^{\mathsf{T}}$ (suggerimento: determinare M diagonale tale che $\Delta = MM^{\mathsf{T}}$);

2

(4) mostrare che per ogni $x \in \mathbf{R}^3$ si ha $x^\mathsf{T} A x = ||L^\mathsf{T} x||_2^2.$

Problema 9

Determinare l'insieme

$$\mathcal{D} = \{ a, b, c \in \mathbf{R} \text{ tali che} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \text{ è definita positiva.} \}$$

Problema 10

Siano

$$M = \begin{bmatrix} 1 & & 2 & & \\ & 1 & & -1 & & \\ & & 1 & 6 & & \\ & & & 1 & & \\ & & & 2 & 1 & \\ & & & 3 & & 1 \end{bmatrix} \quad , \quad A = \begin{bmatrix} \hat{a}_1 \\ \vdots \\ \hat{a}_6 \end{bmatrix} \in \mathbf{R}^{6 \times 6}$$

- (1) Determinare MA;
- (2) Determinare M^{-1} .

Problema 11

La procedura EGP (eliminazione di Gauss con pivoting) applicata ad una matrice $A \in \mathbf{R}^{4\times4}$ produce le matrici seguenti:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 1 & 0 & 2 & 1 \end{bmatrix} \quad , \quad N = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad , \quad V = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Determinare A.

Problema 12

Determinare una farrorizzazione QR della matrice

$$M = \left[\begin{array}{rrr} 1 & 0 & 2 \\ 0 & 0 & 2 \\ -1 & 2 & 2 \end{array} \right]$$

ed utilizzarla per calcolare M^{-1} .

Problema 13

Sia

$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \mathbf{R}^2$$

Disegnare l'insieme dei punti $\hat{x} \in \mathbb{R}^2$ che verificano la disuguaglianza:

$$\frac{N(\hat{x} - x)}{N(x)} \le 1$$

per $N = N_2$ e poi per $N = N_1$.

Problema 14

Determinare una fattorizzazione LR della matrice

$$A = \left[\begin{array}{rrr} 2 & 1 & 1 \\ 2 & 0 & 1 \\ 2 & 0 & 0 \end{array} \right]$$

utilizzando il procedimento di Doolittle. Decidere se quella trovata sia l'unica fattorizzazione LR di A esistente.

Problema 15

Determinare almeno due fattorizzazioni LR distinte della matrice

$$M = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

Problema 16

Sia

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 2 \end{array} \right]$$

Operando in \mathbf{R} , determinare le matrici P (di permutazione), S e D (fattorizzazione LR di PA) prodotte applicando ad A la procedura EGPP.

Problema 17

Per ogni $a \in \mathbf{R}$ sia

$$A(a) = \left[\begin{array}{ccc} 1 & 1 & 0 \\ a & 1 & 1 \\ 0 & 1 & 1 \end{array} \right]$$

Determinare tutti i valori di a per i quali EG(A(a)) è definita, e per ogni $a \in \mathbf{R}$ discutere l'esistenza di fattorizzazioni LR di A(a).

Problema 18

Sia $A \in \mathbf{R}^{n \times n}$. Per ciascuno dei seguenti asserti, decidere se sia vero o falso:

- (a) Se A è a predominanza diagonale forte per righe allora -A lo è per colonne.
- (b) Se A è a predominanza diagonale forte per righe allora A^{T} lo è per colonne.
- (c) $Se\ A$ è a predominanza diagonale forte per righe $allora\ 2A$ lo è per colonne.

Problema 19

Sia $A \in \mathbf{R}^{3 \times 3}$ simmetrica tale che $Av \bullet v = v_3^2 + 2v_1v_2$. Decidere se A sia definita positiva.

Problema 20

Per ogni $a \in \mathbf{R}$ sia

$$A(a) = \left[\begin{array}{cc} 3 & 1 \\ 1 & -a \end{array} \right]$$

4

Determinare tutti i valori di a per i quali A(a) è definita positiva.

Problema 21

Sia $A \in \mathbf{R}^{n \times n}$ simmetrica. Per ciascuno dei seguenti asserti, decidere se sia vero o falso:

- (a) Se EG è definita in A allora A è definita positiva.
- (b) $Se\ A$ è definita positiva allora A è invertibile.
- (c) $Se\ A$ è definita positiva allora EGP è definita in A.

Problema 22

Determinare una fattorizzazione QR della matrice

$$A = \left[\begin{array}{rrr} 0 & 0 & 2 \\ 0 & 1 & 3 \\ -1 & 0 & 1 \end{array} \right]$$

ed utilizzarla per risolvere il sistema

$$Ax = \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right]$$

Problema 23

Determinare il numero di condizionamento in norma due della matrice

$$M = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{array} \right]$$

Problema 24

Siano $A \in \mathbf{R}^{n \times n}$, $b \in \mathbf{R}^n$ e si consideri il sistema Ax = b. Operando in \mathbf{R} , la procedura:

- (1) (S,D) = EG(A)
- (2) c = SA(S, b)
- (3) x = SI(D, c)

determina, se ciascuno dei tre passi termina, la soluzione del sistema.

Indicare come determinare la soluzione del sistema (operando in \mathbf{R}) utilizzando le funzioni mul (definita, per ogni matrice M e colonna v da mul(M, v) = Mv), SI e qr (che determina una fattorizzazione QR della matrice su cui opera).

Problema 25

Siano M un insieme di numeri di macchina e $\phi:M^n\times M^n\to M$ la funzione definita da

$$\phi(u,v) = u_1 \overset{1}{\otimes} v_1 \overset{n+1}{\oplus} \cdots \overset{2n-1}{\otimes} u_n \overset{n}{\otimes} v_n$$

ed utilizzata per approssimare $u \bullet v$, prodotto scalare canonico in \mathbf{R}^n di $u \in v$.

Indicare come utilizzare ϕ per approssimare, assegnati $A \in M^{n \times n}$ e $z \in M^n$, il prodotto $Az \bullet z$. Determinare infine il costo aritmetico di ϕ e della procedura indicata.

Problema 26

Siano $A \in \mathbf{R}^{2 \times 2}$ invertibile, $b \in \mathbf{R}^2$ e

$$x^* = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$$

la soluxione del sistema Ax = b.

Sapendo che $\mu_{\infty}(A)=500$, determinare (e disegnare) l'insieme delle possibili soluzioni del sistema ottenuto da Ax=b perturbando il dato b in modo che $\epsilon_b=10^{-3}$.