Dipartimento di Matematica Applicata « Ulisse Dini »

Problemi di Calcolo Numerico

Corso di Laurea in Ingegneria Elettronica Corso di Laurea in Ingegneria Nucleare e della Sicurezza e Protezione

a.a. 2009/2010

O Funzionalità matematiche del calcolatore e teoria degli errori

Problema 1

Determinare l'esponente e la frazione di $x=\frac{2}{5}$ in base $\beta=3.$

Problema 2

Sia M = F(2,3). Indicare quali dei seguenti numeri appartengono ad M:

$$x_1 = 1$$
 , $x_2 = \frac{1}{3}$, $x_3 = \frac{1}{16}$, $x_4 = \frac{3}{16}$

Problema 3

Sia M = F(10,3). Determinare il numero di elementi dell'insieme

$$\{\xi \in M \text{ tali che } -10^{-6} \text{ } 0.311 \le \xi \le -10^{-9} \text{ } 0.581 \}$$

Problema 4

Siano M_2 un insieme di numeri in virgola mobile e base 2 e M_{10} un insieme di numeri in virgola mobile e base 10.

- (a) Mostrare che $\frac{1}{10} \in M_{10}$ ma $\frac{1}{10} \notin M_2$, e dedurne che sono falsi gli asserti $M_2 \supset M_{10}$ e $M_2 = M_{10}$.
- (b) Mostrare che per ogni intero positivo k, 2^k non è divisibile per 10 (e quindi che la cifra delle unità dell'espansione decimale di 2^k è sempre non zero) e che per ogni intero positivo n esiste k tale che $2^k > 10^n$; questi due asserti provano che per k sufficientemente grande si ha $2^k \notin M_{10}$, e quindi che è falso anche l'asserto $M_2 \subset M_{10}$.

Problema 5

Sia $M = F(\beta, m)$ e siano $\phi, \psi : M \setminus \{0\} \to \mathbf{R}$ le funzioni definite da

$$\phi(\xi) = \text{esponente di } \xi$$
, $\psi(\xi) = \text{frazione di } \xi$

Mostrare che per ogni $\xi \in M$ si ha $\psi(\xi) \in M$, ma che ϕ non ha la stessa proprietà. Per ciascuna di tali funzioni, decidere se è monotona.

Problema 6

Sia $M = F(\beta, m)$ e sia $\phi : M \setminus \{0\} \to \mathbf{R}$ la funzione definita da $\phi(\xi) = \sigma(\xi) - \xi$. Mostrare che per ogni $\xi \in M$ si ha $\phi(\xi) \in M$ e decidere se ϕ è monotona.

Problema 7

Sia M = F(2,4). Posto $\xi = 2^{-3} \ 0.1101 \in M$, indicare per quali interi n si ha $4^n \xi \in M$.

Problema 8

Sia M = F(3,2). Calcolare $\operatorname{rd}(\frac{1}{4})$.

Problema 9

Sia M = F(10,3). Calcolare $\delta(\frac{1}{27})$.

Problema 10

Sia M = F(2,4). Decidere se

- (a) per ogni $\xi \in M$ si ha $4 \times \xi \in M$
- (b) per ogni $\xi \in M$ si ha $\xi/4 \in M$
- (c) per ogni $\xi \in M$ si ha $\xi + 4 \in M$

Problema 11

Sia M = F(2,4). Mostrare che tutti gli elementi positivi di M con esponente maggiore o uguale a 4 sono interi, e poi determinare il massimo dell'insieme

$$\{ \xi \in M \text{ tali che } \xi > 0 \text{ e } \xi \notin \mathbf{Z} \}$$

Problema 12

Sia $M = F(\beta, m)$. Decidere se per ogni $\xi \in M$ si ha

$$\xi \otimes \xi > 1 \Rightarrow \xi^2 > 1$$

Problema 13

Sia $f: \mathbf{R} \to \mathbf{R}$ la funzione definita da $f(x) = x^2 - x$. Determinare la funzione di condizionamento per il problema del calcolo di f in x che esprime l'errore relativo trasmesso dai dati in termini di x e dell'errore relativo sul dato.

Problema 14

Siano $M = F(\beta, m)$, $f : \mathbf{R} \to \mathbf{R}$ la funzione definita da f(x) = x(x-1) e $\phi : M \to M$ la funzione definita da $\phi(\xi) = \xi \otimes (\xi \ominus 1)$. Stimare l'errore algoritmico ϵ_a (commesso utilizzando ϕ per approssimare f in ξ) in termini di ξ ed u.

Problema 15

Sia M = F(10, 2). Determinare l'insieme $\{ \xi \in M \text{ tali che } 0.31 \otimes \xi = 0.31 \}$.

Problema 16

Siano $M = F(\beta, m)$ e SEN: $M \to M$ la funzione definita da SEN $(\xi) = \operatorname{rd}(\operatorname{sen} \xi)$. Si utilizza la funzione $\phi(\xi) = \operatorname{SEN}(\xi) \oslash \xi$ per approssimare la funzione $f(x) = \frac{\operatorname{sen} x}{x}$. Stimare l'errore algoritmico ϵ_a in termini di ξ ed u.

Problema 17

Siano f la funzione definita, per $x \in \mathbf{R}$, da $f(x) = e^{-x}$ e EXP la funzione definita, per $\xi \in M$ da $\text{EXP}(\xi) = \text{rd}(e^{\xi})$. Posto $\phi(\xi) = 1 \oslash \text{EXP}(\xi)$, stimare l'errore algoritmico ϵ_a (commesso utilizzando ϕ per approssimare f in ξ) in termini di ξ ed u.

Problema 18

Indicare l'errore relativo che si commette approssimando

$$10 \text{ con } 20$$
 , $5 \cdot 10^{-6} \text{ con } 10^{-5}$, $1 \text{ con } 2$

Problema 19

Sia $M=F(\beta,m)$ un insieme di numeri di macchina. Per ciascuno dei seguenti asserti decidere se è vero o falso:

- (1) l'errore relativo commesso approssimando $x \in \mathbf{R}$ con $\mathrm{rd}(x)$ è minore o uguale ad u;
- (2) l'errore assoluto commesso approssimando $x \in \mathbf{R}$ con rd(x) è minore o uguale ad 1;
- (3) se $\xi \in M$, anche $\beta^2 \xi \in M$;
- (4) se $x \in \mathbf{R}$ e $\mathrm{rd}(x) = 0$, allora x = 0;
- (5) gli intervalli $[\beta, \beta^2]$ e $[\beta^{10}, \beta^{11}]$ contengono lo stesso numero di elementi di M.

Problema 20

Siano $f: \mathbf{R} \to \mathbf{R}$ una funzione e

$$F(x, \epsilon) = 3\epsilon x - 6\epsilon^2$$

la funzione di condizionamento per il problema del calcolo di f in x, che esprime l'errore relativo trasmesso dal dato in funzione del dato x e dell'errore relativo ϵ sul dato.

Calcolare

$$\frac{f(6) - f(3)}{f(3)}$$

Problema 21

Sia M = F(10, 2). Calcolare $rd(2^{-3}0.1011)$.

Problema 22

Determinare tutti gli elementi di \mathbf{R} che approssimano 7 con errore relativo inferiore a $\frac{1}{10}$ in valore assoluto.

Problema 23

Siano $M=F(\beta,m)$ e SQRT : $M\to M$ la funzione definita da SQRT $(\xi)=\mathrm{rd}(\sqrt{\xi})$. Si utilizza la funzione

$$\phi(\xi_1, \xi_2) = \mathtt{SQRT}((\xi_1 \otimes \xi_1) \oplus (\xi_2 \otimes \xi_2))$$

per approssimare la funzione $f(x_1,x_2)=\sqrt{x_1^2+x_2^2}$. Stimare l'errore algoritmico ϵ_a in termini di ξ_1,ξ_2 ed u.