
Lezione 02 (ore 01,02) – 24 settembre 2025, 11:30 – 13:30 A13

(1) ZERI DI FUNZIONI E ARITMETICA DEL CALCOLATORE

(1.01) Problema.

Data f:[a,b] → R continua e tale che esiste t in R t.c. f(t) = 0, determinare t. Il numero 
t si chiama ‘zero di f’.

(1.02) Teorema (di esistenza degli zeri)

Sia f:[a,b] → R continua e t.c. f(a)f(b) < 0. Allora: esiste t in (a,b) t.c. f(t) = 0.

(1.03) Osservazione.

La condizione  f(a)f(b) < 0 è equivalente alla condizione: 

f(a) non è zero & f(b) non è zero & segno f(a) diverso da segno f(b)

(1.04) Metodo di bisezione.

Idea: utilizzare il Teorema di esistenza degli zeri per ottenere una successione di 
intervalli I(k) = [a(k),b(k)] tale che:

• per ogni k, esiste zero di f in I(k)
• I(k+1) incluso in I(k)
• quando k → ∞ si ha mis I(k) → 0

(1.05) Descrizione del metodo.

z = Bisezione(f,a,b)

ingresso: f:(a,b) → R t.c. f(a)f(b) < 0

• a(0) = a; b(0) = b; I(0) = [a(0),b(0)]; x(0) = (a(0) + b(0)) / 2;
• per   k = 1,2,3,… ripeti:

se f(x(k-1)) = 0 allora STOP; altrimenti
• se f(x(k-1))f(b(k-1)) < 0 allora a(k) = x(k-1); b(k) = b(k-1);
     altrimenti a(k) = a(k-1); b(k) = x(k-1);
• I(k) = [a(k),b(k)]; x(k) = (a(k) + b(k)) / 2;

uscita: quando un opportuno criterio d’arresto è verificato: z = x(k), punto medio 
        dell’ultimo intervallo determinato.

(1.06) Osservazione.

(A) mis I(k) = b(k) – a(k) = mis I(k-1) / 21 =  mis I(k-2) / 22 = ... =  mis I(0) / 2k e
    quindi:
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 quando k → ∞ si ha mis I(k) → 0 

(B) se f continua allora: per ogni k, I(k) contiene uno zero di f e

quando k → ∞ si ha x(k) → t con f(t) = 0

    (Dimostrazione ...)

(1.07) Criterio d’arresto.

Il metodo di bisezione è un metodo iterativo, ovvero un metodo che approssima l’oggetto 
cercato costruendo una successione. Poiché è materialmente impossibile costruire tutti gli 
elementi della successione, è necessario introdurre un criterio d’arresto, ovvero una 
condizione che, quando verificata, arresta la costruzione delle successione.

Un esempio di criterio d’arresto è: dato Δ numero reale positivo ...

se mis I(k) < Δ allora STOP

Proprietà del criterio d’arresto:

(1) la condizione  mis I(k) < Δ ‘è calcolabile’
(2) la condizione è certamente verificata dopo un numero finito di iterazioni (vedi
    l’Osservazione (B) in (1.06)): il criterio ‘è efficace’
(3) se f continua e k è tale che mis I(k) < Δ allora:

• esiste t in I(k) zero di f
• |x(k) – t| < mis I(k) / 2 <  Δ/2 < Δ

    ovvero la procedura restituisce un valore x(k) che è un’approssimazione di uno zero di 
    f con errore assoluto |x(k) – t| minore di Δ: ‘la procedura restituisce
    un’approssimazione accurata quanto richiesto dall’utilizzatore’.
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(1.08) Realizzazione Scilab.

function [z, v, info, k, mis] = bisezione(f, a, b, E, kmax)
//
// Uso:
//     [ z,v,info,[k,[mis]] ] = bisezione(f,a,b,E,kmax)
//
//
// Approssima uno zero della funzione f:[a,b] -> R, che deve
// essere continua, con il metodo di bisezione. La funzione f
// deve assumere valori non nulli e di segno opposto in a e b.
//
// L'iterazione si arresta quando:
// (*) la funzione f ha valore zero nel punto medio x_m
//     dell'intervallo considerato [a(k),b(k)];
// (*) l'intervallo considerato [a(k),b(k)] ha misura minore di
//     E: in tal caso si ha, in teoria, che z approssima uno zero di
//     f con errore assoluto non superiore ad E/2;
// (*) dopo kmax iterazioni.
//
// kmax: valore opzionale (valore predefinito: 50).
//
// z: approssimazione finale (zero di f oppure punto medio
//    dell'ultimo intervallo generato);
// v: valore di f in z;
// info = 0: individuato valore in cui f si annulla (f(z) = 0);
//      = 1: f(z) ~= 0 e l'ultimo intervallo considerato ha misura
//           minore di E (mis < E);
//      = 2: f(z) ~= 0, mis >= E e il numero di iterazioni ha
//           raggiunto il massimo consentito (k = kmax);
// k: numero di iterazioni effettuate;
// mis: ampiezza dell'ultimo intervallo determinato.
//
//
// Inizializzazioni
//
if ~exists('kmax','l') then kmax = 50; end;
k_bis = 0; // contatore delle iterazioni eseguite
//
// Costruzione successioni
//
x_m = (a + b)/2;
f_m = f(x_m);
while (abs(b-a) >= E & f_m ~= 0 & k_bis < kmax),
  k_bis = k_bis+1;
  if sign(f_m) == sign(f(b)) then b = x_m; else a = x_m; end;
  x_m = (a + b)/2;
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  f_m = f(x_m);
end;
//
// Fine costruzione: assegno variabili di uscita
//
z = x_m; v = f_m; k = k_bis; mis = abs(b-a);
if f_m == 0 then info = 0;
   else if abs(b-a) >= E then info = 2; else info = 1; end;
end;
//
endfunction

(1.09) Osservazione.

Il costrutto Scilab

while condizione,
  istruzioni;
end;

è equivalente a:

ripeti:
  se condizione è vera allora istruzioni;

altrimenti esci dal ciclo;

(1.10) Esempio

Sia f(x) = cos(x).

• La funzione è continua in [a,b] = [1,2] e
f(a) > 0, f(b) < 0

• Scelto E > 0 si ha:
 

             mis I(k) < E    ⇔    mis I(0) / 2k < E    ⇔

     ⇔    2k > mis I(0) / E    ⇔    k > log2( mis I(0) / E )

dunque: ci aspettiamo di ottenere un’approssimazione di pi/2 con errore assoluto 
minore di E in

VA = parte intera superiore di log2( mis I(0) / E )

iterazioni.
• Si ottiene (utilizzando il file EsempioBisezione.sce scaricabile dalla sezione 

‘altro materiale didattico’ della pagina web del corso):
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E info mis k VA kmax
10-5 1 7.6 10-6 17 17 50
10-10 1 5.8 10-11 34 34 50
10-15 1 8.8 10-16 50 50 50
10-16 2 2.2 10-16 60 54 60
10-16 2 2.2 10-16 100 54 100

Dalle ultime due righe della tabella si osserva che quando E = 10-16 la funzione bisezione si 
arresta perché ha raggiunto il numero massimo di iterazioni consentito ma, mentre nel primo 
caso (penultima riga) questo è coerente con le teoria, nel secondo caso (ultima riga) non è 
coerente con la teoria: la procedura avrebbe dovuto arrestarsi dopo 54 iterazioni con info 
= 1.

Per capire come mai accade questo, occorre studiare in maggior dettaglio l’ARITMETICA DEL 
CALCOLATORE.

(1.11) Domande.

(A) Con quali numeri è capace di operare il calcolatore?
(B) Cosa sa fare con questi numeri?

(1.12) Osservazione.

Siano x un numero reale non zero, β un numero intero maggiore o uguale a due (base). Esiste una 
sola fattorizzazione di x nella forma:

x = (-1)
s 

β
b g

con:
• s in {0,1}, segno di x
• b: numero intero, esponente di x in base β

• g: numero reale in [1/β,1), frazione di x in base β

(Dimostrazione: 
• se x > 0 allora s = 0, se x < 0 allora s = 1;
• b è l’unico numero intero tale che

β
b-1 < |x| ≤   β

b

• g = |x| / β
b)

(1.13) Esempio.

(1) x = sqrt(5), β = 10 ⇒  s = 0, b = 1, g = sqrt(5) / 10
(2) x = sqrt(5), β = 2  ⇒  s = 0, b = 2, g = sqrt(5) / 4

(1.14) Osservazione.

La condizione g numero reale in [1/β,1) si traduce così: la scrittura posizionale di g in 
base β  ha la forma:

0.c1c2c3... con c1 diverso da zero

In particolare: se β = 2 si ha necessariamente c1 = 1.
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(1.15) Esempio.

       (1) x = 1/10, β = 10 ⇒  s = 0, b = 0, g = 1/10 = 0.1

(2) x = 1/10, β = 2  ⇒  s = 0, b = -3, g = 8/10 = 4/5 = 0.1100

    (Ragionamento1: 
(1)

   *  4/5 = 0.c1c2c3... ⇒ 8/5 = c1.c2c3... e quindi:

   *  [8/5] = [c1.c2c3...] e {8/5} = {c1.c2c3...} ovvero:

   *  c1 = 1 e 3/5 = 0.c2c3c4...
(2)

   *  3/5 = 0.c2c3c4... ⇒ 6/5 = c2.c3c4... e quindi:

   *  [6/5] = [c2.c3c4...] e {6/5} = {c2.c3c4...} ovvero:

   *  c2 = 1 e 1/5 = 0.c3c4c5...
(3)

   *  1/5 = 0.c3c4c5... ⇒ 2/5 = c3.c4c5... e quindi:

   *  [2/5] = [c3.c4c5...] e {2/5} = {c3.c4c5...} ovvero:

   *  c3 = 0 e 2/5 = 0.c4c5c6...
(4)

   *  2/5 = 0.c4c5c6... ⇒ 4/5 = c4.c5c6... e quindi:

   *  [4/5] = [c4.c5c6...] e {4/5} = {c4.c5c6...} ovvero:

   *  c4 = 0 e 4/5 = 0.c5c6c7...

Si osserva adesso che si è ottenuta una nuova scrittura del numero iniziale 
4/5. Se ne deduce che 4/5 ha scrittura periodica di periodo quattro.

Fine del ragionamento.)

       Si osservi che in entrambi gli esempi si ha x = 1/10 ma nell’esempio (1) la frazione 
       ha scrittura posizionale di lunghezza finita, nell’esempio (2) ha lunghezza
       infinita. La lunghezza della scrittura posizionale dipende dalla base.

1 Se q è un numero reale, con [q] si indica la parte intera di q e con {q} la parte 
frazionaria di q, ovvero {q} = q – [q].
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(1.16) Definizione (numeri in virgola mobile e precisione finita).

Siano β un numero intero maggiore o uguale a due e m un numero intero maggiore o uguale a 
1. L’insieme

F(β,m) = {0} ∪ {x in R t.c. x  = (-1)s β
b 0.c1...cm con

s ∈ {0,1}, b ∈ Z, c1,...,cm cifre in base β, c1 ≠ 0}

si chiama ‘insieme dei numeri in virgola mobile e precisione m in base β ’.

(1.17) Esempio.

Si consideri F(10,1).

• 1/100 ∈ F(10,1): 1/100 = 10-2 = 10-1 0.1
• 11/100 ∉ F(10,1): 11/100 = 0.11 = 100 0.11 e la frazione 0.11 non è compatibile con 

la precisione m = 1
• tutti gli elementi di F(10,1) positivi con esponente zero:

B = {0.1 ; 0.2 ; ... ; 0.9}

tutti quelli con esponente b ∈ Z:

10b B (positivi) -10b B (negativi)

• F(10,1)  =  ∪b ∈ Z (-1) 10b B ∪ {0} ∪ ∪b ∈ Z 10b B

(1.18) Osservazione (proprietà di F(β,m)).

(1) è sottoinsieme proprio di Q (dunque numerabile e ordinato)
(2) è simmetrico rispetto a zero
(3) zero è (l’unico) punto di accumulazione
(4) sup F(β,m) = +∞  ,  inf F(β,m) = -∞

(1.19) Osservazione (distanza tra elementi consecutivi).

In F(10,1):    10-1 B       B             10 B

                        (positivi)
     0.1    0.9  1     2        9
     

Distanza tra consecutivi: 10-1 0.1 (b = -1), 0.1 = 100 0.1 (b = 0), 1 = 101 0.1 (b = 1).

• esponente b, distanza tra consecutivi in F(10,1): 10b 0.1 = 10b 10-1
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• in F(β,m): dato ξ = β
b g e detto σ(ξ) il successore di ξ si ha:

   σ(ξ) - ξ =  β
b-m  

• la distanza è tanto maggiore quanto l’esponente è grande (‘tanto più ξ è lontano da 
zero’).

(1.20) Osservazione.

Nell’Esempio (1.10) della Lezione 3, la situazione è:
*  α ∈ (1,2)

     1                              2
*  in Scilab (Octave, Matlab):
 

          21 0.1                         22 0.1                        F(2,53) 
    

                           
                           b = 1 ⇒ distanza tra consecutivi = 21-53 = 2-52 ≈ 2.22 10-16

• Nel caso E = 10-16 la function bisezione ha trovato l’intervallo (non degenere) più 
piccolo possibile che contiene lo zero α e di estremi in F(2,53), ma questo 
intervallo ha misura > E.

• È inutile scegliere E < β
b-m.

(1.21) Criterio d’arresto (con richiesta sull’errore relativo).

Dato E numero reale positivo...

 mis I(k)
se -------------------- < E  allora STOP
   min{|a(k)|,|b(k)|}

Proprietà del criterio d’arresto:

(1) la condizione è calcolabile
(2) se 0 ∉ I(0) si ha: per ogni k, 0 ∉ I(k) e

•   ⇒ min{|a(k)|,|b(k)|} = a(k) > 0
          0     a(0)             b(0)

e a(0) ⩽ a(k) < b(0)  ⇒  quando k → ∞, mis I(k) / a(k) → 0

•  ⇒ min{|a(k)|,|b(k)|} = |b(k)| > 0
         a(0)             b(0)    0

e  |b(0)| ⩽ b(k) < |a(0)|  ⇒  quando k → ∞, mis I(k) / |b(k)| → 0
         
    quindi: la condizione è certamente verificata dopo un numero finito di iterazioni
    (criterio efficace).



Lezione 4 - 3

(3) se f è continua allora:

• esiste α ∈ I(k) zero di f 

|x(k) -  α         | mis I(k) / 2              mis I(k)
• -----------  ⩽  ------------  <  1/2 -------------------  <  E/2  < E

        α                          α  | | | |              min{|a(k)|,|b(k)|}

 

• x(k) approssima α con errore relativo < E: ‘la procedura restituisce
un’approssimazione accurata quanto richiesto dall’utilizzatore’

• è inutile scegliere E < β
1-m



Lezione 5 (ore 7,8) – 1 ottobre 2025, 11:30 – 13:30 A13

(1.22) Osservazione (conseguenze di F(2,53) ≠ R).

Indichiamo con M l’insieme dei numeri che il calcolatore sa manipolare, i ‘numeri di 
macchina’ del calcolatore. Quale insieme sia esattamente M dipende dal calcolatore che si 
considera. Nel caso di Scilab (e Octave e Matlab) l’insieme M è ‘sostanzialmente’ F(2,53). 
Riservandoci di chiarire più avanti le differenze tra i due insiemi, assumiamo che:

  in Scilab si ha M = F(2,53)  

Consideriamo i seguenti esempi (il carattere > è il prompt della console di Scilab).

• > x = 0.1;

Poiché 0.1 = un decimo ∉ F(2,53), dopo l’assegnamento il valore di x non può essere 
un decimo.

• > (1 – 9/10) * 10 – 1
       ans = - 2.220D-16

Si ha: 1, 9, 10 ∈ F(2,53)  ma  nove decimi ∉ F(2,53). Ovvero:

esistono x,y ∈ F(2,53)  t.c.  x/y ∉ F(2,53)

                   x(x - 1)
• Sia f(x) = ----------- , definita per x > 0 e  x ≠ 1.

           x – sqrt(x)
                     

          x2 – x        (x + sqrt(x))(x - sqrt(x))
(A) Si ha:  f(x)  =  -----------  =  --------------------------  =  x + sqrt(x)

          x – sqrt(x)             x – sqrt(x)

(B) Per x = 2 ∈ F(2,53) si ha:

> a = 2 * (2 – 1)/(2 – sqrt(2));

> b = 2 + sqrt(2);

> a == b

ans = F

(1.23) Definizione (funzione arrotondamento).

Il calcolatore usa gli elementi di F(β,m) per approssimare numeri reali. L’approssimazione 
è realizzata dalla funzione arrotondamento rd: R → F(β,m) così definita:

rd(x) = l’elemento di F(β,m) più vicino ad x o, in caso di ambiguità,
        quello dei due elementi di F(β,m) equidistanti da x che ha la

  frazione che termina con una cifra pari.               
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(1.24) Osservazione.

La definizione è ben posta se β è pari e m ⩾ 2. In tal caso, se l’ultima cifra della 
frazione di ξ ∈ F(β,m) è pari (rispettivamente: dispari), l’ultima cifra della frazione del 
successore di ξ è dispari (rispettivamente: pari).

Se β è pari e m = 1 oppure β è dispari, invece, la definizione non è ben posta. Ad esempio, 
in F(3,2) gli elementi positivi con esponente zero sono:

30 0.10 ; 30 0.11 ; 30 0.12 ; 30 0.20 ; ...

e gli ultimi due elementi scritti sono consecutivi ed hanno entrambi l’ultima cifra della 
frazione pari.

(1.25) Esempio.

Sia x = 1/10. Si vuole determinare l’arrotondato di x in F(2,3).

Si è già determinato (Esempio (1.15)) che: x = 2-3 0.1100. Allora si ha la situazione di 
figura:

                                  elementi di F(2,3) adiacenti ad x (quello a sinistra si
ottiene troncando la scrittura della frazione di x
al numero di cifre indicato dalla precisione - in
questo caso 3 – quello a destra è il successore)

      2-3 0.110        2-3 0.111

            punto medio =  2-3 0.1101 > x ⇒ rd(x) =  2-3 0.110 ( = 3/32 )

(1.26) Osservazione.

La funzione rd non è una funzione che il calcolatore mette a disposizione 
dell’utilizzatore, ma è indispensabile per capire come:

(1) il calcolatore ‘legge’ i numeri reali;
(2) il calcolatore fa operazioni sugli elementi di F(β,m).

(1.27) Esempio.

Riprendiamo il primo esempio dell’Osservazione (1.22). In Scilab l’effetto 
dell’assegnamento:

> x = 0.1

è: viene assegnata alla variabile x il valore rd(0.1) ∈ F(2,53) (se al momento 
dell’assegnamento la variabile x non esistesse, viene creata). 

Il calcolatore approssima il numero reale con il suo arrotondato in F(β,m). Ci si domanda 
quale errore venga commesso.
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(1.28) Teorema (limitazione dell’errore relativo).

Sia rd la funzione arrotondamento in F(β,m). Per ogni numero reale x ≠ 0 si ha:

                 
|rd (x)−x|

|x|
⩽ 

1
2

β
1-m = u (precisione di macchina)

(Dimostrazione...)

(1.29) Osservazione.

• La limitazione è uniforme, nel senso che la quantità che limita l’errore è 
indipendente da x (dipende solo dai parametri β ed m che definiscono l’insieme dei 
numeri).

• In F(2,53) si ha u = 1
2

21-53 = 2-53 ≈ 1.11 10-16.

• Se si considera l’errore assoluto, dal Teorema precedente si ottiene, per ogni 
numero reale x, la limitazione (non uniforme!):

|rd(x) – x| ⩽ u |x|

Se ne deduce che tanto più lontano da zero è x tanto più grande può essere l’errore 
assoluto.

La differenza sostanziale tra le due limitazioni, una è uniforme e l’altra no, è 
dovuta a come sono distribuiti gli elementi di F(β,m). Questi ultimi sono pensati 
appositamente per ottenere la limitazione uniforme dell’errore relativo.

(1.30) Esempio.

Siano ξ un elemento positivo di F(2,53) e ϑ il successore di ξ. Si ha:
   

• ξ/2 ∈ F(2,53)  ,   ϑ/2 ∈ F(2,53)
     ξ              ϑ 

•  ξ/2 + ϑ/2 ∉ F(2,53)  

  (ξ + ϑ)/2

Scelto ξ = 1, in Scilab si ha il seguente dialogo (per ogni t ∈ F(2,53), nearfloat(‘succ’,t) 
è il successore di t):

> c = 1/2 + nearfloat(‘succ’,1)/2

c = 1

> c == 1

ans = T

Per capire il dialogo è necessario approfondire come Scilab esegue la somma di due numeri 
di macchina. Se ξ,ϑ ∈ F(2,53), indichiamo con ξ ⊕ ϑ il valore assegnato da Scilab 
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all’espressione ξ + ϑ. Per definizione si ha:

 ξ ⊕ ϑ = rd(ξ + ϑ) 

Il valore è definito ‘nel modo migliore possibile’ nel senso che l’errore tra il valore 
esatto ξ + ϑ e quello definito ξ ⊕ ϑ è il minimo possibile. 

Torniamo all’esempio. Il valore che Scilab assegna a c è, allora:

1/2 ⊕ nearfloat(‘succ’,1)/2 = rd(1/2 + nearfloat(‘succ’,1)/2)

che, secondo la definizione di arrotondamento, vale 1 (quello, tra i due elementi adiacenti 
al numero da arrotondare, che ha ultima cifra della frazione pari).

Quello che accade nel primo assegnamento è:

              1/2               +              nearfloat(‘succ’,1)/2   ... 

                 rd       rd  

   
              1/2   ... 

                                       
                               

       1

  ⊕ 

              c  1
          calcolatore

  rd*: R → F(10,5)
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(1.31) Definizione (funzioni predefinite).

Sia M = F(β,m) l’insieme dei numeri di macchina del calcolatore in esame, e rd la funzione 
arrotondamento in M. L’insieme FP delle funzioni predefinite, ovvero delle funzioni che il 
calcolatore sa calcolare operando con gli elementi di M è costituito da tre classi.

• L’insieme delle funzioni predefinite corrispondenti ad operazioni aritmetiche. Se ⋅ è 
una delle operazioni aritmetiche tra numeri reali +, -, ×, / allora la funzione 
predefinita corrispondente si indica con il simbolo ⊙ (un cerchietto contenente il 
simbolo dell’operazione considerata) ed è definita, per ogni coppia ξ, ϑ di elementi 
di F(β,m) facenti parte del dominio dell’operazione ⋅, da

ξ ⊙ ϑ = rd(ξ ⋅ ϑ)

• L’insieme delle funzioni predefinite corrispondenti alle usuali funzioni elementari 
(sen, cos, arcsen, arccos, ln, exp ...). Se f:A → R è una delle funzioni elementari 
allora la funzione predefinita corrispondente si indica con il simbolo F ed è 
definita, per ogni elemento ξ di F(β,m) facente parte del dominio A della funzione 
elementare f, da

F(ξ) = rd(f(ξ))

• L’insieme delle funzioni predefinite corrispondenti ai confronti tra numeri reali 
(<, ⩽, =, ≠, ⩾, >). In questo caso, poiché gli elementi di F(β,m) sono numeri 
reali, essi vengono confrontati come tali. Quindi le funzioni predefinite 
corrispondenti ai confronti sono semplicemente le restrizioni a F(β,m) × F(β,m) dei 
confronti tra numeri reali (e non è necessario introdurre simboli nuovi per 
indicarle).

(1.32) Definizione (algoritmo, algoritmo ingenuo).

Siano f1,...,fk funzioni elementari o operazioni aritmetiche e sia f:A → R, con A un 
opportuno sottoinsieme di R, la funzione ottenuta componendo f1,...,fk:

f(x) =  f1 ∘ ... ∘ fk(x)

(ad esempio: f(x) = sen(x) + cos(x), dove f3(x) = sen(x), f2(x) = cos(x) e f1(x1,x2) =  x1 + 
x2). Se chiediamo a Scilab di valutare la funzione f con l’istruzione

> f(x)

il valore restituito sarà

F1 ∘ ... ∘ Fk(rd(x))

dove F1,...,Fk(x) sono, rispettivamente, le funzioni predefinite corrispondenti a f1,..., 
fk(x). 

L’espressione F1 ∘ ... ∘ Fk(rd(x)) definisce una funzione φ: A → M detta algoritmo ingenuo 
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per f (per la funzione dell’esempio: φ(x) = SEN(rd(x)) ⊕ COS(rd(x)), definita per ogni x in 
R). Con il termine algoritmo ci si riferisce, in generale, ad una sequenza finita di 
operazioni di calcolo di funzioni predefinite.

Salvo casi molto particolari, ci saranno valori di x per i quali f(x) ≠ φ(x). In questi 
casi si utilizza φ(x) per approssimare f(x) ed è interessante avere informazioni 
sull’errore commesso.

Per ottenere queste informazioni introduciamo le nozioni di algoritmo accurato, algoritmo 
stabile e di calcolo ben condizionato del valore di una funzione.

(1.33) Definizione (algoritmo accurato).

Siano f:A → R una funzione, φ:A → M l’algoritmo utilizzato per approssimare i valori di f e 
x ∈ A.

L’algoritmo φ si dice accurato (quando utilizzato per approssimare il valore di f in x) se
esiste un numero reale ε tale che:

(1)  φ(x) = (1 + ε) f(x)
(2)  ε ‘piccolo’

Se l’algoritmo è accurato per ogni x ∈ B ⊂ A, si dirà che l’algoritmo è accurato in B. In 
tal caso ε dipenderà da x.    

(1.34) Osservazione.

• Siano f ed x tali che f(x) ≠ 0. La (1) della Definizione precedente è equivalente 
alla seguente:

         φ(x) - f(x)
ε = ------------

     f(x)

In questo caso dunque, l’algoritmo è accurato equivale a dire che l’errore relativo 
commesso approssimando f(x) con  φ(x) è ‘piccolo’.

• Se l’algoritmo è accurato si ha: f(x) = 0 ⇔  φ(x) = 0.

• La definizione di algoritmo accurato è qualitativa perché non si quantifica il 
termine ‘piccolo’ relativo ad ε. Il significato concreto del termine ‘piccolo’ 
dipende caso per caso. Ad esempio, se, come nel caso del metodo di bisezione, 
interessa soltanto che φ(x) e f(x) abbiano lo stesso segno, ε ‘piccolo’ significa
ε > -1.

Esercizio: Si approssima una L > 0 con λ. Che errore relativo ε si commette 
    utilizzando λ = 0? Quale valore di λ si deve usare per ottenere un 
    errore relativo ε = 1?

(1.35) Definizione (algoritmo stabile).

Siano f:A → R una funzione, φ:A → M l’algoritmo utilizzato per approssimare i valori di f e 
x ∈ A.
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L’algoritmo φ si dice stabile (quando utilizzato per approssimare il valore di f in x) se

esistono numeri reali εa, εv tali che:

(1) φ(x) = (1 + εv) f((1 + εa)x)

(2) εa, εv ‘piccoli’

Se l’algoritmo è stabile per ogni x ∈ B ⊂ A, si dirà che l’algoritmo è stabile in B. In tal 

caso εa, εv dipenderanno da x.   

(1.36) Osservazione.

• Se un algoritmo è accurato allora è stabile (εa = 0, εv = ε) ma non viceversa.

• Informalmente: un algoritmo stabile restituisce una buona approssimazione (εv 

‘piccolo’) del valore di f in un punto vicino ad x (εa ‘piccolo’).

(1.37) Osservazione (algoritmo ‘buono’).

La nozione di stabilità formalizza l’idea di algoritmo ‘buono’ per approssimare i valori di 
una data f. Ad esempio, se f è una funzione elementare e φ è l’algoritmo ingenuo per f 
allora, detta F la funzione predefinita corrispondente ad f, si ha:

φ(x) = F( rd(x) ) = rd( f( rd(x) ) )

(1.38) Teorema (errore relativo e perturbazione).

Ricordando la definizione di errore relativo commesso approssimando un numero reale t con 
l’arrotondato rd(t) ed il Teorema (1.28) della Lezione 5 sulla limitazione dell’errore 
relativo, si ottiene:

Siano x un numero reale e rd la funzione arrotondamento in F(β,m). Esiste un numero reale ε 

tale che:

rd(x) = (1 + ε)x    e    |ε| < u

L’uguaglianza esprime l’arrotondato di x come (piccola) perturbazione moltiplicativa di x.

(Dimostrazione: se x ≠ 0 allora ε è l’errore relativo commesso approssimando x con rd(x); 
 se x = 0 (e quindi rd(x) = 0) l’uguaglianza sussiste, ad esempio, con ε = 0.)

(1.39) Osservazione (continuazione della precedente).

Utilizzando due volte il Teorema precedente si ottiene infine:

φ(x) = (1 + ε2)f( (1 + ε1)x )    con    |ε1| < u  e  |ε2| < u

L’algoritmo φ restituisce la migliore approssimazione possibile del valore di f nel punto 
più vicino possibile ad x. In questo senso φ è l’algoritmo ‘migliore possibile’ che il 
calcolatore possa utilizzare per approssimare f(x). Da qui, generalizzando, l’idea che un 
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algoritmo ‘buono’ per approssimare il valore di una funzione in un punto assegnato sia un 
algoritmo che restituisce una buona approssimazione del valore della funzione in un punto 
vicino a quello in cui si voleva calcolarla.

(1.40) Definizione (calcolo ben condizionato del valore di una funzione).

Siano f:A → R una funzione e x ∈ A. Il calcolo del valore di f in x è ben condizionato se:

per ogni numero reale α ‘piccolo’ esiste un numero reale εv ‘piccolo’ tale che

f( (1 + α)x ) = (1 + εv)f(x)

Informalmente: il calcolo del valore di f in x è ben condizionato se il valore di f in ogni 
punto ‘vicino’ ad x è una ‘buona’ approssimazione del valore di f in x.

(1.41) Osservazione.

• La proprietà che il calcolo del valore di f in x sia ben condizionato riguarda 
esclusivamente la funzione f. In particolare, non è legata a quale algoritmo si 
sceglie per approssimare i valori di f.

• Se f(x) ≠ 0, il valore di εv, una volta assegnato α, è determinato. Precisamente, εv 
risulta:

          f( (1 + α)x ) - f(x)

εv = ----------------------
      f(x)

(1.42) Teorema (stabilità + buon condizionamento => accuratezza).

Siano f:A → R una funzione, x ∈ A e φ l’algoritmo utilizzato per approssimare f(x). Se 
l’algoritmo è stabile e il calcolo di f in x è ben condizionato allora l’algoritmo è 
accurato.

Dimostrazione. Per la stabilità dell’algoritmo esistono ε1 e ε2 tali che:

φ(x) = (1 + ε2)f( (1 + ε1)x )    con    ε1 e ε2 ‘piccoli’

Per il buon condizionamento del calcolo di f in x esiste ε3 tale che:

f( (1 + ε1)x ) = (1 + ε3)f(x)    e    ε3 ‘piccolo’

Allora possiamo riscrivere:

φ(x) = (1 + ε2)(1 + ε3)f(x)

e, posto (1 + ε2)(1 + ε3) = 1 + t, ovvero t =  ε2 + ε3 + ε2ε3, si ottiene infine:

φ(x) = (1 + t)f(x)    con    t ‘piccolo’
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dunque l’algoritmo è accurato.

(1.43) Osservazione (stabilità degli algoritmi ingenui nei casi elementari).

• Per quanto ricavato nelle Osservazioni (1.37) e (1.39), se f:A → R è una funzione 
elementare e φ è l’algoritmo ingenuo per f, φ è stabile su A: l’algoritmo ingenuo 
per ciascuna funzione elementare è stabile.

• Sia f(x1,x2) = x1 + x2. L’algoritmo ingenuo per f è:

φ(x1,x2) = rd(x1) ⊕ rd(x2)

Ricordando la definizione di ⊕ (vedi Definizione (1.31)) ed utilizzando tre volte il 
Teorema (1.38) si riscrive:

φ(x1,x2) = (1 + ε3)( (1 + ε1)x + (1 + ε2)x )    ,    con |εj| ⩽ u , j = 1,2,3

Dunque, l’algoritmo ingenuo per la somma è stabile.

Allo stesso modo si dimostra che l’algoritmo ingenuo per ciascuna delle operazioni 
aritmetiche è stabile.
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(1.44) Osservazione (stabilità, caso non elementare).

Siano f1, f2:R → R due funzioni elementari e φ1, φ2:R → M gli algoritmi utilizzati per 

approssimare, rispettivamente, i valori di f1 ed f2. Siano poi x ∈ R, f(x) = f2(f1(x)) e 

φ(x) = φ2(φ1(x)). Infine, supponiamo che gli algoritmi φ1, φ2 siano stabili su R. Ci si 

domanda se l’algoritmo φ è stabile quando utilizzato per approssimare f in x. Utilizzando 

la stabilità di φ1 e φ2 si ha: esistono numeri reali ε1,...,ε4 tali che |εj| ⩽ u, j = 
1,2,3,4 e:

φ(x) = φ2(φ1(x)) =  (1 + ε4)f2( (1 + ε3)(1 + ε1)f1((1 + ε2)x) )

Posto (1 + ε3)(1 + ε1) = 1 + t, ovvero t = ε3 + ε2 + ε2ε3, si ha: |t| ⩽ 2u + u2 (< 1) e

φ(x) = (1 + ε4)f2( (1 + t)f1((1 + ε2)x) )

Indicato con ϑ l’errore relativo commesso approssimando f2( f1((1 + ε2)x) ) con f2( (1 + 

t)f1((1 + ε2)x) ) si riscrive:

f2( (1 + t)f1((1 + ε2)x) ) = (1 + ϑ)f2( f1((1 + ε2)x) )

e quindi:

φ(x) = (1 + ε4)(1 + ϑ)f2( f1((1 + ε2)x) )

Infine, posto (1 + ε4)(1 + ϑ) = 1 + εv e ε2 = εa, si ottiene:

φ(x) = (1 + εv)f((1 + εa)x)

Per poterne dedurre la stabilità di φ quando utilizzato per approssimare f in x, occorre 

indagare la grandezza delle perturbazioni εv e εa. Riguardo ad εa si ha |εa| ⩽ u, dunque εa 

‘piccolo’. La grandezza di εv, invece, dipende da quella di ϑ che, a sua volta dipende dal 

condizionamento del calcolo di f2 in f1((1 + ε2)x). Se quest’ultimo calcolo è ben 
condizionato (dunque ϑ ‘piccolo’) allora φ è stabile quando utilizzato per approssimare f 
in x, altrimenti nulla si può dire riguardo alla stabilità di φ.

(1.45) Osservazione (condizionamento del calcolo di funzioni regolari).

Siano f:A → R una funzione regolare (ovvero con derivata prima continua), e x ∈ A tale che 
f(x) ≠ 0. Si vuole studiare il condizionamento del calcolo di f in x.

Poiché f(x) ≠ 0, per quanto detto nell’Osservazione (1.41) della Lezione 6, si deve 
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studiare, assegnato α ∈ R ‘piccolo’, la quantità:

    f( (1 + α)x ) - f(x)

εv = ----------------------
      f(x)

Per la regolarità di f, utilizzando il Teorema di Lagrange, si ha:

esiste un numero reale ϑ compreso tra x e (1 + α)x tale che

f( (1 + α)x ) - f(x) = f’(ϑ) α x 

Quindi si riscrive:

              f’(ϑ) α x

εv = ----------
             f(x)

Per l’ipotesi α ‘piccolo’ si può ragionevolmente approssimare ϑ ≈ x e riscrivere infine:

              f’(x)

εv ≈ ------ x α

           f(x)

Introdotto il numero di condizionamento del calcolo di f in x:

c(x) = | f'(x)f(x)
x|

si ha allora:

| εv | ≈ c(x) | α |

e il condizionamento del calcolo di f in x dipende solo dalla grandezza del numero di 
condizionamento c(x).

(1.46) Esempio.

Sia f(x) = sen(x) e x ∈ (0, π/2). Il numero di condizionamento del calcolo di f in x è:

c(x) = | cos(x)sen(x)
x| = | x

tan(x)| = 
x

tan(x)
< 1

Dunque in questo caso il calcolo di sen(x) è ben condizionato. Ma se consideriamo x vicino 
(ma non uguale) a π, tenuto conto che:

lim
t→π

c(x) = lim
t→π | x

tan(x)| = +∞

il calcolo di sen(x) non è ben condizionato.
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(1.47) Osservazione (condizionamento delle operazioni aritmetiche).

Siano f(x1,x2) = x1 + x2 e x1, x2 tali che f(x1,x2) ≠ 0. Si vuole studiare il condizionamento 
del calcolo di f in x1, x2.

Poiché f(x1, x2) ≠ 0, per quanto detto nell’Osservazione (1.41) della Lezione 6, si deve 
studiare, assegnati numeri reali α1 e α2 ‘piccoli’, la quantità:

           (1 + α1) x1 + (1 + α2) x2 - (x1 + x2)       x1           x2

εv = ------------------------------------ = ------- α1 + ------- α2

           x1 + x2                  x1 + x2       x1 + x2

Introdotti i numeri di condizionamento:

c1(x1,x2) = | x1

x1+x2
|   e   c1(x1,x2) = | x2

x1+x2
|

si ha:

se  x1x2 > 0 (ovvero i due addendi hanno lo stesso segno) allora:

c1(x1,x2) < 1    e    c2(x1,x2) < 1

e il condizionamento del calcolo della somma è buono. Invece, se x1x2 < 0 (ovvero i due 
addendi hanno lo segno opposto), il condizionamento del calcolo può essere tanto peggiore 
quanto più piccolo è x1 + x2. Si ha infatti, assegnato x1 ≠ 0 e posto x2 = y – x1 (ovvero x1 
+ x2 = y) con y ≠ 0:

c1(x1,x2) = | x1

y |   ,  c1(x1,x2) = |1− x1

y |
e:

lim
y→0

c1(x1,x2) = +∞  ,  lim
y→0

c2(x1,x2) = +∞

Nel caso delle altre operazioni aritmetiche si ha:

εv = α1 + α2 + α1 α2   (moltiplicazione)

εv =
α1−α2

1−α2

          (divisione)

e in entrambi i casi il calcolo è sempre ben condizionato.
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(1.48) Esempio (approssimazione numerica della derivata).

Si supponga di conoscere, agli istanti t1 e t2, le posizioni x1 e x2 di un punto in moto su 
una retta. La quantità:

v = (x2 – x1) / (t2 – t1)

è la velocità media del punto tra i due istanti. Se le quantità x1 e x2 sono note soltanto 
con errore relativo ε1 e ε2, ad esempio perché ottenute tramite misurazioni, potremo 
ottenere di v soltanto un’approssimazione:

    (1 + ε2)x2 - (1 + ε1)x1 
w = ----------------------

    t2 – t1

L’errore relativo commesso approssimando v con w è:

                              w - v      x2            x1

----- = -------- ε2 + -------- ε1

                                v      x2 - x1             x2 - x1    

Nel caso in cui la differenza x2 – x1 sia piccola (ad esempio quando v sia utilizzato come 
stima della velocità istantanea di un punto mobile con velocità elevata), per quanto 
mostrato nell’Osservazione precedente, il calcolo risulta mal condizionato e l’errore 
commesso approssimando v con w risulterà molto maggiore dei singoli errori ε1 e ε2. 

(1.49) Esercizio.

La scrittura:

(A) x = a + δ  con  | δ | ⩽ d

è equivalente alla scrittura:

(B) x ∈ [a - d , a + d]

Si vogliono determinare y e E in modo che anche la scrittura:

(*) x = (1 + ε)y  con  | ε | ⩽ E 

risulti equivalente ad (A) e (B).

La scrittura (*) equivale a:

x ∈ [(1 - E)y , (1 + E)y]

Quest’ultima scrittura è equivalente alla (B) se e solo se:

(1 – E)y = a - d    e    (1 + E)y = a + d
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Risolvendo il sistema si determina:

y = a   e   E = d / a

Quindi le scritture (A) e (B) sono equivalenti alla scrittura:

(C) x = (1 + ε)a  con  | ε | ⩽ d / a

(1.50) Teorema (stabilità della procedura bisezione).

Si consideri la realizzazione in Scilab1, della procedura bisezione.

Se l’assegnamento 

[z,v,info] = bisezione(f,a,b,delta)

termina con info = 0 oppure info = 1, allora:

| z – α* | ⩽ delta

dove α* è uno zero di una funzione g ‘vicina’ alla funzione f nel senso che:

per ogni x in [a,b] si ha |f(x) – g(x)| ‘piccolo’

Informalmente: se info = 0 oppure info = 1 allora la procedura restituisce una buona 
approssimazione di uno zero di una funzione vicina a quella in esame.

(Dimostrazione omessa.)

(1.51) Osservazione (condizionamento degli zeri di una funzione regolare).

Siano f:[a,b] → R regolare (derivabile con f’ continua) con f’ ≠ 0 e f(a)f(b) < 0, α 
l’unico zero di f in [a,b], g:[a,b] → R continua e ‘vicina’ ad f, precisamente tale che:

per ogni x in [a,b] si ha |f(x) – g(x)| ⩽ d con d ‘piccolo’ e d < min{|f(a)|,|f(b)|}

Per le ipotesi fatte, g ha almeno uno zero in [a,b]. Si vuole sapere quanto distante può 
essere lo zero α di f da uno zero di g.

Sia α* uno zero di g in [a,b]. Allora si ha (utilizzando il Teorema di Lagrange):

f(α*) = f(α*) - f(α) = f’(t)(α* - α)   con   t tra α* e α

Dunque, posto m = min{ |f’(x)|, x in [a,b] }, si ha:

   |f(α*)|    |f(α*)|
α| * - α| = -------- ⩽ --------

  |f’(t)|       m

Infine, essendo:

1 Asserto (1.08) nella Lezione 2.
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|f(α*)| = |f(α*) - g(α*)| ⩽ d
si ottiene:
             d

α| * - α| ⩽ ---
                 m

La quantità 1/m ha il ruolo di numero di condizionamento: tanto più è grande tanto più gli 
zeri di g possono essere lontani dallo zero di f.

Se f’(x) = 0 per qualche x in [a,b], in particolare se f’(α) = 0, il condizionamento è 
certamente cattivo, come evidenziato nell’esempio seguente.

(1.52) Esempio.

Sia f(x) = (x – 2)13. La funzione ha un solo zero, α = 2, ed è regolare nell’intervallo 
[1,3]. Si consideri poi g:[1,3] → R continua tale che:

per ogni x in [1,3] si ha |f(x) – g(x)| ⩽ 10-9

 Un esempio di grafico di g è rappresentato in figura.

                        f(x) = (x – 2)13  

   
          

                  

Nel caso peggiore la distanza tra lo zero α di f e uno zero α* di g è 10-9/13 ≈ 0.2, molto 
più grande della distanza 10-9 tra f e g.

(1.1) METODI AD UN PUNTO

Il punto di forza del metodo di bisezione è la sua generalità: può essere applicato a 
qualunque funzione che sia semplicemente continua e che assuma valori di segno opposto agli 
estremi di un intervallo. Per contro, in alcune applicazioni il metodo richiede un numero 
eccessivo di iterazioni per ottenere l’accuratezza richiesta dall’utilizzatore. Per ovviare 
a questo inconveniente, analizziamo altri metodi per approssimare lo zero di una funzione: 
i metodi ad un punto.

(1.53) Definizione (metodo ad un punto).

Sia h:[a,b] → R una funzione continua. Il metodo ad un punto definito da h è la seguente 

(x – 2)13 + 10-9          

(x – 2)13 - 10-9          

 2 g(x)

     

2 + 10-9/13

2 - 10-9/13

∙ ∙



Lezione 8 - 4

procedura:

z = MetodoUnPunto(h,a,b,γ)

ingresso: h:[a,b] → R continua, γ in [a,b]

• x(0) =  γ;
• per   k = 1,2,3,... ripeti

se x(k-1) in [a,b] allora x(k) = h(x(k-1)) altrimenti STOP

uscita: quando un opportuno criterio d’arresto è verificato: z = x(k).

(1.54) Osservazione.

Se omettiamo il criterio d’arresto e per ogni k si x(k-1) in [a,b], il metodo ad un punto 
definisce una successione x(0), x(1), x(2),... Se la successione è convergente, il limite è 
un punto unito di h.2 

(Dimostrazione. La successione x(0), x(1), x(2),... è identica alla successione h(x(0)), 
h(x(1)), h(x(2)),... Quindi quest’ultima è convergente e, detto α il limite della 
successione x(k):

lim
k →∞

h(x(k)) = α

Poiché h è una funzione continua e la successione x(k) converge ad α, si ha:

lim
k →∞

h(x(k)) = h(lim
k →∞

x(k)) = h(α)

Per l’unicità del limite di una successione convergente, si deduce che α = h(α).)

(1.55) Osservazione.

Sia f la funzione continua della quale si è interessati ad approssimare qualche zero. Per 
quanto detto nell’Osservazione precedente, il metodo ad un punto definito da h è 
utilizzabile, ‘se tutto va bene’, per approssimare un punto unito di h. Perché il metodo ad 
un punto possa essere utilizzato per approssimare qualche zero di f occorre scegliere la 
funzione h che lo definisce in modo che:

(#)        {zeri di f} = {punti uniti di h}

Ci si domanda se esistono funzioni (continue) h con la proprietà richiesta. 

Si consideri la funzione h così definita:

h(x) = f(x) + x

Se α è zero di f, ovvero f(α) = 0, si ha:

h(α) = f(α) + α = α  ⇒  α è punto unito di h

2 Il numero reale α è un punto unito di h significa che α = h(α). 
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Viceversa, se α è punto unito di h (ovvero α = h(α)), si ha:

h(α) = f(α) + α  ⇒  f(α) = 0  ⇒  α zero di f

La funzione h è quindi una funzione che verifica la proprietà (#).

Si verifica facilmente che, se g è una funzione continua tale che g(x) ≠ 0 per ogni x, la 
funzione h definita da:

h(x) = g(x)f(x) + x

è continua ed ha la proprietà (#). Dunque esistono infinite funzioni h che hanno come punti 
uniti tutti e soli gli zeri di f.

Si pone adesso il problema di scegliere, tra tutte le possibili funzioni che hanno la 
proprietà (#), una h in modo che il metodo da essa definito generi una successione 
convergente.
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(1.56) Osservazione (costruzioni grafiche).

Si rappresentino su uno stesso piano cartesiano le porzioni del grafico della funzione y = 
h(x) che definisce il metodo ad un punto da esaminare e della retta grafico della funzione 
y = x, su un intervallo [a,b].

I punti uniti di h sono le ascisse (α1 e α2) dei punti P1 e P2 comuni ai due grafici.

Assegnato il punto dell’asse delle ascisse che rappresenta x0, possiamo costruire il punto 
dello stesso asse che rappresenta x1 in tre passaggi: (I) si determina il punto (x0,h(x0)) = 
(x0,x1) intersezione tra il grafico di y = h(x) e la retta verticale per (x0,0); (II) si 
determina il punto (h(x0),h(x0)) = (x1,x1) intersezione tra il grafico di y = x e la retta 
orizzontale per il punto (x0,h(x0)) determinato al passaggio precedente; (III) si determina 
il punto (h(x0),0) = (x1,0) intersezione tra l’asse delle ascisse e la retta verticale 
passante per (x1,x1).

(1.57) Teorema (di convergenza).

Siano h:[a,b] → R una funzione con derivata prima continua e γ un punto di [a,b] tali che:

(1) esiste un punto unito α di h in [a,b];
(2) esiste un numero reale L ∈ [0,1) tale che: per ogni x ∈ [a,b] si ha |h’(x)| ⩽ L;
(3) la procedura MetodoUnPunto(h,a,b,γ) definisce una successione xk.1

Allora si ha:

(A) α è l’unico punto unito di h in [a,b];
(B) la successione xk è convergente al limite α.

(1.58) Dimostrazione (del Teorema (1.57)).

1 Ovvero, per ogni k si ha: se xk ∈ [a,b] allora xk+1 ∈ [a,b].

Grafico di y = h(x)

 y

 x

Grafico di y = x

  Punti uniti di h

  α1

α2

x1    x0a b

P2

P1
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(A) Per assurdo. Se β è un altro punto unito di h in [a,b] si ha (utilizzando prima la 
definizione di punto unito e poi il Teorema di Lagrange):

β – α = h(β) – h(α) = h’(t)(β – α)   ,   con t numero reale compreso tra α e β

Infine, ricordando che β – α ≠ 0, si ottiene:

           (#)                        h’(t) = 1

Ma, siccome α e β sono punti in [a,b], anche t lo è. Allora, per l’ipotesi (2), 
l’uguaglianza (#) è assurda.

Si osservi che per questa dimostrazione si sono utilizzate solo le ipotesi (1) e (2).

(B) Si deve dimostrare che la successione xk tende ad α, ovvero che la successione xk - α 
tende a zero. Si ha, utilizzando il Teorema di Lagrange per la seconda uguaglianza:

xk - α = h(xk-1) – h(α) = h’(tk-1)(xk-1 – α)    con    tk-1 tra xk-1 e α

Passando ai valori assoluti si ha (la disuguaglianza si ottiene utilizzando l’ipotesi (2)):

|xk - α| = |h’(tk-1)| |xk-1 – α| ⩽ L |xk-1 – α|

Se k - 1 > 0 si può ripetere il ragionamento a partire da xk-1 – α per ottenere:

|xk-1 - α| = |h’(tk-2)| |xk-2 – α| ⩽ L |xk-2 – α|

e, sostituendo nella precedente:

|xk - α| ⩽ L2 |xk-2 – α|

Iterando all’indietro fino al primo elemento della successione si ricava:

|xk - α| ⩽ Lk |x0 – α|

Ricordando che 0 ⩽ L < 1 si ottiene il risultato cercato:

lim
k →∞

|xk - α| = 0
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(1.58) Osservazione.

L’uso del Teorema di convergenza (Teorema (1.57) della Lezione 9) richiede la verifica 
delle ipotesi (1) – (3). Per le ipotesi (1) e (2) occorre decidere se esiste, ed 
eventualmente determinare, un intervallo [a,b] che contiene un solo punto unito di h e in 
tutti i punti x del quale |h’(x)| ⩽ L con 0 ⩽ L < 1. Una volta determinato un intervallo  
[a,b] con le proprietà richieste, occorre decidere se sia verificata l’ipotesi (3), ovvero 
se a partire da γ il metodo definito da h genera una successione in [a,b].

Il teorema e l’osservazione seguenti forniscono criteri concreti riguardo la verifica delle 
ipotesi.

(1.59) Teorema (utilizzabilità del metodo definito da h).

Sia h:[a,b] → R una funzione con derivata prima continua e α un punto unito di h in [a,b]. 
Condizione necessaria e sufficiente affinché esista un intervallo I ⊂ [a,b] contenente α e 
in tutti i punti x del quale si abbia |h’(x)| ⩽ L con 0 ⩽ L < 1 è: 

|h’(α)| < 1
Dimostrazione. 

La condizione è necessaria: se esiste un intervallo I ⊂ [a,b] contenente α in tutti i punti 
x del quale |h’(x)| ⩽ L con 0 ⩽ L < 1, certamente si ha |h’(α)| < 1.

La condizione è sufficiente: se |h’(α)| < 1, per la continuità della funzione h’ esistono 
un numero reale L con 0 ⩽ L < 1 e un intervallo I ⊂ [a,b] tali che α  ∈ I e in tutti i 
punti x ∈ I si ha |h’(x)| ⩽ L.

(1.60) Osservazione (criterio di scelta del punto iniziale).

Sia h:[a,b] → R una funzione con derivata prima continua che verifica le ipotesi (1) e (2) 
del Teorema di convergenza e sia α l’unico punto unito di h in [a,b]. Allora:

a partire da γ = l’estremo di [a,b] più vicino ad α, il metodo definito 
da h genera una successione in [a,b] - dunque convergente ad α.

Dimostrazione.

Posto x0 = γ, sia d = |x0 – α|. Indicato con I(α,d) l’intorno di centro α e raggio d, si ha 
I(α,d) ⊂ [a,b]. Per quanto mostrato nel punto (B) della dimostrazione del Teorema di 
convergenza, si ha |x1 – α| < |x0 – α| = d, quindi x1 ∈ I(α,d). Allo stesso modo si dimostra 
che per ogni k si ha xk ∈ I(α,d) ⊂ [a,b].

(1.61) Osservazione.

Siano h:[a,b] → R una funzione con derivata prima continua, α un punto unito di h e xk una 
successione generata dal metodo definito da h. Se |h’(α)| > 1 allora uno soltanto dei 
seguenti asserti sussiste:
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• esiste k tale che per ogni k ⩾ k si ha xk = α

• xk ↛ α 

(Dimostrazione solo in un caso particolare. Sia h(x) = A(x – α) + α con A > 1. Si ha: α è 
l’unico punto unito di h, h’(x) = A e

xk - α = Ak(x0 – α)

Allora: se x0 ≠ α, per ogni M > 0 esiste n tale che k ⩾ n ⇒ |xk – α| ⩾ M. Dunque per ogni 
x0 ≠ α si ha xk ↛ α.)

L’eventualità di riuscire a determinare concretamente un punto iniziale a partire dal quale 
risulti xk = α dopo un numero finito di termini è estremamente remota. Per questo motivo, 
se |h’(α)| > 1 il metodo definito da h si dichiara non utilizzabile per approssimare α.

Resta da chiarire cosa accade se |h’(α)| = 1. Vedremo che anche in questo caso il metodo 
definito da h si dichiara non utilizzabile per approssimare α.

Si osservi, infine, che la condizione |h’(α)| < 1, necessaria e sufficiente per 
l’utilizzabilità del metodo per approssimare il punto unito α, è verificabile graficamente  
confrontando la pendenza (h’(α)) della retta tangente al grafico di y = h(x) in x = α con 
quella (1) della retta grafico di y = x e con quella (-1) della retta y = α - x.

(1.62) Esercizio.

Per ogni x > 0, sia f(x) = x + log(x). Si vuole (i) sapere se f ha qualche zero e, in caso 
affermativo: (ii) separare gli zeri e, infine, (iii) decidere se ciascuno dei metodi 
definiti da

h1(x) = - log(x)    ;    h2(x) = exp(-x)    ;    h3(x) = (exp(-x) + x)/2

sia utilizzabile per approssimare gli zeri di f.

Soluzione.

(i) La funzione f(x) è continua, f(x) → -∞  quando  x → 0 e  f(x) → +∞  quando  x → +∞. Se 
ne deduce che f ha almeno uno zero. La funzione f(x) è anche derivabile e per ogni x > 0 
risulta f’(x) ≠ 0. Allora f ha al più uno zero. Dunque f ha uno zero, α.1

(ii) Si ha: f(1) = 1, dunque α ∈ [0,1], ovvero l’intervallo [0,1] separa lo zero di f.

(iii) Si consideri la funzione h1(x). Si verifica facilmente che gli zeri di f sono tutti e 
soli i punti uniti di h1. Inoltre, h1 è derivabile e per ogni x > 0 si ha h1’(x) = 1/x. 
Essendo α ∈ (0,1) si ha certamente |h1’(α)| > 1. Per l’Osservazione (1.61) il metodo 
definito da h1 non è utilizzabile per approssimare α.

Si consideri la funzione h2(x). Si verifica facilmente che gli zeri di f sono tutti e soli i 

1 Sia f:[a,b] → R una funzione sufficientemente regolare. Se per ogni x in [a,b] si ha 
f(k)(x) ≠ 0

   allora f ha al più k zeri distinti nell’intervallo [a,b].
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punti uniti di h2. Inoltre, h2 è derivabile e per ogni x si ha |h2’(x)| = exp(-x).  Essendo 
α ∈ (0,1) si ha certamente |h2’(α)| < 1 e, per il Teorema (1.59), il metodo definito da h2 
è utilizzabile per approssimare α. In base all’Osservazione (1.60), per determinare un 
punto iniziale a partire dal quale il metodo definisce una successione convergente ad α è 
sufficiente determinare un intervallo chiuso I che verifica le ipotesi (1) e (2) del 
Teorema di convergenza. L’intervallo [0,1] non va bene perché l’ipotesi (2) non è 
verificata: per ogni x in (0,1] si ha 0 ⩽ |h2’(x)| = exp(-x) < 1 ma |h2’(0)| = 1. Allora, un 
intervallo che verifica anche l’ipotesi (2) è [t,1] con t ∈ (0,α). Per determinare t si 
utilizza il Teorema di esistenza degli zeri. Siccome f(1/2) < 0, si pone t = 1/2 e I = 
[1/2, 1]. A questo punto è sufficiente decidere quale dei due estremi di I è più vicino 
allo zero. Si utilizza ancora il Teorema di esistenza degli zeri. Siccome f(3/4) > 0, si 
sceglie x0 = 1/2.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione 
che definisce il metodo è negativa. Poiché, si riveda la dimostrazione dell’asserto (B) del 
Teorema di convergenza, per ogni k si ha:

xk – α = h’(tk-1)(xk-1 – α)

per qualche numero reale tk-1 in I, allora per ogni k è h’(tk-1) < 0 e le differenze xk – α e 
xk-1 – α hanno segno opposto. Ne segue che gli elementi della successione si trovano, 
alternativamente, a destra e a sinistra di α: la successione ‘oscilla’ intorno allo zero. 
La successione delle distanze |xk – α| è comunque monotona decrescente come mostrato nella 
dimostrazione del Teorema di convergenza.

Si consideri infine la funzione h3(x). Si verifica facilmente che gli zeri di f sono tutti e 
soli i punti uniti di h3. Inoltre, h3 è derivabile e per ogni x si ha:

|h3’(x)| = (1 - exp(-x))/2  

Essendo α ∈ (1/2,1) si ha certamente |h3’(α)| < 1 e, per il Teorema (1.59), il metodo 
definito da h3 è utilizzabile per approssimare α. In base all’Osservazione (1.60), per 
determinare un punto iniziale a partire dal quale il metodo definisce una successione 
convergente ad α è sufficiente determinare un intervallo chiuso I che verifica le ipotesi 
(1) e (2) del Teorema di convergenza. L’intervallo I = [1/2,1] va bene, infatti per ogni x 
in I si ha 0 ⩽ |h3’(x)| < 1. A questo punto è sufficiente decidere quale dei due estremi di 
I è più vicino allo zero. Procedendo come nel caso precedente, si sceglie x0 = 1/2.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione 
che definisce il metodo è positiva. Ragionando come nel caso precedente, le differenze xk – 
α e  xk-1 – α hanno lo stesso segno. Ne segue che gli elementi della successione si trovano 
tutti dalla stessa parte rispetto ad α. Inoltre, anche in questo caso, la successione delle 
distanze |xk – α| è monotona decrescente, e quindi la successione xk risulta monotona 
(crescente se x0 è a sinistra di α, decrescente nel caso opposto). Infine, si osservi che 
poiché per ogni x in I = [1/2, 1] la derivata prima della funzione che definisce il metodo 
è positiva, dalla dimostrazione del criterio di scelta del punto iniziale (Osservazione 
(1.60)) si deduce che per ogni x0 in I la successione xk converge ad α.

(1.63) Esercizio (per casa).

Per ogni x ∈ R sia: h(x) = 2 arctg(x).
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(1) Determinare il numero di punti uniti di h e separarli.
(2) Per ciascuno dei punti uniti, decidere se il metodo iterativo definito da h sia 

utilizzabile per l’approssimazione e, in caso affermativo, indicare un punto 
iniziale a partire dal quale la successione generata converge al punto unito in 
esame.

(3) Rispondere alle domande precedenti utilizzando i metodi grafici, aiutandosi con 
Scilab.
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(1.2) METODO DI NEWTON

(1.64) Definizione (metodo di Newton).

Sia f:[a,b] → R una funzione con derivata prima tale che f'(x) ≠ 0 per ogni x in [a,b].

Il metodo di Newton applicato alla funzione f è il metodo ad un punto definito dalla 
funzione hN:[a,b]→ R tale che:

hN(x) = x – (f'(x))-1 f(x) = x - 
f(x)
f'(x)

Si osservi che i punti uniti di hN sono tutti e soli gli zeri di f.

(1.65) Osservazione (utilizzabilità del metodo di Newton).

Sia f:[a,b] → R una funzione con derivata seconda continua e con f'(x) ≠ 0 per ogni x in 
[a,b]. Sia poi α uno zero di f in [a,b]. Si ha:

hN'(x) = 1 -
(f'(x))2−f''(x)f(x)

(f'(x))2
=

f''(x)f(x)
(f'(x))2

La funzione hN' è continua e, essendo f(α) = 0 e f'(α) ≠ 0, si ha 

hN'(α) = 0

Per il Teorema (1.59) della Lezione 10, il metodo di Newton è utilizzabile per approssimare 
α.

(1.66) Osservazione (criterio di utilizzabilità per il metodo di Newton).

Siano f:[a,b] → R una funzione con derivata seconda continua e α uno zero di f in [a,b]. 
Condizione sufficiente perché il metodo di Newton applicato ad f sia utilizzabile per 
approssimare α è:

f'(α) ≠ 0

(1.67) Osservazione (interpretazione grafica del metodo di Newton).

Sia f:[a,b] → R una funzione con derivata prima e sia xk un numero reale tale che f'(xk) ≠ 
0. Si disegnino su uno stesso piano cartesiano il grafico della funzione f e quello della 
retta tangente al grafico di f in xk (vedi figura). Poiché f'(xk) ≠ 0, la retta tangente non 
è orizzontale e quindi interseca l’asse delle ascisse nel punto x tale che:
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f'(xk)(x – xk) + f(xk) = 0
ovvero in

x = xk - 
f(xk)
f'(xk)

= hN(xk)

(1.68) Osservazione (criterio di scelta del punto iniziale per il metodo di Newton).

Sia f:[a,b] → R con derivata seconda continua tale che:
(1) esiste α zero di f in [a,b]
(2) per ogni x ∈ [a,b] si ha f'(x) ≠ 0 (e quindi α è l’unico zero di f in [a,b])
(3) f''(x) ≠ 0 (f è convessa in [a,b])

Allora: a partire da γ = l’estremo di [a,b] in cui f e f'' hanno lo stesso segno, il metodo 
di Newton genera una successione in [a,b] convergente ad α e monotona.

(Dimostrazione. Utilizzando le ipotesi, e ragionando graficamente, si mostra che la 
successione generata a partire da γ è monotona e limitata, e quindi convergente. Il limite 
non può che essere un punto unito di hN in [a,b], dunque α.)

(1.69) Osservazione.

Siano f:[a,b] → R una funzione con derivata seconda continua e α uno zero di f in [a,b]. 
Se f'(α) ≠ 0 (dunque il metodo di Newton applicato ad f è utilizzabile per approssimare α) 
allora esiste un intervallo I che verifica le ipotesi del criterio di scelta (1.67) se e 
solo se f''(α) ≠ 0.

(1.70) Osservazione (ordine di convergenza di un metodo ad un punto).

Siano h:[a,b] → R, α un punto unito di h e xk una successione convergente ad α generata dal 
metodo definito da h.

(1) Sia h con h' continua e 0 < |h'(α)| < 1. Allora:

◦ Sia d > 0 tale che h'(x) ≠ 0 per ogni x ∈ I(α,d). Detti λd e Ld, rispettivamente, 
il minimo ed il massimo di |h'(x)| su I(α,d) e yn,d la successione costituita 
dagli elementi di xk in I(α,d), per ogni x in I(α,d) si ha:

λd ⩽ |h'(x)| ⩽ Ld

◦ Per ogni n si ha allora:

λd
n | y0,d – α| ⩽ | yn,d – α| ⩽ Ld

n | y0,d – α|
ovvero: 

la successione yn,d – α converge a zero più rapidamente della successione 

grafico della retta tangente y = f'(xk)(x – xk) + f(xk)

x
 xk

grafico di y = f(x)

x  t.c.  f'(xk)(x – xk) + f(xk) = 0
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Ld
n |y0,d – α| ma meno rapidamente della successione λd

n |y0,d – α|

Scelto d molto piccolo si avrà λd ≈ Ld ≈ |h'(α)|. Dunque

| yn,d – α| ≈ |h'(α)|n | y0,d – α|

Questa proprietà della successione xk si esprime dicendo che ‘xk converge ad α in 
modo esponenziale’.

(2) Sia h(x) = α + A(x – α)2 con A ≠ 0. Allora: α è punto unito di h e h'(α) = 0. 
Inoltre, dato un numero reale x0, per ogni k si ha: 

xk – α = A-1 ( A(x0 – α) )

Se |A(x0 – α)| < 1, la successione xk converge ad α e, per ogni t in (0,1) si ha

          |xk – α|
--------- ⟶ 0  per k → ∞

             tk

ovvero: la successione xk – α tende a zero più rapidamente di qualsiasi successione
esponenziale.

In generale, se h ha derivata seconda continua e h'(α) = 0, la successione xk tende 
ad α più rapidamente di qualsiasi successione di tipo esponenziale.

Il sussistere della condizione ‘h con h' continua e 0 < |h'(α)| < 1’ si esprime con la 
frase l’ordine di convergenza ad α del metodo definito da h è uno. Il sussistere della 
condizione ‘h con h'' continua, h'(α) = 0 e h(2)(α) ≠ 0’ si esprime con la frase l’ordine 
di convergenza ad α del metodo definito da h è due. In generale:

l’ordine di convergenza ad α del metodo definito da h è p
significa

h ha derivata di ordine p continua, h(m)(α) = 0 per m = 1,...,p – 1 e  h(p)(α) ≠ 0

Tanto più elevato è l’ordine di convergenza ad α del metodo, tanto più rapidamente 
convergono ad α le successioni generate dal metodo.

2k
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(1.71) Esercizio.

Siano t un numero reale positivo, n un numero intero ⩾ 2 e f(x) = xn – t. La funzione f ha 
un solo zero, la radice n-esima di t: t1/n.

Decidere se il metodo di Newton sia applicabile per approssimare lo zero e, in caso 
affermativo, determinare x0 in modo che il metodo generi una successione convergente allo 
zero.

(1.72) Osservazione (criteri d’arresto).

I criteri d’arresto presentati per il metodo di bisezione non sono utilizzabili per i 
metodi ad un punto: questi ultimi metodi, contrariamente al metodo di bisezione, non 
generano una successione di intervalli di misura tendente a zero e ciascuno contenente uno 
zero della funzione. Occorrono dunque criteri diversi. Discutiamo i due più utilizzati, 
entrambi di tipo assoluto.

Siano f la funzione della quale si vuole approssimare uno zero, h:[a,b] → R e γ che 
verificano le ipotesi del Teorema di convergenza, α il punto unito di h (e zero di f) in 
[a,b] e xk la successione generata dal metodo definito da h a partire da γ. La successione 
xk converge ad α.

(1) Dato un numero reale positivo E (l’errore massimo richiesto dall’utilizzatore) e 
inserito E tra le variabili di ingresso della procedura:

se |xk+1 – xk| < E allora STOP

Il criterio è calcolabile: a ciascuna iterazione la procedura conosce xk, determina xk+1 = 
h(xk) e verifica la condizione del criterio.

Il criterio è efficace: sia la successione xk che la successione xk+1 = h(xk) convergono ad α 

(la funzione h è continua e α è punto unito di h), quindi la differenza tende a zero. La 
condizione del criterio è certamente soddisfatta dopo un numero finito di iterazioni.

Per capire quanto buona sia xk come approssimazione di α quando la condizione è verificata, 
si osservi che:

|xk+1 – xk| = |h(xk) – xk| = |(h(xk) – α) + (α – xk)| = |(h(xk) – h(α)) + (α – xk)|

Utilizzando il Teorema di Lagrange:

h(xk) – h(α) = h'(tk)(xk – α)    con   t tra xk e α

dunque:

|xk+1 – xk| = |h'(tk)(xk – α) + (α – xk)| = |h'(tk) – 1| |xk – α| = |1 - h'(tk)| |xk – α|

L’accuratezza di xk come approssimazione di α dipende dal valore di h'(tk). Precisamente:
• se h'(tk) ≈ 0 si ha |xk+1 – xk| ≈ |xk – α| e il criterio d’arresto interrompe la 

costruzione della successione non appena l’approssimazione è accurata (si osservi 
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che se f è sufficientemente regolare e f'(α) ≠ 0 il Metodo di Newton rientra in 
questo caso);

• se h'(tk) ≈ 1 si ha 1 – h'(tk) ≈ 0 e il criterio d’arresto interrompe la costruzione 
della successione prima che l’approssimazione sia accurata;

• se h'(tk) < 0 si ha |1 – h'(tk)| > 1 e quindi |xk+1 – xk| < E ⇒ |xk – α| < E
(ma il criterio d’arresto potrebbe interrompere la costruzione della successione in 
ritardo: l’approssimazione potrebbe essere buona già da qualche iterazione).

Esempio: Sia h(x) = α + A(x – α) e h'(x) = A. Per ogni k si ha: xk - α = Ak(x0 – α). 

Se A = 0.9 (≈ 1) e k è tale che |xk+1 – xk| = 0.99 E (criterio d’arresto verificato), 
allora |xk – α| = (0.99 / 0.1) E = 9.9 E > E e l’accuratezza dell’approssimazione non 
verifica la richiesta dell’utilizzatore.

Se A = -0.9 e k tale che |xk+1 – xk| = 0.99 E (criterio d’arresto verificato), 
allora |xk – α| = E / 1.9 ≈ 0.5 E < E e l’accuratezza dell’approssimazione verifica 
la richiesta dell’utilizzatore. Però: 6 iterazioni prima si aveva già |xk-6 – α| = 
|xk – α| / |A|6 = E / (1.9 0.96) = E / 1.009... < E, ovvero già 6 iterazioni prima 
l’accuratezza dell’approssimazione verificava la richiesta dell’utilizzatore.

(2) Dato un numero reale positivo E (l’errore massimo richiesto dall’utilizzatore) ed 
inserite tra le variabili di ingresso della procedura sia E che f:

se |f(xk)| < E allora STOP

Il criterio è calcolabile: a ciascuna iterazione la procedura conosce xk, determina f(xk) e 
verifica la condizione del criterio.

Il criterio è efficace: la successione xk converge ad α e la successione f(xk) converge a 
f(α) = 0 (la funzione f è continua e α è zero di f). La condizione del criterio è quindi 
certamente soddisfatta dopo un numero finito di iterazioni.

Per capire quanto buona sia xk come approssimazione di α quando la condizione è verificata, 
si supponga f regolare e si osservi che:

f(xk) = f(xk) – f(α)

Utilizzando il Teorema di Lagrange:

f(xk) – f(α) = f'(tk)(xk - α)    con    tk tra xk e α

dunque:
|f(xk)| = |f'(tk)| |xk – α|

L’accuratezza di xk come approssimazione di α dipende dal valore di |f'(tk)|. Precisamente:
• se |f'(tk)| ≈ 1 si ha |f(xk)| ≈ |xk – α| e il criterio d’arresto interrompe la 

costruzione della successione non appena l’approssimazione è accurata;
• se |f'(tk)| ≈ 0 il criterio d’arresto interrompe la costruzione della successione 

prima che l’approssimazione sia accurata;
• se |f'(tk)| > 1 si ha |f(xk)| < E ⇒ |xk – α| < E / |f'(tk)| < E

(ma il criterio d’arresto potrebbe interrompere la costruzione della successione in 
ritardo: l’approssimazione potrebbe essere buona già da qualche iterazione).
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(1.73) Osservazione (criteri d’arresto, continuazione).

Entrambi i criteri d’arresto considerati nell’Osservazione (1.72) della Lezione 12 
presentano il problema che, in alcuni casi, xk è un’approssimazione di α non 
sufficientemente buona. Questo nasce dal fatto che, nel criterio d’arresto, stimando
l’errore assoluto commesso approssimando α con l’ultimo elemento della successione 
calcolato (|xk - α|) utilizzando la quantità scelta (|xk+1 – xk| in un caso, |f(xk)| 
nell’altro), si commette un errore relativo che non tende a zero quando k → ∞.

I due criteri si possono modificare in modo da ottenere stime migliori. Ponendosi nel 
medesimo contesto utilizzato per i due criteri precedenti:

(1-bis) Dato un numero reale positivo E (l’errore massimo richiesto dall’utilizzatore) e 
inseriti E e la derivata h' tra le variabili di ingresso della procedura:

se |xk+1 – xk| / |1 - h'(xk)| < E allora STOP

Il criterio è calcolabile  ed efficace.

Per capire quanto buona sia xk come approssimazione di α quando la condizione è verificata, 
si osservi che, procedendo come in (1) dell’Osservazione (1.72):

| xk+1−xk

1−h'(xk)| = | 1−h'(tk)
1−h'(xk)| |xk – α| = (1 + εk) |xk – α|

con 

εk = 
h'(xk)−h'(tk)

1−h'(xk)

In questo caso, quando k → ∞ si ha xk → α, tk → α e quindi εk → 0.

(2-bis) Dato un numero reale positivo E (l’errore massimo richiesto dall’utilizzatore) ed 
inserite E, f ed f' tra le variabili di ingresso della procedura sia:

se |f(xk)|/|f'(xk)| < E allora STOP

Il criterio è calcolabile ed efficace.

Per capire quanto buona sia xk come approssimazione di α quando la condizione è verificata, 
si osservi che, procedendo come in (2) dell’Osservazione (1.72):

| f(xk)
f'(xk)| = | f'(tk)

f'(xk)| |xk – α| = (1 + εk) |xk – α|

con 
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εk = | f'(tk)
f'(xk)| - 1

Anche in questo caso, quando k → ∞ si ha xk → α, tk → α e quindi εk → 0.

(1.74) Osservazione (metodi ad un punto in F(β,m)).

Siano:
• h:[a,b] → R e γ in [a,b] che verificano le ipotesi del Teorema di convergenza
• φ:[a,b] → F(β,m) l’algoritmo usato per approssimare i valori di h, tale che:

per ogni θ in [a,b] ∩ F(β,m) , |φ(θ) - h(θ)| ⩽ dφ

Siano poi xk la successione generata dal metodo definito da h a partire da γ, convergente ad 
α per ipotesi, e ξk la successione definita da ξ0 = γ , ξk+1 = φ(ξk). Si supponga che per ogni 
k sia ξk in [a,b].

Si ha:

(1.75) Teorema (stabilità dei metodi ad un punto, parte I).

Sia δ > 0. Se MetodoUnPunto(h,a,b,δ) eseguito in F(β,m) definisce ξ in F(β,m) tale che

|ξk+1 ⊖ ξk| < rd(δ)

allora ξ è punto unito di una funzione h*:[a,b] → R tale che:

per ogni x in [a,b] , |h*(x) - h(x)| ⩽ dφ + δ

Informalmente: se dφ ‘piccolo’, la procedura restituisce un punto unito di una funzione h* 
‘vicina’ ad h.

(1.76) Teorema (stabilità dei metodi ad un punto, parte II).

Siano inoltre f:[a,b] → R una funzione regolare tale che f(α) = 0, e ψ:[a,b] → F(β,m) 
l’algoritmo usato per approssimare i valori di f tale che:

per ogni θ in [a,b] ∩ F(β,m) , |ψ(θ) - f(θ)| ⩽ d ψ

Sia δ > 0. Se MetodoUnPunto(h,a,b,f,δ) eseguito in F(β,m) definisce ξ in F(β,m) tale che

|ψ(ξk)| < rd(δ)

allora ξ è zero di una funzione f*:[a,b] → R tale che:

per ogni x in [a,b] , |f*(x) - f(x)| ⩽ dψ + δ

Informalmente: se d ψ ‘piccolo’, la procedura restituisce uno zero di una funzione f* 
‘vicina’ ad f.
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(1.77) Osservazione (efficacia dei criteri d’arresto in F(β,m)).

I due teoremi precedenti stabiliscono che se in F(β,m) la procedura definisce ξ allora... 
Questo lascia supporre che la procedura potrebbe non definire ξ. La supposizione è 
corretta: come già sappiamo, in F(β,m) i criteri d’arresto possono risultare non efficaci.

Esempio. 

Sia [a,b] non contenente 0. Allora A = [a,b] ∩ F(β,m) contiene un numero finito di 
elementi. Sia Δ > 0 la minima distanza tra due elementi consecutivi di A. Se φ non 
ha punti uniti in [a,b], si ha allora:

|ξk+1 - ξk| ⩾ Δ    e quindi    |ξk+1 ⊖ ξk| ⩾ Δ

Se l’utilizzatore sceglie δ < Δ, la condizione |ξk+1 ⊖ ξk| < rd(δ) non può essere 
verificata.

Nell’altro caso, Se ψ non ha zeri in [a,b], detto Γ > 0 il valore minimo di ψ in A, 
si ha:

|ψ(ξk)| ⩾ Γ

Se l’utilizzatore sceglie δ < Γ, la condizione |ψ(ξk)| < rd(δ) non può essere 
verificata.

(1.78) Esempio.

Sia f(x) = (x – 2)2. La funzione ha un solo zero, α = 2 e f'(α) = 0. Scelto x0 > 2, per la 
successione generata dal metodo di Newton applicato ad f si ha:

xk+1 = (xk + 2) / 2

da cui:

xk – 2 = (1/2)k (x0 – 2)

La successione converge ad α ma è una successione di tipo esponenziale. In questo caso si 
ha:

hN(x) = (x + 2) / 2

dunque h'(α) = 1/2 ≠ 0. In questo caso, il metodo di Newton risulta avere ordine di 
convergenza ad α pari a uno.

(1.3) METODO DI NEWTON PER FUNZIONI DA Rn IN Rn

(1.79) Osservazione.

Se f:R → R è una funzione regolare, ciascuna iterazione del metodo di Newton costruisce, a 
partire da un valore xk noto, il numero reale xk+1 determinando lo zero (se esiste) della 
funzione affine (si veda l’Osservazione (1.67) nella Lezione 11):
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Ak(x) = f(xk) + f'(xk) (x - xk)

La funzione Ak:R → R è lo sviluppo di Taylor di f(x) di ordine uno in xk (graficamente: la 
retta di equazione y = Ak(x) è la tangente al grafico di f(x) in xk).

L’idea del metodo di Newton nel caso in cui f:Rn → Rn sia regolare è la stessa: a ciascuna 
iterazione, a partire da un valore noto xk ∈ Rn, si costruisce lo zero (se esiste) dello 
sviluppo di Taylor di f(x) di ordine uno in xk:

Ak(x) = f(xk) + Jf(xk) (x – xk)

dove Jf(x) ∈ Rn × n è la matrice jacobiana di f in x, ovvero la matrice di elemento i,j dato 
da:

∂fi
∂xj

(x)
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(1.80) Esempio.

Sia f:R2 → R2 definita da:1

f(x) = [ f1(x1,x2) ; f2(x1,x2) ] = [ x1
2 – x2 ; - x1 + x2

2 ]

La matrice jacobiana di f in x è:

Jf(x) = [ 2 x1 , -1 ; -1 , 2 x2 ] : R2 → R2 × 2

(1.81) Osservazione.2

Noto un elemento x(k) in Rn, il metodo di Newton per la funzione f:Rn → Rn determina 
l’elemento x(k+1) risolvendo l’equazione:

f(x(k)) + Jf(x(k)) (x – x(k)) = 0

ovvero:
Jf(x(k)) (x – x(k)) = - f(x(k))

Quest’ultima equazione è un sistema di equazioni lineari. Se la matrice Jf(x(k)) è 
invertibile allora si ottiene:

x – x(k) = - Jf(x(k))-1 f(x(k))

L’elemento x(k+1) è quindi:

x(k+1) = x(k) - Jf(x(k))-1 f(x(k))

(1.82) Esempio.

Si consideri la funzione f:R2 → R2 dell’Esempio (1.80) e sia x(0) = [ 1 ; -1 ]. Per 
determinare x(1) occorre calcolare Jf(x(0)), f(x(0)) e poi risolvere il sistema

Jf(x(0)) z = - f(x(0))
Si ha:

Jf(x(0)) = [ 2 , -1 ; -1 , -2 ]    ,    f(x(0)) = [ 2 ; 0 ]

Si osserva che Jf(x(0)) è invertibile. La soluzione del sistema risulta:

p = [ - 4/5 ; 2/5 ]
Allora:

x(1) = x(0) + p = [ 1/5 ; -3/5 ]

1 Per le matrici utilizzeremo la notazione di Scilab.
2 Per le successioni di elementi in Rn, useremo la notazione x(0), x(1), x(2), ...
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(1.83) Definizione.

Il metodo di Newton applicato alla funzione f:Rn → Rn, con matrice jacobiana Jf(x) 
invertibile, è il metodo ad un punto definito dalla funzione:

N(x) = x - Jf(x)-1 f(x) : Rn → Rn

(1.84) Teorema (di convergenza locale per metodi ad un punto in Rn).

Siano h:Rn → Rn sufficientemente regolare e α punto unito di h.

Se tutti gli autovalori di Jh(α) hanno modulo < 1 allora esiste un numero reale ρ > 0 tale 
che: 

|| x(0) – α || < ρ    ⇒    la successione x(k) generata dal metodo iterativo
   definito da h a partire da x(0) converge ad α

(Dimostrazione omessa.)

Questo teorema fornisce una condizione sufficiente per l’utilizzabilità del metodo definito 
da h per approssimare α. Per un metodo ad un punto in Rn, essere utilizzabile significa che 
per ogni x(0) sufficientemente vicino ad un punto unito α di h, la successione generata dal 
metodo definito da h a partire da x(0) converge ad α.

(1.85) Esempio (prima parte).

Si consideri ancora la funzione f:R2 → R2 dell’Esempio (1.80).
La funzione ha due zeri:

α' = [0 ; 0]    ,    α'' = [1 ; 1]

Per approssimare i due zeri si considera il metodo
definito dalla funzione

       h(x) = x + f(x) = [ x1 + x2
2 – x2 ; x2 – x1 + x2

2 ]

Si verifica facilmente che i punti uniti di h sono
tutti e soli gli zeri di f.

Per la matrice jacobiana si ha:

Jh(x) = I + Jf(x) = [ 1 + 2 x1 , -1 ; -1 , 1 + 2 x2 ]

da cui:
Jh(α') = [ 1 , -1 ; -1 , 1 ]

Gli autovalori sono le radici del polinomio caratteristico:

p(λ) = det( Jh(α') – λI) = (1 - λ)2 – 1    ovvero    λ1 = 0 , λ2 = 2

Il Teorema di convergenza locale non è applicabile. Sussiste però la seguente

  x2

 x1

f2(x1,x2) = 0

f1(x1,x2) = 0

α'

α''
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(1.86) Osservazione.

Nelle ipotesi del Teorema di convergenza locale: se almeno uno degli autovalori di Jh(α) ha 
modulo > 1 allora il metodo iterativo definito da h non è utilizzabile per approssimare α.

(1.87) Esempio.

Per giustificare l’asserto precedente, si consideri il seguente caso particolare.

Siano h(x) = [ h1(x1) ; h2(x2) ]: R2 → R2 con h1 e h2 regolari, α1 punto unito di h1 e α2 punto 
unito di h2. Ne segue che α = [α1 ; α2] è punto unito di h. La matrice jacobiana di h in α 
è:

Jh(α) = [ h1'(α1) , 0 ; 0 , h2'(α2) ]
i cui autovalori sono:

λ1 = h1'(α1)    e    λ2 = h2'(α2)

Sia x(k) una successione generata dal metodo definito da h. Allora x1(k) e x2(k) sono, 
rispettivamente, una successione generata dal metodo definito da h1 e, rispettivamente, dal 
metodo definito da h2. Se, ad esempio, |λ1| = |h1'(α1)| > 1, per la successione x1(k) si ha 
(Osservazione (1.61) della Lezione 10): o x1(k) = α1 per un valore finito di k o x1(k) non 
converge ad α1. Come già osservato a suo tempo, l’eventualità che accada la prima 
condizione è molto remota. Dunque ci si aspetta che la successione non sia convergente. Se
in questa situazione il metodo iterativo definito da h fosse utilizzabile per approssimare 
α allora per qualunque x(0) sufficientemente vicino ad α la successione x(k) risulterebbe 
convergere al punto unito di h. Ne seguirebbe che per qualunque x1(0) sufficientemente 
vicino ad α1 la successione x1(k) risulterebbe convergere al punto unito di h1. Ma questo, 
per quanto osservato sopra, non è possibile.

(1.88) Esempio (seconda parte).

Dal risultato finale della prima parte dell’esempio si deduce che il metodo definito da h 
non è utilizzabile per approssimare α'.

Per α'' si ha:
Jh(α'') = [ 3 , -1 ; -1 , 3 ]

e quindi:

p(λ) = det( Jh(α'') – λI) = (3 - λ)2 – 1    ovvero    λ1 = 2 , λ2 = 4

e il metodo definito da h non è utilizzabile neppure per approssimare α''.

(1.89) Esercizio (per casa).

Sia f la funzione dell’Esempio (1.85). Determinare la funzione N:R2 → R2 che definisce il 
metodo di Newton applicato ad f e verificare (con tanta pazienza) che si ha: JN(α') = 0 e 
JN(α'') = 0.

(1.90) Osservazione (utilizzabilità del metodo di Newton).

Quanto mostrato nell’esercizio precedente vale in generale. Si ha infatti:
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Se f ha derivate seconde continue, Jf è non singolare e α è uno zero di f, allora JN(α) = 0 
e il metodo di Newton è utilizzabile per approssimare α. Si ha inoltre che, analogamente a 
quanto accade nel caso di funzioni di una variabile, l’ordine di convergenza ad α del 
metodo di Newton è almeno due.
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(2) SISTEMI DI EQUAZIONI LINEARI

(2.01) Esempio.

Esempi di contesti in cui si devono risolvere sistemi di equazioni lineari:
• ad ogni iterazione del metodo di Newton per funzioni da Rn in Rn;
• risoluzione di reti elettriche resistive lineari
• risoluzione di reti elettriche RLC lineari in regime sinusoidale

(2.02) Problema.

Dati A ∈ Rn × n invertibile e b ∈ Rn, determinare x* ∈ Rn t.c. A x* = b. La colonna x* si chiama 
soluzione del sistema A x = b.

(2.03) Osservazione.

Una matrice A ∈ Rn × n è invertibile se verifica una delle seguenti proprietà equivalenti:

• esiste una matrice M ∈ Rn × n t.c. AM = MA = I (la matrice M si chiama matrice inversa 
di A e si indica con A-1)

• A x = 0 ⇔ x = 0 (questa proprietà si esprime anche con ker A = { 0 })
• per ogni colonna b ≠ 0 in Rn, esiste una sola soluzione x* del sistema A x = b
• det A ≠ 0

(2.04) Osservazione (casi semplici).

Decidere se la matrice A del sistema è invertibile e, in caso affermativo, determinare la 
soluzione del sistema A x = b è semplice quando la struttura di A ricade in uno dei seguenti 
casi:

(D) diagonale (A è diagonale se i ≠ j ⇒ ai,j = 0)

• Si ha: det A = a1,1 ⋅ ⋅ ⋅ an,n, quindi: det A = 0 ⇔ esiste k t.c. ak,k = 0. Dunque: A 
invertibile se e solo se per ogni k si ha ak,k ≠ 0.

• Se A è invertibile, le componenti della soluzione x* del sistema A x = b si 
determinano con:

xk
* = bk / ak,k

Il numero di operazioni necessario per determinare la soluzione è:

n divisioni.

(T) triangolare (A è triangolare superiore se i > j ⇒ ai,j = 0; è triangolare inferiore
    se i < j ⇒ ai,j = 0)

• Anche in questo caso si ha: det A = a1,1 ⋅ ⋅ ⋅ an,n. Dunque: A invertibile se e solo se 
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per ogni k si ha ak,k ≠ 0.

• Se A è triangolare superiore invertibile, le componenti della soluzione x* del 
sistema A x = b si determinano con la seguente procedura di sostituzione 
all’indietro:

z = SI(T,c)
se T non è triangolare superiore invertibile allora STOP; 
   altrimenti
      zn = cn / tn,n;
      per k = n-1,...,1 ripeti

   s = tk,k+1 * xk+1 + ... + tk,n * xn;
   xk = (bk – s) / tk,k;

Il numero di operazioni necessario per determinare la soluzione è:

n divisioni +
n(n−1)

2
(moltiplicazioni + somme)

(2.05) Esercizio (per casa).

Descrivere la procedura di sostituzione in avanti di intestazione

z = SA(T,c)

che, dati una matrice triangolare inferiore invertibile T ed una colonna c, determina la 
soluzione del sistema T x = c. Determinare anche il numero di operazioni necessario per 
determinare la soluzione.
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(2.06) Osservazione (casi semplici, conclusione).

(O) ortogonale (A è ortogonale se sussiste una delle tre condizioni equivalenti:

(1) le colonne (o le righe) di A sono una base ortonormale di Rn con 
    prodotto scalare canonico;
(2) A è invertibile e A-1 = At;
(3) At A = A At = I  )

• A è certamente invertibile.

• La soluzione x* del sistema A x = b si determina con:

x* = At b

Il numero di operazioni necessario per determinare la soluzione è quello delle 
operazioni necessarie per effettuare il prodotto di una matrice per una colonna:

n2 moltiplicazioni + n(n-1) somme 

(P) di permutazione (A è di permutazione se si ottiene dalla matrice identità I permutando  
    le colonne).

    Le colonne di una matrice di permutazione sono quindi quelle della matrice identità (a
    parte l’ordine). Dunque costituiscono una base ortonormale di Rn con prodotto scalare
    canonico (la base canonica). Se ne deduce che una matrice di permutazione è ortogonale.

• Anche in questo caso si ha: A è certamente invertibile.

• La soluzione x* del sistema A x = b si determina con:

x* = At b

Il numero di operazioni necessario per determinare la soluzione è, questa volta, 
zero perché At, come A, è di permutazione e il prodotto P v di una matrice di 
permutazione P per una colonna v produce una colonna che ha le stesse componenti di 
v ma in ordine diverso.

(2.07) Osservazione (caso generale).

Quando la matrice A del sistema non ha struttura tale da ricadere in un caso semplice, il 
problema si affronta in due passi:

Primo Passo:

Si fattorizza A in prodotto di fattori semplici.
    
    Esempio: A = F1 F2 F3, con F1 ortogonale, F2 triangolare superiore e F3 di permutazione.
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Secondo Passo:

Si utilizza la fattorizzazione per decidere se A è invertibile e, in caso affermativo,
per determinare la soluzione x*.

    Esempio:
A = F1 F2 F3 ⇒ det A = det F1 det F2  det F3

    quindi: A è invertibile ⇔ ciascun fattore è invertibile. Poi:

    (1) A x = b  ≡  F1 F2 F3 x = b  ≡  F2 F3 x = F1
-1 b = c1

    e c1 si ottiene risolvendo il sistema semplice F1 x = b.

    (2) F2 F3 x = c1  ≡  F3 x = F2
-1 c1 = c2

    e c2 si ottiene risolvendo il sistema semplice F2 x = c1.

    (3)            F3 x = c2  ≡  x* = F3
-1 c2

    e x* si ottiene risolvendo il sistema semplice F3 x = c2.

In generale, se A è invertibile, la soluzione si determina risolvendo tanti sistemi 
semplici quanti sono i fattori di A.

(2.08) Definizione (fattorizzazione LR, LR con pivoting e QR).

Sia A ∈ Rn × n. 

Una fattorizzazione LR di A è una coppia S,D tale che:

• S ∈ Rn × n è una matrice triangolare inferiore con skk = 1 per k = 1,...,n
• D ∈ Rn × n è una matrice triangolare superiore
• S D = A

Si osservi che il fattore sinistro S è invertibile. Allora: A è invertibile se e solo se lo 
è il fattore destro D.

Una fattorizzazione LR con pivoting di A è una terna P,S,D tale che:

• P ∈ Rn × n è una matrice di permutazione
• la coppia S,D è una fattorizzazione LR di P A

La relazione tra A,P,S e D è:

P A = S D    ovvero    A = Pt S D

Si osservi che sia P che il fattore sinistro S sono invertibili. Di nuovo: A è invertibile 
se e solo se lo è il fattore destro D.
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Una fattorizzazione QR di A è una coppia U,T tale che:

• U ∈ Rn × n è una matrice ortogonale
• T ∈ Rn × n è una matrice triangolare superiore
• U T = A

Si osservi che il fattore sinistro U è invertibile. Anche in questo caso: A è invertibile 
se e solo se lo è il fattore destro T.

(2.09) Definizione (matrice elementare di Gauss).

Data A ∈ Rn × n, per cercare una fattorizzazione LR con pivoting si utilizza la procedura EGP 
che si basa sul procedimento di eliminazione di Gauss. Per descrivere la procedura, occorre 
la nozione di matrice elementare di Gauss.

H ∈ Rn × n è una matrice elementare di Gauss se: esistono un indice k ∈ {1,...,n-1} e numeri 
reali λk+1,...,λn tali che H si ottiene dalla matrice identità I ∈ Rn × n sostituendo alla 
colonna k-esima ek (le cui componenti sono tutte uguali a zero ed eccezione della k-esima 
che vale uno) la colonna:

[0 ;...; 0 ; 1 ; λk+1 ;...; λn]
         ↑

               k-esima componente

Esempi: 
• la matrice I ∈ Rn × n è elementare di Gauss;
• la matrice:

[1,0,0;
 1,1,0;
-2,0,1] 

    è elementare di Gauss;
• la matrice:

[1,0,1;
 1,1,0;
-2,0,1] 

   non è elementare di Gauss.

(2.10) Proprietà (delle matrici elementari di Gauss).

Sia H una matrice elementare di Gauss. Allora:

• H è triangolare inferiore con hkk = 1 per ogni k (dunque invertibile)
• H-1 si ottiene da H cambiando segno agli elementi al di sotto della diagonale 

principale

(ad esempio:
                     H = [1,0,0;      H-1 = [1,0,0;
                          1,1,0;           -1,1,0;
                         -2,0,1]            2,0,1]  )
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(2.11) Definizione (procedura EGP).

La seguente procedura EGP opera su una matrice A ∈ Rn × n, e determina una terna P,S,D che è 
una fattorizzazione LR con pivoting di A.

(P,S,D) = EGP(A)

  A1 = A;
  per k = 1,...,n-1 ripeti:
    determina opportunamente Pk di permutazione, Hk elementare di Gauss e pone Ak+1 = Hk Pk Ak;
  D = An;
  P = Pn-1 ... P1;
  S = P (P1

t H1
-1 … Pn-1

t Hn-1
-1)

Le matrici Pk e Hk sono determinate in modo da ottenere An triangolare superiore.

Si osservi che:
D = An = Hn-1 Pn-1 An-1 = ... = Hn-1 Pn-1 ... H1 P1 A 

da cui, ricavando A:
A = (P1

t H1
-1 ... Pn-1

t Hn-1
-1 ) D

La matrice P1
t H1

-1 ... Pn-1
t Hn-1

-1  non è triangolare inferiore con elementi uguali ad uno sulla 
diagonale ma la matrice

P (P1
t H1

-1 ... Pn-1
t Hn-1

-1 )

lo è. Quindi, la coppia S = P (P1
t H1

-1 … Pn-1
t Hn-1

-1), D è una fattorizzazione LR di P A, come 
si voleva.

Resta da chiarire come, ad ogni iterazione, di determinano le matrici Pk e Hk.
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(2.12) Esempio.

Calcolo di EGP(A) con:

   A = [ 1, 1, 0, 0;
         2, 2, 1, 0;
        -2, 0, 0,-1;
        -1, 1, 2,-1 ]

(*) A1 = A;

(*) k = 1; A1(1,1) ≠ 0 ⇒ P1 = I; T1 = P1 A1;

   H1 = [ 1, 0, 0, 0;  
                λ2, 1, 0, 0;  

                    λ3, 0, 1, 0;
                λ4, 0, 0, 1 ]

    I valori λ2,λ3,λ4 sono determinati dalla richiesta che nella matrice H1 T1 gli elementi 
    di posto (2,1),(3,1) e (4,1) – ovvero gli elementi della k-esima colonna al di sotto 
    della diagonale – siano uguali a zero:

    λ2 T1(1,1) + T1(2,1) = 0  ;  λ3 T1(1,1) + T1(3,1)= 0  ;  λ4 T1(1,1) + T1(4,1) = 0

    Tenuto conto che T1(1,1) ≠ 0, i valori λ2,λ3,λ4 sono univocamente determinati:

λ2 = -
T1(2,1)
T1(1,1)

= - 2  ;  λ3 = -
T1(3,1)
T1(1,1)

= 2  ;  λ4 = -
T1(4,1)
T1(1,1)

= 1

    Infine:

                                 [ 1, 0, 0, 0;  [ 1, 1, 0, 0;  =  [ 1, 1, 0, 0;
                                  -2, 1, 0, 0;    2, 2, 1, 0;       0, 0, 1, 0;
                                   2, 0, 1, 0;   -2, 0, 0,-1;       0, 2, 0,-1;
                                   1, 0, 0, 1 ]  -1, 1, 2,-1]       0, 2, 2,-1]

                                       H1              T1       =         A2

(*) k = 2; A2(2,2) = 0 ⇒ essendo A2(3,2) ≠ 0, scambio la seconda riga con la terza: P2 = 
    P2,3; 

                                 [ 1, 0, 0, 0;  [ 1, 1, 0, 0;  =  [ 1, 1, 0, 0;
                                   0, 0, 1, 0;    0, 0, 1, 0;       0, 2, 0,-1;
                                   0, 1, 0, 0;    0, 2, 0,-1;       0, 0, 1, 0;
                                   0, 0, 0, 1 ]   0, 2, 2,-1]       0, 2, 2,-1]

      P2,3 A2        =        T2
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    Si ha così T2(2,2) ≠ 0.

    Poi:
   H2 = [ 1, 0, 0, 0;  

                0,  1, 0, 0;  
                    0, λ3, 1, 0;

                0, λ4, 0, 1 ]

    I valori λ3,λ4 sono determinati dalla richiesta che nella matrice H2 T2 gli elementi 
    di posto (3,2), e (4,2) – ovvero gli elementi della k-esima colonna al di sotto 
    della diagonale – siano uguali a zero:

    λ3 T2(2,2) + T2(3,2)= 0  ;  λ4 T2(2,2) + T2(4,2) = 0

    Tenuto conto che T2(2,2) ≠ 0, i valori λ3,λ4 sono univocamente determinati:

λ3 = -
T2(3,2)
T2(2,2)

= 0  ;  λ4 = -
T2(4,2)
T2(2,2)

= -1

    Infine:
                         [ 1, 0, 0, 0;  [ 1, 1, 0, 0;  =  [ 1, 1, 0, 0;
                           0, 1, 0, 0;    0, 2, 0,-1;       0, 2, 0,-1;
                           0, 0, 1, 0;    0, 0, 1, 0;       0, 0, 1, 0;
                           0,-1, 0, 1 ]   0, 2, 2,-1]       0, 0, 2, 0]

                                                     H2              T2       =         A3

(*) k = 3; A3(3,3) ≠ 0 ⇒ P3 = I; T3 = A3;

   H3 = [ 1, 0, 0, 0;  
                0, 1, 0, 0;  

                    0, 0, 1, 0;
                0, 0, λ4, 1 ]

    Il valore λ4 è determinato dalla richiesta che nella matrice H3 T3 l’elemento
    di posto (4,3) – ovvero gli elementi della k-esima colonna al di sotto 
    della diagonale – sia uguale a zero:

    λ4 T3(3,3) + T3(4,3) = 0

    Tenuto conto che T3(3,3) ≠ 0, il valore λ4 è univocamente determinato:

λ4 = -
T3(4,3)
T3(3,3)

= -2

    Infine:
                         [ 1, 0, 0, 0;  [ 1, 1, 0, 0;  =  [ 1, 1, 0, 0;
                           0, 1, 0, 0;    0, 2, 0,-1;       0, 2, 0,-1;
                           0, 0, 1, 0;    0, 0, 1, 0;       0, 0, 1, 0;
                           0, 0,-2, 1 ]   0, 0, 2, 0]       0, 0, 0, 0]

                                                     H3              T3       =         A4
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(*) D = A4; P = P3 P2 P1 = P2,3;

    Poi:

    [ 1, 0, 0, 0;  [ 1, 0, 0, 0;  [1, 0, 0, 0;  [ 1, 0, 0, 0;  =  [ 1, 0, 0, 0;
      2, 1, 0, 0;    0, 0, 1, 0;   0, 1, 0, 0;    0, 1, 0, 0;       2, 0, 1, 0;
     -2, 0, 1, 0;    0, 1, 0, 0;   0, 0, 1, 0;    0, 0, 1, 0       -2, 1, 0, 0;
     -1, 0, 0, 1 ]   0, 0, 0, 1 ]  0, 1, 0, 1 ]   0, 0, 2, 1 ]     -1, 1, 2, 1 ]  

          H1
-1            P2,3

t           H2
-1            H3

-1                Σ

    Infine:
     S = P Σ = [ 1, 0, 0, 0;

                                                -2, 1, 0, 0;
                                                 2, 0, 1, 0;
                                                -1, 1, 2, 1 ]

    Gli elementi T1(1,1), T2(2,2) e T3(3,3) utilizzati per ricavare le matrici elementari di 
    Gauss H1, H2 e H3 (in generale l’elemento Tk(k,k) utilizzato per ricavare la matrice Hk) 
    si chiamano pivot. Il termine pivoting si riferisce agli scambi effettuati alla k-esima 
    iterazione per ottenere Tk(k,k) ≠ 0.

(2.13) Esempio.

Calcolo di EGP(A) con:

   A = [ 1, 1, 0, 0;
         2, 2, 1, 0;
        -2,-2, 0,-1;
        -1,-1, 2,-1 ]

(*) A1 = A;

(*) k = 1; A1(1,1) ≠ 0 ⇒ P1 = I; T1 = P1 A1;

   H1 = [ 1, 0, 0, 0;  
                λ2, 1, 0, 0;  

                    λ3, 0, 1, 0;
                λ4, 0, 0, 1 ]

    I valori λ2,λ3,λ4 sono determinati dalla richiesta che nella matrice H1 T1 gli elementi 
    di posto (2,1),(3,1) e (4,1) – ovvero gli elementi della k-esima colonna al di sotto 
    della diagonale – siano uguali a zero:

    λ2 T1(1,1) + T1(2,1) = 0  ;  λ3 T1(1,1) + T1(3,1)= 0  ;  λ4 T1(1,1) + T1(4,1) = 0

    Tenuto conto che T1(1,1) ≠ 0, i valori λ2,λ3,λ4 sono univocamente determinati:

λ2 = -
T1(2,1)
T1(1,1)

= - 2  ;  λ3 = -
T1(3,1)
T1(1,1)

= 2  ;  λ4 = -
T1(4,1)
T1(1,1)

= 1

    Infine:
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                                 [ 1, 0, 0, 0;  [ 1, 1, 0, 0;  =  [ 1, 1, 0, 0;
                                  -2, 1, 0, 0;    2, 2, 1, 0;       0, 0, 1, 0;
                                   2, 0, 1, 0;   -2, 0, 0,-1;       0, 0, 0,-1;
                                   1, 0, 0, 1 ]  -1, 1, 2,-1]       0, 0, 2,-1]

                                       H1              T1       =         A2

(*) k = 2; A2(2,2) = 0 ⇒ essendo anche A2(3,2) = A2(4,2) = 0, gli elementi della k-esima 
    colonna al di sotto della diagonale sono già uguali a zero si pone: P2 = I e H2 = I, da 
    cui T2 = P2 A2 = A2 e A3 = H2 T2 = H2 A2 = A2;

(*) k = 3; A3(3,3) = 0 ⇒ essendo A3(4,3) ≠ 0 scambio la terza riga con la quarta: P3 = 
    P3,4, quindi:

   T3 = P3 A3 = [ 1, 1, 0, 0;  
                       0, 0, 1, 0;  

                           0, 0, 2,-1;
                       0, 0, 0,-1 ]

    Questa matrice è già triangolare superiore, quindi H3 = I e A4 = T3;
    
(*) D = A4; P = P3 P2 P1 = P3,4;

    Poi:

    [ 1, 0, 0, 0;  [ 1, 0, 0, 0;   =   [ 1, 0, 0, 0;
      2, 1, 0, 0;    0, 1, 0, 0;         2, 1, 0, 0;
     -2, 0, 1, 0;    0, 0, 0, 1;        -2, 0, 0, 1;
     -1, 0, 0, 1 ]   0, 0, 1, 0 ]       -1, 0, 1, 0 ]  

          H1
-1            P3,4

t                  Σ

    Infine:
     S = P Σ = [ 1, 0, 0, 0;

                                                 2, 1, 0, 0;
                                                -1, 0, 1, 0;
                                                -2, 0, 0, 1 ]

(2.14) Teorema (esistenza della fattorizzazione LR con pivoting).

Sia A ∈ Rn × n. La procedura EGP applicata ad A restituisce una fattorizzazione LR con 
pivoting di A. Ovvero: per ogni A ∈ Rn × n esiste almeno una fattorizzazione LR con pivoting.

(Dimostrazione: segue dai due esempi precedenti.)

(2.15) Esercizio (uso della fattorizzazione LR con pivoting).

Siano:

   EGP(A) = ( [ 1, 0, 0;  ,  [ 1, 0, 1;  ,  [ 0, 1, 0;  )  ,  b = [ 1;
                0, 1, 0;       0, 2, 1;       1, 0, 0;              0;
                1, 1, 1 ]      0, 0,-1 ]      0, 0, 1 ]             0 ]
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Senza determinare A, decidere se A è invertibile e, in caso affermativo, determinare la 
soluzione del sistema A x = b.

(2.16) Procedura (studio di un sistema di equazioni lineari con EGP).

// A ∈ Rn × n, b ∈ Rn.

(S,D,P) = EGP(A);
se dkk = 0 per qualche k allora STOP; altrimenti

c = SA(S,Pb);
x* = SI(D,c)

La procedura è soddisfacente nel senso che comunque assegnati i dati, decide se la matrice 
è invertibile e, in caso affermativo, determina la soluzione.

(2.17) Definizione (procedura GS).

Una procedura per la ricerca di una fattorizzazione QR di una matrice A ∈ Rn × n è la 
seguente procedura GS,1 descritta nel caso particolare di n = 3.

Sia A = [a1,a2,a3] ∈ R3 × 3. 

Passo uno.

Cerchiamo Ω = [ω1,ω2,ω3] a colonne ortogonali e Θ triangolare superiore con θkk = 1 tali 
che Ω Θ = A. Se matrici siffatte esistono, riscrivendo l’ultima uguaglianza per colonne si 
ha:

        ω1 = a1   ,    ω1 θ1,2 + ω2 = a2   ,   ω1 θ1,3 + ω2 θ2,3 + ω3 = a3            (*)

La prima uguaglianza determina ω1. Dalla seconda segue che:2

 (ω1 θ1,2) • ω1 + ω2 • ω1 = a2 • ω1

Poiché ω1 e ω2 sono ortogonali, si ha ω2 • ω1 = 0. Allora, se ω1 ≠ 0, si ha necessariamente:

θ1,2 = (a2 • ω1) / ( ω1 • ω1)
e quindi:

ω2 = a2 - ω1 θ1,2

Dalla terza uguaglianza delle (*) si ha poi:

(ω1 θ1,3) • ω1 + (ω2 θ2,3) • ω1 + ω3 • ω1 = a3 • ω1

e
(ω1 θ1,3) • ω2 + (ω2 θ2,3) • ω2 + ω3 • ω2 = a3 • ω2

Poiché ω2 • ω1 = 0 e, analogamente, ω3 • ω1 = 0, allora si ha necessariamente:

θ1,3 = (a3 • ω1) / ( ω1 • ω1)

1 Il nome GS della procedura deriva da quello della procedura di ortonormalizzazione di 
Gram-Schmidt, da cui concettualmente deriva.

2 Date due colonne v,w ∈ Rn, si indica con v • w il loro prodotto scalare canonico: v • w 
= v1 w1 + ... + vn wn.
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Essendo anche  ω3 • ω2 = 0, se ω2 ≠ 0, si ha necessariamente:

θ2,3 = (a3 • ω2) / ( ω2 • ω2)
e, infine:

ω3 = a3 - ω1 θ1,3 - ω2 θ2,3

Passo due.

La fattorizzazione di A trovata al passo precedente non è una fattorizzazione QR perché le 
colonne di Ω non hanno norma unitaria. Questo secondo passo determina, se possibile, una 
fattorizzazione QR normalizzando le colonne di Ω.

Sia: Δ = diag(∥ ω1∥,∥ ω2∥,∥ ω3∥).3 Se anche ω3 ≠ 0, la matrice Δ è invertibile e si verifica 
facilmente che la coppia

U = Ω Δ-1  ,   T = Δ Θ (**)

è una fattorizzazione QR di A. Si osservi che per la matrice T, triangolare superiore, si 
ha:

Tk,k = ∥ ωk∥ > 0

(2.18) Teorema (procedura GS e fattorizzazione QR).

La procedura GS descritta nella definizione precedente determina una fattorizzazione QR di 
A ∈ Rn × n se e solo se A è invertibile.

(Dimostrazione. Se la procedura non si interrompe prematuramente perché ωk = 0 per qualche 
k, allora la coppia U,T determinata da (**) è costituita da due matrici invertibili (U 
perché ortogonale, T perché triangolare con sulla diagonale le norme, non nulle, delle 
colonne ωk). Viceversa, se fosse ω1 = 0 allora sarebbe a1 = 0 e quindi A non invertibile. Se 
fosse ω1 ≠ 0 e ω2 = 0 allora sarebbe 0 = a2 - ω1 θ1,2 = a2 - a1 θ1,2, dunque a1 e a2 sarebbero 
linearmente dipendenti, quindi A non invertibile. Se fosse ω1 ≠ 0, ω2 ≠ 0 e ω3 = 0 …)

(2.19) Osservazione (non unicità della fattorizzazione QR).

Siano A ∈ Rn × n e U,T una fattorizzazione QR di A. Se E ∈ Rn × n è una matrice diagonale con, 
ad esempio, E(1,1) = -1 e E(k,k) = 1 per k = 2,...,n, allora la coppia:

U’ = U E     ,     T’ = E T

è una fattorizzazione QR di A diversa da U,T.

(2.20) Procedura (studio di un sistema di equazioni lineari con GS).

// A ∈ Rn × n, b ∈ Rn.

Se GS(A) determina ωk = 0 per qualche k allora STOP; altrimenti
(U,T) = GS(A);
x* = SI(T,Ut b)

3 Mutuando la simbologia da Scilab, con diag(v1,...,vn) si indica la matrice diagonale di 
dimensione n × n che ha sulla diagonale principale gli elementi v1,...,vn.



Lezione 17 - 7

Anche questa procedura è soddisfacente nel senso che comunque assegnati i dati, decide se 
la matrice è invertibile (utilizzando il Teorema (2.18)) e, in caso affermativo, determina 
la soluzione.

(2.21) Osservazione (metodo di Householder).

Esistono procedure che determinano una fattorizzazione QR di una qualsiasi A ∈ Rn × n (anche 
non invertibile). Ad esempio la seguente:

(U,T) = Householder(A)

  \\ A ∈ Rn × n

  A1 = A;

  per k = 1,...,n-1 ripeti:

       determina Xk ∈ Rn × n ortogonale tale che gli elementi sotto la diagonale principale 
       delle prime k colonne di Xk Ak sono nulli e pone: Ak+1 = Xk Ak;
  T = An;

  U = X1
t … Xn-1

t

La funzione predefinita qr di Scilab realizza questa procedura.

(2.22) Procedura (studio di un sistema di equazioni lineari con Householder).

// A ∈ Rn × n, b ∈ Rn.

(U,T) = Householder(A);
se tkk = 0 per qualche k allora STOP; altrimenti x* = SI(T,Ut b)

Anche questa procedura è soddisfacente.

(2.1) CONDIZIONAMENTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

Siano:

• A ∈ Rn × n invertibile, b ∈ Rn e x* la soluzione del sistema A x = b
• A' ∈ Rn × n invertibile, b' ∈ Rn e x̂ la soluzione del sistema A' x = b'

(2.23) Definizione (perturbazioni, scostamento).

Siano:
δA = A' – A ∈ Rn × n    ,    δb = b' – b ∈ Rn

le perturbazioni dei dati e:
δx = x̂ – x* ∈ Rn

lo scostamento della soluzione.
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(2.24) Problema (condizionamento della soluzione di un sistema di equazioni lineari).

Assegnato un modo di misurare le perturbazioni dei dati e lo scostamento della soluzione, 
determinare quanto grande può essere lo scostamento della soluzione in funzione di quanto 
grandi sono le perturbazioni dei dati.
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(2.25) Definizione (norma in uno spazio vettoriale).

Sia V uno spazio vettoriale su R. Una funzione N:V → R è una norma in V se verifica le 
seguenti condizioni:

(1) per ogni v ∈ V, N(v) ⩾ 0   e   N(v) = 0 ⇔ v = 0;
(2) per ogni v ∈ V ed ogni α ∈ R si ha: N(α v) = |α| N(v);
(3) per ogni v,w ∈ V si ha: N(v + w) ⩽ N(v) + N(w).

La coppia V,N si chiama spazio normato.

(2.26) Esempio (norme usuali in Rn).

Siano V = Rn e v = [v1,...,vn] ∈ V. Le funzioni:

• N1:Rn → R definita da N1(v) = |v1| + ... + |vn|
• N2:Rn → R definita da N2(v) = sqrt( v1

2 + ... + vn
2 )

• N∞:Rn → R definita da N∞(v) = max{ |v1|,...,|vn| }

sono norme in Rn.

(2.27) Esercizio (per casa).

Dimostrare che le funzioni N1 ed N∞ verificano le proprietà della Definizione (2.25).

(2.28) Definizione (intorno sferico).

Siano Rn,N uno spazio normato, v ∈ Rn e r ∈ R. L’insieme:

IN(v,r) = { x ∈ Rn tali che N(x – v) ⩽ r }

si chiama intorno sferico di centro v e raggio r. Nella figura seguente sono rappresentati 
in nero l’intorno I2(0,1), in blu I∞(0,1), in rosso I1(0,1), nel caso n = 2.

(2.29) Definizione (norma di matrice).

Siano Rn,N uno spazio normato e A ∈ Rn × n. La quantità:
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∥ A ∥N = max{ N(A v), N(v) = 1 }

si chiama norma N di A.

(2.30) Proprietà (della norma di matrice).

(I) Si osservi che la norma N di A è ben definita: il sottoinsieme S dei vettori v di Rn

    definito da N(v) = 1 è chiuso e limitato e la funzione v → N(A v) è continua. Per il
    Teorema di Weierstrass, quest’ultima ha massimo e minimo su S. In particolare:

esiste y ∈ Rn tale che N(y) = 1 e ∥ A ∥N = N(A y)

(IIa) Per ogni A ∈ Rn × n e v ∈ Rn si ha:

N(A v) ⩽ ∥ A ∥N N(v)

      Infatti: La relazione è certamente vera se v = 0. Se v ≠ 0 si ha:

N(A v) = N( A N(v) vers(v) )1 = N( N(v) A vers(v) ) = N(v) N(A vers(v))

      Inoltre, per la definizione di norma N di A: N(A vers(v)) ⩽ ∥ A ∥N, dunque:

N(A v) ⩽ ∥ A ∥N N(v)

(IIb) Esiste w ∈ Rn tale che:
N(A w) = ∥ A ∥N N(w)

      Per la proprietà (I), esiste y ∈ Rn tale che N(y) = 1 e ∥ A ∥N = N(A y). Se vers(w) = 
      y si ha l’asserto.

(III) Per ogni A,B ∈ Rn × n si ha:

∥ A B ∥N ⩽ ∥ A ∥N ∥ B ∥N

      Infatti: per la proprietà (I) esiste y ∈ Rn tale che N(y) = 1 e ∥ A B ∥N = N(A B y).   
      Allora, utilizzando due volte la proprietà (II):

∥ A B ∥N = N(A B y) ⩽ ∥ A ∥N N(B y) ⩽ ∥ A ∥N ∥ B ∥N N(y) = ∥ A ∥N ∥ B ∥N

1 Siano Rn,N uno spazio normato e v ∈ Rn un vettore non nullo. Allora:

vers(v) = 1
N(v)

v

è il versore di v. Ovviamente si ha N(vers(v)) = 1.
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(2.31) Osservazione.

L’insieme Rn × n è, con le usuali operazioni di somma di matrici e multiplo, uno spazio 
vettoriale su R. Introdotta in Rn una norma N, la funzione A → ∥ A ∥N da Rn × n in R è una 
norma in Rn × n (questo spiega il nome dato alla funzione). Dunque, sussistono le proprietà 
della norma (Definizione (2.25)):

(1) per ogni A ∈ Rn × n, ∥ A ∥N ⩾ 0   e   ∥ A ∥N = 0 ⇔ A = 0;
(2) per ogni A ∈ Rn × n ed ogni α ∈ R si ha: ∥ α A ∥N = |α| ∥ A ∥N;
(3) per ogni A,B ∈ Rn × n si ha: ∥ A + B ∥N ⩽ ∥ A ∥N + ∥ B ∥N.

(2.32) Osservazione (formule di calcolo della norma di una matrice).

Sia A ∈ Rn × n e siano a1,...,an le colonne di A. Si ha:

• ∥ A ∥1 = max{ N1(a1),...,N1(an) }
• ∥ A ∥2 = sqrt( massimo degli autovalori di AtA )2

• ∥ A ∥∞ = ∥ At ∥1 ovvero, dette r1,...,rn le righe di A: ∥ A ∥∞ = max{ N1(r1),...,N1(rn) }

Si osservi che mentre il calcolo di ∥ A ∥1 e ∥ A ∥∞ è elementare, quello di ∥ A ∥2 in generale 
non lo è.

(2.33) Esempio (condizionamento nel caso δA = 0, δb ≠ 0).

Torniamo al condizionamento della soluzione del sistema A x = b. Sia N una norma in Rn.

Supponiamo che sia δA = 0 e δb ≠ 0. Allora i vettori x* e x̂ verificano:

A x* = b    ,    A x̂ = b + δb

perciò, ricordando l’invertibilità di A, per lo scostamento δx si ha:

δx = x̂ - x* = A-1 (b + δb) – A-1 b = A-1 δb

Introducendo la misura assoluta dello scostamento N(δx) e quella della perturbazione N(δb), 
utilizzando la proprietà (IIa) si ottiene:

∀ δb , N(δx) = N(A-1 δb) ⩽ ∥ A-1 ∥N N(δb)

La precedente è la migliore limitazione possibile per la misura assoluta dello scostamento 
in funzione della misura assoluta della perturbazione. La proprietà (IIb) mostra infatti 
che:

∃ δb : N(δx) = ∥ A-1 ∥N N(δb)

Se b ≠ 0 (e quindi x* ≠ 0), possiamo introdurre anche le misure relative dello scostamento 
εx = N(δx)/N(x*) e della perturbazione εb = N(δb)/N(b). Per tali misure si ha:

2 La matrice AtA è simmetrica e semidefinita positiva. I suoi autovalori sono tutti non 
negativi.
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      N(δx)    ∥ A-1 ∥N N(δb)
εx = ----- ⩽ -------------
    N(x*)        N(x*)

Ma:
                             1      ∥ A-1 ∥N

A x* = b  ⇒  N(b) = N(A x*) ⩽ ∥ A-1 ∥N N(x*)  ⇒  ----- ⩽ ------
                N(x*)     N(b)

da cui:
∀ δb , ∀ b ≠ 0 : εx ⩽ ∥ A-1 ∥N ∥ A ∥N  εb

La precedente è la migliore limitazione possibile per la misura relativa dello scostamento 
in funzione della misura relativa della perturbazione. La proprietà (IIb) mostra infatti 
che:

∃ δb e ∃ b ≠ 0 : εx = ∥ A-1 ∥N ∥ A ∥N  εb

(2.34) Definizione (numero di condizionamento di una matrice).

Sia A ∈ Rn × n una matrice invertibile e N una norma in Rn. Il numero:

cN(A) = ∥ A-1 ∥N ∥ A ∥N

si chiama numero di condizionamento di A (in norma N).

(2.35) Osservazione.

Poiché A-1 A = I, si ha (usando la proprietà (III) di (2.30)):

∥ I ∥N = ∥ A-1 A ∥N  ⩽ ∥ A-1 ∥N ∥ A ∥N

Per definizione si ha poi:

∥ I ∥N = max{ N(I v), N(v) = 1 } = max{ N(v), N(v) = 1 } = 1
e quindi:

cN(A) = ∥ A-1 ∥N ∥ A ∥N ⩾ 1

(2.36) Teorema (di condizionamento).

Siano A ∈ Rn × n una matrice invertibile e N una norma in Rn. Allora: per ogni b ≠ 0, ogni δb 
tale che b + δb ≠ 0 e ogni δA tale che cN(A) εA < 1 si ha:

             cN(A)
εx ⩽ ------------ (εA + εb)

           1 - cN(A) εA
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(2.36) Esercizio (svolto in classe).

Siano V = R2 con norma 2 e v ∈ R2 tale che ∥ v ∥2 = 2.

• Sia x* = v. Disegnare l’insieme degli x̂ tali che εx ⩽ 1/4.
• Sia x* = v/2. Disegnare l’insieme degli x̂ tali che εx ⩽ 1/4.

(2.37) Esercizio (svolto in classe).

Siano V = R2 con norma 2 e v ∈ R2 tale che ∥ v ∥2 = 2.

• Sia x* = v. Disegnare l’insieme degli x̂ tali che ∥ δx ∥2 ⩽ 1/2.
• Sia x* = v/2. Disegnare l’insieme degli x̂ tali che ∥ δx ∥2 ⩽ 1/2.

(2.38) Esercizio.

In R2 con norma 2 si siano: x* = [ 2; 0,1] e x̂ tali che εx ⩽ L. Determinare: max |δx1 / x*
1| 

e max |δx2 / x*
2|.

Soluzione: εx ⩽ L ⇒ ∥ δx ∥2 ⩽ L ∥ x* ∥2. Allora, per k = 1,2 si ha:

max |δxk / x*
k| = max |δxk| / |x*

k| = max ∥ δx ∥2 / |x*
k| ⩽ L ∥ x* ∥2 / |x*

k|

Dunque:
max |δx1 / x*

1| ⩽ L ∥ x* ∥2 / |x*
1| = sqrt(4 + 0.01) / 2 ≈ L

e:
max |δx2 / x*

2| ⩽ L ∥ x* ∥2 / |x*
2| = sqrt(4 + 0.01) / 0,1 ≈ 20 L

Per la prima componente l’errore relativo ha una limitazione simile a quella dello 
scostamento; per la seconda, invece, la limitazione è peggiore. Questo accade perché mentre 
∥ x* ∥2 / |x*

1| ≈ 1, ∥ x* ∥2 / |x*
2| è molto maggiore di 1.

(2.39) Osservazione.

Siano A ∈ Rn × n una matrice invertibile, b ∈ Rn, x* la soluzione del sistema A x = b e x̂ ∈ Rn. 
Si usa x̂ per approssimare x*. Ci si domanda quanto è accurata l’approssimazione. Scelta una 
norma in Rn, per misurare l’accuratezza si utilizza la quantità N(x̂ - x*)/N(x*). 

(A) Per ottenere informazioni sull’accuratezza, si introduce il vettore residuo del sistema 
A x = b associato a x̂ definito da:

r = A x̂ - b

e si interpreta x̂ come soluzione del sistema perturbato:

A x = b + r

ottenuto con le perturbazioni δA = 0 e δb = r. Con questa interpretazione di x̂ la quantità 
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N(x̂ - x*)/N(x*) risulta essere la misura relativa εx dello scostamento della soluzione dovuto 
alla perturbazione. Applicando il Teorema di condizionamento (2.36) della Lezione 18 si 
ottiene la limitazione:

N(x̂ - x*)/N(x*) = εx ⩽ cN(A) εb    con    εb = N(r)/N(b)

(B) Per ottenere informazioni sull’accuratezza, si cerca una matrice M ∈ Rn × n tale che:

M x̂ = -r

e, posto δA = M si interpreta x̂ come soluzione del sistema perturbato:

(A + δA) x = b

Con questa interpretazione di x̂ la quantità N(x̂ - x*)/N(x*) risulta essere la misura 
relativa εx dello scostamento della soluzione dovuto alla perturbazione. Se cN(A) εA < 1, dal 
Teorema di condizionamento (2.36) della Lezione 18 si ottiene la limitazione:

N(x̂ - x*)/N(x*) = εx ⩽ cN(A) εA / (1 - cN(A) εA)

(2.40) Esempio.
Si consideri il sistema di figura, composto da due punti
pesanti, P1 di massa m1, e P2 di massa m2, liberi di 
scorrere lungo una guida verticale e collegati da tre
molle ideali e con lunghezza a riposo 0 come nel disegno.

Scelto l’asse z verticale discendente, per determinare le
configurazioni di equilibrio, per ciascuno dei punti si 
scrivono le equazioni della statica:

m1 g – c1 z1 + c2 (z2 – z1) = 0
m2 g - c2 (z2 - z1) + c3 (h – z2) = 0

che, sotto forma di sistema, si riscrivono:

[ c1 + c2 ,   -c2  ;  [ z1 ;  =  [    m1 g    ;
    -c2       , c2 + c3 ]    z2 ]       m2 g + c3 h ]

    A             z     =        b

Scelti i valori dei parametri:

c1 = c2 = c3 = 100 N/m    ,    m1 = m2 = 1 kg    ,    h = 5 m    ,    g = 9.81 m/s2

la soluzione z* del sistema è:
z1

* ≈ 1.76 m    ,    z2
* ≈ 3.43 m

Se adesso assumiamo come valore dell’accelerazione di gravità un valore g' tale che:1

|g' – g| = | δg | < 10-2

1 Si ricordi che il valore dell’accelerazione di gravità è noto solo con approssimazione.

g

c1

c2

c3

P1,m1

P2,m2

z = 0

   z

h
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il sistema A z = b si trasforma nel sistema perturbato A z = b + δb con:

δb = [ m1 δg ; m2 δg ]

Scelta poi la norma uno in R2 si ha:

εb = N1(δb)/N1(b) < 4 × 10-5    e    c1(A) = 3

In base al Teorema di condizionamento, per lo scostamento della soluzione ẑ del sistema 
perturbato dalla soluzione z* si ha la limitazione:

εx ⩽ cN(A) εb < 1.2 × 10-4

Infine, essendo:
∥ z* ∥1 / |z1

*| ≈ 3    e    ∥ z* ∥1 / |z2
*| ≈ 1.5

si ottengono stime simili anche per quanto riguarda lo scostamento delle componenti (vedere 
l’Esercizio (2.38)).
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(2.41) Esempio (continuazione).

Supponiamo che le costanti elastiche ck siano note con incertezza. Assumiamo, ad esempio, 
che, per k = 1,2,3, sia:

ck' = ck + δck    con    |δck| < 1 N/m

Il sistema A z = b si trasforma nel sistema perturbato (A + δA) z = b + δb con:

δA = [δc1+δc2 −δc2
−δc2 δc2+δc3]    ,   δb = [ 0

h δc3]
Per le perturbazioni dei dati si ha:

εA = N1(δA)/N1(A) < 10-2    ,    εb = N1(δb)/N1(b) <  10-2

Inoltre:
c1(A) εA ⩽ 3 × 10-2

In base al Teorema di condizionamento, per lo scostamento della soluzione ẑ del sistema 
perturbato dalla soluzione z* si ha la limitazione:

εx ⩽ 
c1(A)

1−c1(A) εA
(εA+εb) ≈ 6.2 × 10-2

Per quanto riguarda lo scostamento delle componenti si ha, questa volta:

εx,1 ⩽ 0.19 (19 %)    ,    εx,2 ⩽ 0.09 (9 %)

(2.42) Esempio (continuazione).

Sia adesso ẑ una colonna (ad esempio ottenuta dal calcolatore utilizzando una procedura per 
la soluzione del sistema A z = b) da usare come approssimazione di z*. Per ottenere una 
limitazione dell’errore commesso si procede come nell’Osservazione (2.39) della Lezione 19. 

Il vettore residuo è:
r = A ẑ - b

(1) Si interpreta ẑ come soluzione del sistema perturbato A z = b + r. Per il Teorema di
    condizionamento:

N1(ẑ−zx)

N1(z
x)

⩽ c1(A)
N1(r)
N1(b)

    Domanda: esistono perturbazioni dei parametri δg, δck, δmk, δh che generano perturbazioni 
    dei dati δA = 0 e δb = r (ovvero: si riesce ad ‘interpretare fisicamente’ il sistema 
    perturbato A z = b + r) ?

*

*



Lezione 20 - 2

    Osservazione: la limitazione trovata è valida indipendentemente dalla risposta alla  
                  domanda: il sistema perturbato non deve necessariamente essere 
                  fisicamente significativo.

    Risposta: si. Ad esempio: δg = 0, δck = 0, δh = 0  e  δm1 = r1/g, δm2 = r2/g.

(2) Si cerca M ∈ R2 × 2 tale che M ẑ = -r, e si interpreta ẑ come soluzione del sistema
    perturbato (A + M) z = b. Per il Teorema di condizionamento, posto εA = ∥ M ∥1/∥ A ∥1:

se c1(A)εA ⩽ 1 allora 
N1(ẑ−zx)

N1(z
x)

⩽ 
c1(A)εA

1−c1(A)εA

    Domanda: esistono perturbazioni dei parametri δg, δck, δmk, δh che generano perturbazioni 
    dei dati δA = M e δb = 0 (ovvero: si riesce ad ‘interpretare fisicamente’ il sistema 
    perturbato A z = b + r) ?

(2.43) Esempio.

Sia:

ẑ = [1.83.4 ] m

Allora:

r = A ẑ - b = [ 10.19−9.81] N

Cerchiamo α e β in modo che, posto:

M = [α+β −β
−β β ]

si abbia:
M ẑ = -r

Si ottiene un sistema di due equazioni nelle incognite α e β la cui unica soluzione è:

α = -(r1 + r2)/ẑ1 ≈ -0.21 N/m     e     β = -r2/(ẑ2 – ẑ1) ≈ -6.13 N/m

Si ottiene allora:
εA ≈ 4.1 × 10-2   e   c1(A) εA ≈ 0.12 < 1

da cui, per il Teorema di condizionamento:

εx ⩽ circa 0.14

Infine, la risposta è si: δg = 0, δmk = 0, δh = 0  e  δc1 = α N/m, δc2 = β N/m,  δc3 = 0.

*

*
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(2.2) STUDIO DI UN SISTEMA DI EQUAZIONI LINEARI IN F(β,m)

(2.44) Osservazione (studio con EGP).

Siano A ∈ Rn × n e b ∈ Rn. Il procedimento per lo studio del sistema A x = b che usa la 
procedura EGP è:

(S,D,P) = EGP(A);
se esiste k tale che dkk = 0 allora STOP;
  altrimenti

c = SA(S,Pb);
x* = SI(D,c)

in
 R

Quando si utilizza un calcolatore, con insieme di numeri di macchina F(β,m), la procedura 
si trasforma in:

(S,D,P) = EGPM(A);
se esiste k tale che dkk = 0 allora STOP;
  altrimenti

c = SAM(S,Pb);
x = SIM(D,c)

in
 F
(β

,m
)

dove:
• EGPM, SAM e SIM sono, rispettivamente, la procedura EGP, SA ed SI in cui ciascuna 

operazione aritmetica è sostituita dalla corrispondente funzione predefinita,
• A e b sono, rispettivamente, la matrice rd(A) e la colonna rd(b) di elementi gli 

arrotondati in F(β,m) dei corrispondenti elementi di A e b.

(2.45) Esempio.

Ricordando il Teorema (1.38) della Lezione 6, per ciascuna componente della matrice A = 
rd(A) e della colonna b = rd(b) si ha:

aij = rd(aij) = (1 + εij) aij    ,    bi = rd(bi) = (1 + εi) bi

con |εij| ⩽ u e |εi| ⩽ u per ogni i e j. Ne segue che, utilizzando ad esempio la norma uno 
in Rn, per le misure assolute delle perturbazioni si ha:

∥ δA ∥1 ⩽ u ∥ A ∥1    ,    N1(δb) ⩽ u N1(δb)

e quindi, per le misure relative:

εA ⩽ u    e    εb ⩽ u

Se c1(A) u ⩽ 1 allora c1(A) εA ⩽ 1 e, per il Teorema di condizionamento (Teorema (2.36) della 
Lezione 18) si ha:
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εx ⩽ 2
c1(A)u

1−c1(A)u
≡ Λ

Quando il calcolatore legge i dati A e b, li cambia (salvo il caso in cui le componenti dei 
dati siano in F(β,m)) e il sistema A x = b è sostituito dal sistema A x = b. Questa 
sostituzione, nel caso migliore possibile in cui sia trascurabile l’effetto delle 
sostituzioni di EGP, SA ed SI con EGPM, SAM e SIM, può generare uno scostamento della 
soluzione x* di misura relativa Λ. Dunque, nel caso usuale in cui l’effetto delle 
sostituzioni di EGP, SA ed SI con EGPM, SAM e SIM non è trascurabile, non è ragionevole 
aspettarsi uno scostamento tra x* e l’approssimazione x ottenuta dal calcolatore minore di 
Λ.

(2.46) Esempio.

Si consideri la seguente situazione ‘quasi ideale’:

• A = A, b = b - i dati hanno componenti in F(β,m));
• EGPM(A) = EGP(A) = (S,D,P) – la fattorizzazione EGPM è esatta, con D invertibile;
• SAM(S,Pb) = c = rd(c) – il risultato di SAM è ‘quasi ideale’;
• SIM(D,c) = SI(D,c) - il risultato di SIM è esatto.

Sotto queste ipotesi si ha: x* = SI(D,c) è la soluzione del sistema D x = c, x = SI(D,c) è 
la soluzione del sistema D x = c. Introdotta la perturbazione δc = c - c si ha, utilizzando 
la norma uno (vedi l’esempio precedente):

N1(δc) ⩽ u N1(c)    e quindi    εc ⩽ u

Per il Teorema di condizionamento si ha allora:

εx ⩽ c1(D) εc ⩽ c1(D) u

La limitazione della misura relativa dello scostamento dipende da c1(D) ovvero, posto:

c1(D) = c1(A)
c1(D)
c1(A)

dal fattore di amplificazione del numero di condizionamento c1(D)/c1(A).

(2.47) Esempio.

Siano γ ∈ (0,1) e A = [γ 1
1 0] . Si ha:

• ∥ A ∥1 = 1 + γ < 2

• A-1 = [0 1
1 −γ ] da cui ∥ A-1 ∥1 = 1 + γ  e  c1(A) = (1 + γ)2 < 4

• EGP(A) = (S,D,P) = ( [ 1 0
1/γ 1] , [ γ 1

0 −1/γ ] , I )  e  ∥ D ∥1 = 1 + 1/γ

• D-1 = [1/γ 1
0 −γ ] da cui ∥ D-1 ∥1 = max{ 1/γ,1 + γ }  e  c1(D) = (1 + 1/γ) max{ 1/γ,1 + γ }
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Per il fattore di amplificazione del numero di condizionamento si ha allora:

lim
γ →0

c1(D)
c1(A)

= +∞

Dunque: scegliendo γ sufficientemente piccolo è possibile ottenere un fattore di 
amplificazione del numero di condizionamento grande quanto si vuole: il procedimento di 
soluzione del sistema di equazioni che usa EGP trasforma il sistema A x = b nel sistema 
equivalente D x = c ma mentre le proprietà di condizionamento di A sono buone (c1(A) < 4) 
quelle di D, scelto γ opportunamente piccolo, sono pessime (c1(D) enorme).

Mentre il procedimento di soluzione del sistema di equazioni che usa EGP è soddisfacente 
quando si opera in R (si veda (2.16) della Lezione 17), il procedimento può risultare non 
soddisfacente quando si opera in F(β,m).

(2.48) Definizione (procedura EGPP).

Per ovviare al potenziale pericolo evidenziato nell’esempio precedente, si ricorre ad una 
modifica della procedura EGP che porta alla definizione della procedura EGPP (Eliminazione 
di Gauss con Pivoting Parziale). La differenza con EGP consiste solo nella scelta della 
matrice di permutazione Pk. Nella procedura EGP si ha:

se Ak(k,k) ≠ 0 allora Pk = I altrimenti
se esiste i > k tale che Ak(i,k) ≠ 0 allora Pk = Pk,i altrimenti Pk = I

Nella procedura EGPP si pone:

se per ogni i ⩾ k si ha Ak(i,k) = 0 allora Pk = I altrimenti
scelto i tale che |Ak(i,k)| = max { |Ak(j,k)| , j ⩾ k } si pone Pk = Pk,i

La scelta nella procedura EGP ha lo scopo di assicurarsi che il pivot sia diverso da zero, 
nella procedura EGPP lo scopo è quello di avere come pivot l’elemento della colonna k-esima 
di modulo massimo possibile tra tutti quelli con indice di riga j ⩾ k.

(2.49) Esempio.

Calcolo di EGPP(A) con:
   A = [ 1, 0, 1;
         2, 1,-1;
         1, 2, 1 ]

(*) A1 = A;

(*) k = 1; |A1(2,1)| = max { |A1(j,1)| , j ⩾ 1 } ⇒ P1 = P1,2;

 T1 = P1 A1 = [2 1 −1
1 0 1
1 2 1]  ,  H1 = [ 1 0 0

λ2 1 0
λ3 0 1] = [ 1 0 0

−1/2 1 0
−1/2 0 1]

    I valori λ2,λ3 sono determinati come nella procedura EGP.

    Infine:
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H1 T1 = [ 1 0 0
−1/2 1 0
−1/2 0 1] [2 1 −1

1 0 1
1 2 1] = [2 1 −1

0 −1/2 3 /2
0 3 /2 3 /2] = A2

(*) k = 2; |A2(3,2)| = max { |A2(j,2)| , j ⩾ 2 } ⇒ P2 = P2,3;

T2 = P2 A2 = [2 1 −1
0 3 /2 3 /2
0 −1/2 3 /2]  ,  H2 = [1 0 0

0 1 0
0 λ3 1] = [1 0 0

0 1 0
0 1/3 1]

    Il valore λ3 è determinato come nella procedura EGP.

    Infine:

H2 T2 = [1 0 0
0 1 0
0 1/3 1] [2 1 −1

0 3 /2 3 /2
0 −1/2 3 /2] = [2 1 −1

0 3 /2 3 /2
0 0 2 ] = A3

(*) D = A3; P = P2 P1; S = [ 1 0 0
1/2 1 0
1/2 −1/3 1] (ricavata come in EGP).

(2.50) Osservazione.

Per ogni A ∈ Rn × n invertibile, posto (S,D,P) = EGPP(A), si ha: c1(D)/c1(A) ⩽ F(n). La 
funzione F dipende solo dalla dimensione n della matrice e dalla norma scelta, in 
particolare non dipende da A. Dunque, il fattore di crescita del numero di condizionamento 
è limitato.

Tornando all’Esempio (2.47) si ha:

EGPP( [γ 1
1 0] ) = (S,D,P) con D = I ⇒ c1(D) = 1

(2.51) Osservazione (studio con qr).

Siano A ∈ Rn × n e b ∈ Rn. Il procedimento per lo studio del sistema A x = b che usa la 
procedura qr è:

(U,T) = qr(A);
se esiste k tale che tkk = 0 allora STOP;
  altrimenti

c = Ut b;
x* = SI(D,c)

in
 R

Quando si utilizza un calcolatore, con insieme di numeri di macchina F(β,m), la procedura 
si trasforma in:
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(U,T) = qrM(A);
se esiste k tale che tkk = 0 allora STOP;
  altrimenti

c = Ut ⊗ b;
x = SIM(T,c)

in
 F
(β

,m
)

dove Ut ⊗ b è la colonna che si ottiene sostituendo in Ut b le operazioni aritmetiche con le 
corrispondenti funzioni predefinite in F(β,m).

(2.52) Esempio.

Analogamente a quanto fatto per il procedimento che usa EGP, si consideri la seguente 
situazione ‘quasi ideale’:

• A = A, b = b - i dati hanno componenti in F(β,m));
• qrM(A) = qr(A) = (U,T) – la fattorizzazione qrM è esatta, con T invertibile;
• Ut

 ⊗ b = c = rd(c) – il risultato di Ut
 ⊗ b è ‘quasi ideale’;

• SIM(T,c) = SI(T,c) - il risultato di SIM è esatto.

Sotto queste ipotesi si ha: x* = SI(T,c) è la soluzione del sistema T x = c, x = SI(T,c) è 
la soluzione del sistema T x = c. Introdotta la perturbazione δc = c - c si ha, utilizzando 
la norma due (la norma ‘naturale’ da utilizzare in Rn quando si utilizza la fattorizzazione 
QR che fa entrare in gioco la nozione di ortogonalità, dunque il prodotto scalare in Rn, è 
la norma due: quella indotta dal prodotto scalare):

N2(δc) ⩽ u N2(c)    e quindi    εc ⩽ u

Per il Teorema di condizionamento si ha ancora:

εx ⩽ c2(T) εc ⩽ c2(T) u

e la limitazione della misura relativa dello scostamento dipende dal fattore di 
amplificazione del numero di condizionamento c2(T)/c2(A).

Però in questo caso si ha:

• A = U T ⇒ ∥ A ∥2 = ∥ U T ∥2 = max { N2(U T v), N2(v) = 1 } =1 max { N2(T v), N2(v) = 1 } = 
∥ T ∥2

• T-1 = A-1 U ⇒ ∥ T-1 ∥2 = ∥ A-1 U ∥2 = max { N2( A-1 U v), N2(v) = 1 } =2 max { N2(A-1
 w), 

N2(Ut w) = 1 } = max { N2(A-1
 w), N2(w) = 1 } = ∥ A-1 ∥2

Ne segue che c2(T) = c2(A), ovvero il fattore di amplificazione del numero di 
condizionamento è c2(T)/c2(A) = 1.

Il procedimento di soluzione del sistema di equazioni che usa qr è soddisfacente anche 
quando si opera in F(β,m).

1 Poiché U è ortogonale si ha: N2(U T v) = sqrt( vt Tt Ut U T v ) = sqrt( vt Tt T v ) = N2(T v).
2 Cambio di variabile: w = U v. Essendo U ortogonale si ha poi v = Ut w e N2(Ut w) = N2(w).
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(2.3) COSTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

(2.53) Definizione (costo aritmetico).

Un metodo per confrontare i due procedimenti descritti per ottenere un’approssimazione 
della soluzione di un sistema di equazioni lineari (quello che usa EGPP e quello che usa 
qr) è di considerare il tempo necessario per il calcolo dell’approssimazione.

Nel contesto della risoluzione dei sistemi di equazioni lineari, si introduce la seguente 
nozione di costo del calcolo di φ(x), C(φ), dove φ è l’algoritmo ingenuo (si veda 
Definizione (1.32), Lezione 6) per f:

C(φ) = il numero di operazioni aritmetiche necessario per calcolare f

(2.54) Osservazione (ragionevolezza della definizione di costo).

Perché C(φ) sia indicativo del tempo necessario per il calcolo di φ(x) è necessario che 
siano soddisfatte le seguenti due condizioni:

(1) Durante il calcolo di φ(x), il tempo impiegato in attività che non siano 
l’esecuzione di operazioni aritmetiche (ovvero: nel calcolo di funzioni predefinite 
corrispondenti a funzioni elementari o confronti) deve essere trascurabile (un 
esempio di algoritmo in cui questa condizione non è verificata è quello che calcola 
la norma infinito di un vettore: in questo caso l’algoritmo esegue solo confronti 
tra le componenti del vettore);

(2) Il tempo di calcolo di ciascuna delle funzioni predefinite corrispondenti ad 
operazioni aritmetiche deve essere indipendente dagli operandi.

La seconda condizione non è verificata, ad esempio, nel caso della moltiplicazione tra due 
elementi di F(β,m): per calcolare ξ1 ⊗ ξ2 occorre moltiplicare le frazioni – e questo 
avviene in un tempo indipendente dai fattori perché le frazioni hanno sempre lo stesso 
numero di cifre – e sommare gli esponenti; è quest’ultima operazione che non può essere 
ritenuta indipendente dai fattori perché gli esponenti sono numeri interi qualsiasi che 
hanno un numero di cifre che dipende da quali elementi di F(β,m) si considerano. In 
particolare, perché la nozione di costo aritmetico sia indicativa del tempo necessario per 
il calcolo occorre che l’insieme dei numeri di macchina del calcolatore non sia F(β,m).
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(2.55) Osservazione.

Analizziamo il costo del procedimento di soluzione del sistema A x = b, con A ∈ Rn × n 
invertibile, che utilizza la procedura EGPP. Le procedure eseguite sono EGPP, SA ed SI. Si 
ha:

C(EGPP) = 
2
3
n3+...   ,   C(SA) = C(SI) = n2

Si osservi che mentre nel calcolo di SA ed SI si eseguono solo operazioni aritmetiche, nel 
calcolo di EGPP si eseguono anche confronti, ma il loro numero è trascurabile rispetto a 
quello delle operazioni aritmetiche.1

(Esercizio: determinare il numero di confronti eseguito da EGPP.)

Complessivamente: 

C(EGPP) + C(SA) + C(SI) = 
2
3
n3+...

Nel procedimento che utilizza la procedura qr si eseguono le procedure qr, prodotto matrice 
per colonna (indicato con: pmc) e SI. Si ha:

C(qr) = 
4
3
n3+...   ,   C(pmc) = 2 n2 + ...   ,   C(SI) = n2

Si osservi che nella procedura qr (come in quella GS) si esegue anche il calcolo di radici 
quadrate ma il loro numero (n) è trascurabile rispetto a quello delle operazioni 
aritmetiche.

(Esercizio: determinare il numero di operazioni aritmetiche eseguito da pmc.)

Complessivamente: 

C(qr) + C(pmc) + C(SI) = 4
3
n3+...

Il termine dominante nel costo aritmetico della procedura che usa qr è dunque doppio 
rispetto a quello della procedura che usa EGPP.

1 Si può ragionevolmente ritenere che il tempo necessario per confrontare due numeri di 
macchina sia simile a quello necessario per eseguire un’operazione aritmetica sugli 
stessi numeri.
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(2.4) METODI ITERATIVI PER LA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

(2.56) Definizione (metodo iterativo per la soluzione di un sistema di equazioni lineari).

Siano H ∈ Rn × n e c ∈ Rn. Il metodo iterativo definito da H e c è l’applicazione che a 
ciascun vettore g ∈ Rn associa la successione di vettori x(k) definita da:

x(0) = g    ,    x(k) = H x(k-1) + c  per k = 1,2,...

(2.57) Osservazione.

• Il metodo iterativo definito da H e c è il metodo iterativo definito dalla funzione 
h: Rn → Rn tale che:

h(x) =  H x + c

La funzione h è continua perciò (si veda l’Osservazione (1.54) nella Lezione 8) se la 
successione x(k) generata dal metodo è convergente, allora il suo limite v ∈ Rn è un 
punto unito di h, ovvero  verifica la relazione:

v = H v + c    equivalente a    (I – H) v = c

e quest’ultima relazione significa che:

v è soluzione del sistema di equazioni lineari (I – H) x = c

• Sia A ∈ Rn × n invertibile. Il metodo iterativo definito da H e c è utilizzabile per 
approssimare la soluzione del sistema A x = b se:

(1) i sistemi A x = b e (I – H) x = c sono equivalenti (in particolare: I – H è     
    invertibile) e

(2) è (praticamente) possibile determinare g ∈ Rn a partire dal quale la successione 
    generata dal metodo è convergente.

(2.58) Esempio.

(1) Siano:

A = [1/2 0
0 −1]     ,    b = [00]

• Posto: H = I – A = [1/2 0
0 2]  e  c = b, i sistemi A x = b e (I – H) x = c sono 

equivalenti;

• Sia g = [g1

g2]. La successione generata dal metodo definito da H e c è allora:

x(0) = g   ,   x(1) = H x(0) + c = H g   ,    x(2) = H x(1) + c = H2
 g   ,   ...

e quindi:



Lezione 21 - 3

x(k) = Hk
 g = [(1/2)k 0

0 2k ] g = [(1/2)kg1

2kg2
]

La successione è convergente se e solo se g2 = 0. In tal caso si ha:

lim
k →∞

x(k) = 0

e la successione converge all’unica soluzione del sistema A x = b.

(2) Siano:

A = [2 1
1 2]     ,    b = [00]

• Posto: J = [0 1
1 0] si riscrive A = 2 I + J. Allora:

A x = b   è equivalente a   x = - (1/2) J x + (1/2) b

ovvero, posto H = -(1/2) J  e  c = (1/2) b:

A x = b   è equivalente a   (I – H) x = c

• Gli autovalori della matrice H sono: λ1 = - 1/2 e  λ2 = 1/2, quindi H è 
diagonalizzabile.2 Si ha:

H = S [−1/2 0
0 1/2] S-1    con    S = [1 1

1 −1]
• Posto g = [g1

g2], la successione generata dal metodo definito da H e c è:

x(k) = Hk g = S [(−1/2)k 0
0 (1/2)k ] S-1 g

ovvero, posto y = S-1 g:

x(k) = [(−1/2)ky1

(1/2)ky2
]

In questo caso si ha:
per ogni g ∈ R2 : lim

k →∞
x(k) = 0

ovvero: per ogni g ∈ R2 la successione converge all’unica soluzione del sistema A x = 
b.

2 Si ricordi che (1) una matrice M ∈ Rn × n è diagonalizzabile se esistono una matrice 
diagonale Λ e una matrice invertibile S tali che: M S = S Λ, ovvero M = S Λ S-1; gli 
elementi λ1,...,λn sulla diagonale di Λ sono gli autovalori di M, la k-esima colonna di S 
è un autovettore associato all’autovalore λk; (2) se una matrice ha autovalori distinti 
allora è diagonalizzabile.
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(3) Siano A = -I  e  b = 0.

• Posto H = I – A  e  c = b, i sistemi A x = b e (I – H) x = c sono equivalenti.
• La successione generata dal metodo iterativo definito da H e c a partire da g ∈ Rn è:

x(k) = Hk g = 2k g

La successione è convergente se e solo se g = 0 e, in tal caso, converge all’unica 
soluzione del sistema A x = b.
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(2.59) Esempio (numeri di macchina di Scilab).

In Scilab l’insieme dei numeri di macchina è:

M = Fd(2,53,-1021,1024)

ovvero l’insieme dei numeri in virgola mobile, base due, precisione 53, esponente limitato 
(tra -1021 e 1024) e con elementi denormalizzati.

Gli elementi di M sono: 

• zero;
• gli elementi normalizzati:

(-1)s 2b 0.c1...c53

con s ∈ {0,1}, -1021 ⩽ b ⩽ 1024, ogni ck cifra in base due e c1 ≠ 0;

• gli elementi denormalizzati:
(-1)s 2-1024 0.c1...c53

con s ∈ {0,1}, ogni ck cifra in base due e c1 = 0.

L’insieme M ha un numero finito di elementi. Inoltre:

• max M = ξmax = 21024 0.1⋅⋅⋅1 = 21024 (1 – 2-53)

• min{ ξ ∈ M, ξ > 0 } = ξmin = 2-1021 0.0⋅⋅⋅01 = 2-1021 2-53 = 2-1074

• il successore di zero è definito e: σ(0) = ξmin

• min{ ξ ∈ M, ξ > 0 e ξ normalizzato } = 2-1021 0.10⋅⋅⋅0 = 2-1021 2-1 = 2-1022

• M contiene elementi simbolici: Nan (utilizzato quando al risultato di una funzione 
predefinita non è assegnabile un valore numerico ‘sensato’), Inf (quando una 
funzione predefinita restituisce un valore numerico positivo ‘troppo grande’), -Inf 
(quando una funzione predefinita restituisce un valore numerico negativo ‘troppo 
grande’); in Scilab le costanti %nan e %inf hanno valore, rispettivamente, Nan e Inf

• detta rd:R → M l’usuale funzione arrotondamento in M, la funzione rd*:R → M che 
Scilab utilizza per arrotondare i numeri reali è definita così:

se |rd(x)| ⩽ ξmax allora rd*(x) = rd(x)

se rd(x) > ξmax allora rd*(x) = Inf

se rd(x) < -ξmax allora rd*(x) = -Inf

La funzione predefinita number_properties di Scilab restituisce informazioni sull’insieme 
M. Precisamente:

number_properties(<stringa>)
restituisce:

• la base dell’insieme M quando <stringa> = radix
• la precisione dell’insieme M quando <stringa> = digits
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• l’esponente minimo dell’insieme M quando <stringa> = minexp
• l’esponente massimo dell’insieme M quando <stringa> = maxexp
• la presenza di elementi denormalizzati quando <stringa> = denorm
• il massimo elemento di M quando <stringa> = huge
• il minimo elemento positivo di M quando <stringa> = tiniest
• il minimo elemento positivo normalizzato di M quando <stringa> = tiny
• la precisione di macchina in M quando <stringa> = eps

La funzione predefinita log2 di Scilab restituisce la frazione e l’esponente di un elemento 
di M. Precisamente, se ξ = (-1)s 2b g, l’assegnamento:

[f,e] = log2(ξ)

assegna ad f il valore (-1)s g e ad e il valore b.

La funzione predefinita nearfloat di Scilab restituisce il predecessore o il successore di 
un elemento di M. Precisamente:

nearfloat(<stringa>,ξ)
restituisce:

• il successore di ξ quando <stringa> = succ
• il predecessore di ξ quando <stringa> = pred

(2.60) Esercizio (per casa).

Eseguire e discutere (utilizzando opportune rappresentazioni grafiche) i seguenti dialoghi 
in Scilab:

> xi_min = number_properties(tiniest)
> xi_min == 2^(-1074)
> [f,e] = log2(xi_min)
> y = xi_min / 2
> y == 0
> z = 2^(-1075) * (3 / 2)
> z == 0
> z = xi_min * (3 / 4)
> z == xi_min
> xi_max = number_properties(huge)
> [f,e] = log2(xi_max)
> f == 1 – 2^(-53)
> xi_max + 2^9711

> nearfloat(succ,xi_max)
> xi_max + 2^970
> xi_max + 2^969 == xi_max

(2.61) Esercizio (per casa).

La funzione predefinita bitstring di Scilab restituisce la stringa di cifre in base due che 
rappresenta la codifica usuale di un numero di macchina nel calcolatore. Consultare la 
pagina di Wikipedia: Double-precision floating-point format per ‘decifrare’ il risultato 

1 La distanza tra xi_max e il suo successore in F(2,53) è 21024-53 = 2971.
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del seguente dialogo in Scilab:
> bitstring(1)
> bitstring(xi_min)
> bitstring(0)
> bitstring(%inf)

(2.62) Osservazione.

In generale, assegnata H ∈ Rn × n tale che I – H invertibile e posto:

C = { g ∈  Rn tali che x(k) è convergente} 

sussiste una ed una sola delle seguenti eventualità:

(1) C ha un solo elemento (la soluzione del sistema (I – H) x = c)
(2) C è un sottospazio vettoriale di Rn di dimensione ⩽ n (determinato dagli autovettori 

di H)
(3) C = Rn

Se sussiste uno dei casi (1) o (2), è praticamente impossibile determinare g tale che la 
successione x(k) risulti convergente: il metodo non è utilizzabile per approssimare la 
soluzione di A x = b.

Se sussiste il caso (3), qualunque g genera una successione convergente alla soluzione del 
sistema A x = b: il metodo è utilizzabile per approssimare la soluzione di A x = b.

(2.63) Definizione (metodo convergente).

Siano H ∈ Rn × n e c ∈ Rn. Il metodo iterativo definito da H e c è convergente se:

  (1) per ogni g ∈ Rn, la successione x(k) generata dal metodo a partire da g è
      convergente;
  (2) tutte le successioni generate dal metodo hanno lo stesso limite.

(2.64) Osservazione.

Nel caso (usuale) in cui il metodo iterativo sia utilizzato per approssimare la soluzione 
del sistema A x = b con A invertibile, i sistemi A x = b e (I – H) x = c sono equivalenti, e 
quindi il metodo definito da H e c ha un solo punto unito. In questo caso (si veda 
l’Osservazione (2.57) della Lezione 21) si ha che (1) ⇒ (2), ovvero: metodo convergente 
significa che tutte le successioni generate dal metodo sono convergenti.

(2.65) Definizione (spettro e raggio spettrale).

Sia A ∈ Rn × n. Si chiama spettro di A l’insieme degli autovalori di A:

σ(A) = { λ ∈ C tali che λ è autovalore di A }
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Si chiama raggio spettrale di A il numero:

ρ(A) = max { |λ| tali che λ è autovalore di A }2

(2.66) Teorema (caratterizzazione dei metodi convergenti).

Siano H ∈ Rn × n e c ∈ Rn. Il metodo iterativo definito da H e c è convergente se e solo se 
ρ(H) < 1.

(2.67) Esempi.

(1) Siano H = [1/2 0
0 −1] , c = 0 e g ∈ R2. La successione generata dal metodo iterativo

    definito da H e c a partire da g è:

x(k) = Hk g = [(1/2)k 0
0 (−1)k ] = [(1/2)kg1

(−1)kg2
]

    La successione è convergente (all’unico punto unito del metodo: 0) se e solo se g2 = 0.
    Dunque il metodo non è convergente. Infatti: σ(H) = { 1/2, -1 } e ρ(H) = 1.

(2) Siano H = [1/2 0
0 1] , c = 0 e g ∈ R2. La successione generata dal metodo iterativo

    definito da H e c a partire da g è:

x(k) = Hk g = [(1/2)k 0
0 1] = [(1/2)kg1

g2 ]
    La successione è convergente per ogni g e:

lim
k→∞ [(1/2)kg1

g2 ] = [ 0g2]
    Il valore del limite dipende da g, dunque il metodo non è convergente. Infatti: σ(H) =
    { 1/2, 1 } e ρ(H) = 1.

2 Si rappresentino gli autovalori di A, cioè σ(A), sul piano di Gauss. Scelto un numero 
reale positivo r sufficientemente grande, l’insieme I(0,r) = { z ∈ C : | z | ⩽ r } - il 
cerchio di centro l’origine e raggio r – include σ(A). Il raggio spettrale di A è il 
minimo valore di r tale che I(0,r) ⊃ σ(A).
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(2.68) Definizione (metodo di Jacobi).

Sia A ∈ Rn × n invertibile con elementi diagonali A(k,k) tutti diversi da zero. Posto:1

D = diag(A)   ,   M = A – D

la matrice D risulta invertibile e: A x = b è equivalente a x = - D-1 M x + D-1 b.
Il metodo di Jacobi (applicato al sistema A x = b) è il metodo iterativo definito da:
HJ = - D-1 M  e  cJ =  D-1 b.

(2.69) Definizione (matrice a predominanza diagonale forte).

Sia A ∈ Rn × n. La matrice A è a predominanza diagonale forte per righe se

per ogni k:  |A(k,k)| > ∑
i≠k

|A(k,i)|

(2.70) Teorema (predominanza diagonale forte ⇒ invertibilità).

Sia A ∈ Rn × n. Se A è a predominanza diagonale forte per righe allora A è invertibile.

(Dimostrazione: Per assurdo, se A fosse a predominanza diagonale forte per righe e non 
invertibile allora esisterebbe una colonna y ≠ 0 tale che A y = 0. Detta yj la componente di 
y di massimo modulo (certamente diversa da zero), si avrebbe allora:

A(j,1) y1 + ... + A(j,j) yj + ... + A(j,n) yn = 0   ovvero   A(j,j) yj = - ∑
i≠j

A(j,i)yi

da cui:
|A(j,j) yj| = |∑i≠j

A(j,i)yi|  ⇒  |A(j,j)| |yj| ⩽ ∑
i≠j

|A(j,i)||yi|

Poiché per definizione yj ≠ 0 e per ogni i ≠ j è |yi| / |yj| ⩽ 1 si avrebbe infine:

|A(j,j)| ⩽ ∑
i≠j

|A(j,i)| |yi

yj
| ⩽ ∑

i≠j
|A(j,i)|

assurdo.)

(2.71) Esempio.

Siano:2

A = [3 1
1 3 1
1 3 1
1 3

]    ,   b = [111
1
]

1 Se A ∈ Rn × n, si indica con diag(A) la matrice [A(1,1);...;A(n,n)]. La notazione è 
mutuata da Scilab.

2 Se nella scrittura di una matrice un elemento non è indicato, il suo valore è zero.
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• La matrice A risulta a predominanza diagonale forte per righe, e quindi invertibile, 
e con elementi diagonali tutti diversi da zero. Il metodo di Jacobi è definito e si 
ha:

HJ = −
1
3 [0 1

1 0 1
1 0 1
1 0

]    ,   cJ =
1
3 [111

1
]

• Gli autovalori di HJ (λ1 = λ2 = 0, λ3 = 1/3, λ4 = -1/3) hanno tutti modulo
minore di uno. Per il Teorema di caratterizzazione (2.66) della Lezione 22 il metodo 
risulta convergente. Per ogni g in R4 la successione generata dal metodo a partire da 
g è convergente alla soluzione x* del sistema A x = b.

(2.72) Teorema (condizione sufficiente di convergenza per il metodo di Jacobi).

Siano A ∈ Rn × n a predominanza diagonale forte per righe e b ∈ Rn. Allora il metodo di
Jacobi applicato al sistema A x = b è convergente.

Il risultato è una semplice conseguenza del teorema e dell’osservazione seguenti.

(2.73) Teorema (norma e raggio spettrale).

Siano A ∈ Rn × n e N una norma in Rn. Allora: ρ(A) ⩽ ∥ A ∥N.

Dimostrazione. Per definizione: ∥ A ∥N = max{ N(A v), N(v) = 1 }. Siano poi λ ∈ C un 
autovalore di A e w ∈ Rn un autovettore associato. Allora, posto w = w / N(w) si ha:

N(w) = 1    e    N(A w) = N(A
w

N(w)
) = 

N(A w)
N(w)

=
N(λ w)
N(w)

= |λ|
N(w)
N(w)

= |λ|

quindi |λ| ∈ { N(A v), N(v) = 1 }. Allora:

ρ(A) = max{ |λ| t.c λ ∈ σ(A) } ⩽ max{ N(A v), N(v) = 1 } = ∥ A ∥N

(2.74) Osservazione.

Siano A ∈ Rn × n e b ∈ Rn. Se A è a predominanza diagonale forte per righe allora per la 
matrice HJ del metodo di Jacobi applicato al sistema A x = b si ha ∥ HJ ∥∞ < 1.

(Esercizio: dimostrare che l’asserto è conseguenza immediata della definizione di matrice a 
 predominanza diagonale forte per righe.)

(2.75) Scilab (esempio precedente).

Si consideri l’Esempio (2.71). Per costruire la matrice A in Scilab, si utilizzano i 
seguenti assegnamenti:3

3 In Scilab: per ogni numero intero n, eye(n,n) è la matrice identica di ordine n; se A è 
una matrice e m,k,l sono numeri interi allora: A(m:k,l) = [A(m,l);...;A(k,l)].
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--> A = 3 * eye(4,4)

 A = [4x4 double]

   3.   0.   0.   0.
   0.   3.   0.   0.
   0.   0.   3.   0.
   0.   0.   0.   3.

--> A(2:4,1) = 1

 A = [4x4 double]

   3.   0.   0.   0.
   1.   3.   0.   0.
   1.   0.   3.   0.
   1.   0.   0.   3.

--> A(1:3,4) = 1

 A = [4x4 double]

   3.   0.   0.   1.
   1.   3.   0.   1.
   1.   0.   3.   1.
   1.   0.   0.   3.

--> b = [1;1;1;1]

 b = [4x1 double]

   1.
   1.
   1.
   1.

Per costruire la matrice HJ e la colonna cJ:4

--> D = diag(diag(A))

 D = [4x4 double]

   3.   0.   0.   0.
   0.   3.   0.   0.
   0.   0.   3.   0.
   0.   0.   0.   3.

4 In Scilab, se A è una matrice n × n allora diag(A) = [A(1,1);...;A(n,n)]; se v = 
[v1;...;vn] ∈ Rn allora diag(v) è la matrice M ∈ Rn × n diagonale tale che M(1,1) = v1,..., 
M(n,n) = vn.
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--> M = A - D

 M = [4x4 double]

   0.   0.   0.   1.
   1.   0.   0.   1.
   1.   0.   0.   1.
   1.   0.   0.   0.

--> HJ = - diag(1./diag(A)) * M

 HJ = [4x4 double]

   0.          0.   0.  -0.3333333
  -0.3333333   0.   0.  -0.3333333
  -0.3333333   0.   0.  -0.3333333
  -0.3333333   0.   0.   0.       

--> cJ = diag(1./diag(A)) * b

 cJ = [4x1 double]

   0.3333333
   0.3333333
   0.3333333
   0.3333333

Un’approssimazione della soluzione del sistema A x = b, calcolata utilizzando la funzione 
predefinita backslash (\)5 è:

--> y = A\b

 y = [4x1 double]

   0.25
   0.1666667
   0.1666667
   0.2500000

Per ottenere un’approssimazione della soluzione con il metodo di Jacobi, si calcolano dieci 
elementi della successione generata dal metodo a partire dal vettore 0.6 Ad ogni iterazione 
l’istruzione disp(norm(x – y,%inf)) mostra ∥ x – y ∥∞ ovvero la distanza tra l’ultimo 
elemento calcolato, x, della successione e y.

--> x = zeros(4,1); for k = 1:10, x = HJ * x + cJ; disp(norm(x - y,%inf)); end

   0.1666667

5 L’assegnamento y = A\b è equivalente alla sequenza: (S,D,P) = EGPPM(A); w = SAM(S,P b); 
y = SIM(D,w).

6 Se m,n sono numeri interi, zeros(m,n) è la matrice di ordine m × n di elementi tutti 
uguali a zero.
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   0.0555556

   0.0185185

   0.0061728

   0.0020576

   0.0006859

   0.0002286

   0.0000762

   0.0000254

   0.0000085

Si osservi che, come ci si doveva aspettare dalla convergenza della successione, la 
distanza ∥ x – y ∥∞ è decrescente.

(2.76) Definizione (metodo di Gauss-Seidel).

Sia A ∈ Rn × n invertibile con elementi diagonali A(k,k) tutti diversi da zero. Posto:7

T = tril(A) ,   M = A – T

la matrice T risulta invertibile e: A x = b è equivalente a x = - T-1 M x + T-1 b.
Il metodo di Gauss-Seidel (applicato al sistema A x = b) è il metodo iterativo definito da:
HGS = - T-1 M  e  cGS =  T-1 b.

(2.77) Esempio.

Siano A e b come nell’Esempio (2.71).

• La matrice A risulta a predominanza diagonale forte per righe, e quindi invertibile, 
e con elementi diagonali tutti diversi da zero. Il metodo di Gauss-Seidel è definito 
e si ha:

HGS = [ −1/3
−2/9
−2/9
1/9

] ∈ R4 × 4   ,   cGS = [1/3
2/9
2/9
2/9

]
• Gli autovalori di HGS (λ1 = λ2 = λ3 = 0, λ4 = 1/9) hanno tutti modulo minore di uno. 

Per il Teorema di caratterizzazione (2.66) della Lezione 22 il metodo risulta 
convergente. Per ogni g in R4 la successione generata dal metodo a partire da g è 
convergente alla soluzione x* del sistema A x = b.

7 Se A ∈ Rn × n, si indica con tril(A) la parte strettamente triangolare inferiore di A, 
ovvero la matrice B (triangolare inferiore) tale che: i ⩽ j ⇒ B(i,j) = A(i,j) e i > j 
⇒ B(i,j) = 0. La notazione è mutuata da Scilab.
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(2.78) Teorema (condizione sufficiente di convergenza per il metodo di Gauss-Seidel).

Siano A ∈ Rn × n e b ∈ Rn. Se:

(1) A è a predominanza diagonale forte per righe

oppure:

(2) A è simmetrica definita positiva

allora il metodo di Gauss-Seidel applicato al sistema A x = b è convergente.

(2.4) COSTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI CON UN METODO ITERATIVO

(2.79) Osservazione.

Siano A ∈ Rn × n, b ∈ Rn e x', x” le approssimazioni della soluzione x* del sistema A x = b 
ottenute, rispettivamente, con un metodo diretto e con un metodo iterativo (dotato, come 
vedremo, di un opportuno criterio d’arresto). Vogliamo confrontare x' ed x” dal punto di 
vista del costo aritmetico.

Supponiamo x' calcolata con il procedimento che utilizza EGPP. Il costo asintotico del
calcolo è allora: (2/3) n3.

Il costo del calcolo di x” è:

(costo per iterazione) * (numero di iterazioni)

Dobbiamo quindi determinare il costo di una singola iterazione.

Consideriamo, ad esempio, il metodo di Gauss-Seidel. Per calcolare la colonna x(k+1) si
hanno (almeno) due alternative:

(1) calcolare – T-1 M x(k) + T-1 b;
(2) calcolare la soluzione del sistema T x = - M x(k) + b.

Per il costo della prima alternativa si ha:

(1.a) 2 n2 – 3 n operazioni per calcolare – T-1 M x(k)
(1.b) n operazioni per calcolare la somma – T-1 M x(k) +  T-1 b

in totale: 2 n2 – 2 n operazioni.

Per il costo della seconda alternativa si ha:

(2.a) n2 – 2 n + 1 operazioni per calcolare – M x(k)
(2.b) n operazioni per calcolare la somma - M x(k) + b
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(2.c) n2 operazioni per calcolare la soluzione del sistema

in totale: 2 n2 – n + 1 operazioni.

In entrambi i casi il costo asintotico è 2 n2. Dunque: se x” è stata calcolata con k
iterazioni dal metodo di Gauss-Seidel, il costo asintotico del calcolo è 2 k n2. Il metodo
di Gauss-Seidel risulta più economico del metodo diretto che usa EGPP se k < n/3.

(Esercizio: verificare i costi per entrambe le alternative.)

Occorre studiare la rapidità di convergenza di un metodo iterativo.

(2.80) Esempio.

Siano H = diag(s1, s2) con |s2| < |s1| < 1 e c = 0. Per il Teorema di caratterizzazione dei 
metodi convergenti (vedi Teorema (2.66) della Lezione 22), il metodo iterativo definito da 
H e zero è convergente: per ogni g in R2 la successione x(k) generata converge a zero. 
Quanto rapidamente?

Sia:

g = [g1

g2]≠0.

Allora:

x(k) = Hk g = diag(s1
k, s2

k) g = [s1kg1

s2
kg2

]
e, utilizzando la norma uno:

∥ x(k) ∥1 = |s1
k g1| + |s2

k g2|
• Se g1 ≠ 0:.

∥ x(k) ∥1 = |s1|k |g1| (1 + |s2/s1|k |g2/g1|)
da cui:

‖x(k)‖1
|s1|

k
 →  |g1| ≠ 0

e:
∥ x(k) ∥1 tende a zero con la stessa rapidità di |s1|k

• Se g1 = 0, invece:

‖x(k)‖1
|s2|

k
 →  |g2| ≠ 0

e:
∥ x(k) ∥1 tende a zero con la stessa rapidità di |s2|k

dunque, essendo |s2| < |s1|, più rapidamente di |s1|k.
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(2.81) Teorema (sulla rapidità di convergenza).

Quanto accade nell'Esempio (2.80) si ritrova in generale.

Si consideri il metodo iterativo convergente definito da H ∈ Rn × n e c ∈ Rn . Detta x* la 
soluzione del sistema (I – H) x = c e detta x(k) la successione generata dal metodo a 
partire da g ∈ Rn , allora, indicato con ρ(H) il raggio spettrale di H:8

∥ x(k) - x* ∥ converge a zero almeno con la stessa rapidità di ρ(H)k

Inoltre, se il vettore iniziale g è scelto in modo aleatorio, la probabilità che la
successione converga a zero più rapidamente di ρ(H)k è nulla.

(2.82) Esempio.

In base a quanto ottenuto negli esempi (2.71) e (2.77) in cui ρ(HJ) = 1/3  e  ρ(HGS) = 1/9: 
scelto g ∈ R2 in modo aleatorio, la successione generata dal metodo di Gauss-Seidel 
converge a x* più rapidamente di quella generata dal metodo di Jacobi.

8 Vedere la Definizione (2.65) della Lezione 22.
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(2.83) Osservazione (criteri d'arresto).

Siano A ∈ Rn × n invertibile e b ∈ Rn non zero. Si utilizza il metodo iterativo convergente 
definito da H ∈ Rn × n e c ∈ Rn per approssimare la soluzione x* del sistema A x = b. Scelto 
g ∈ Rn, il metodo iterativo genera la successione x(k), convergente ad x*. Descriviamo due 
possibili criteri d'arresto.

(a) Assegnato E > 0 e posto r(k) = b – A x(k) (vettore residuo associato ad x(k)):

se ∥ r(k) ∥ / ∥ b∥  < E allora STOP

• Il criterio è calcolabile;
• Il criterio è efficace (infatti: se x(k) → x* allora x(k) - x* → 0 e quindi 

       r(k) = A ( x* - x(k) ) → 0);
• Quando il criterio è verificato si ha, interpretando x(k) come soluzione del sistema 

perturbato A x = b – r(k) ed utilizzando i risultati della teoria del 
condizionamento:

∥ x(k) – x* ∥ / ∥ x* ∥ ⩽ c(A) ∥ r(k) ∥ / ∥ b ∥ < c(A) E

Il criterio risulta dunque di tipo relativo. Si osservi che se il numero di 
condizionamento di A è molto grande, l’approssimazione restituita può non essere 
accurata quanto richiesto dall’utilizzatore.

(b) Assegnato E > 0:
se ∥ x(k) – x(k-1)∥  < E allora STOP

• Il criterio è calcolabile;
• Il criterio è efficace (infatti: se x(k) → x* allora x(k-1) - x* → 0 e quindi

x(k) – x(k-1) → 0);
• Quando il criterio è verificato: se ∥ H ∥ < 1 allora, posto F(H) = ∥ H ∥ / (1 - ∥ H ∥) 

si ha:1

∥ x(k) – x*∥ ⩽ F(H) ∥ x(k) – x(k-1)∥ < F(H) E

Il criterio risulta dunque di tipo assoluto. Si osservi che se ∥ H ∥ vale poco meno di 
uno allora F(H) è molto grande e l’approssimazione restituita può non essere 
accurata quanto richiesto dall’utilizzatore.

(2.84) Esercizio (per casa).

Scrivere una function Scilab, di intestazione

x = GaussSeidel(A,b,E)

che, dopo aver verificato che gli elementi sulla diagonale di A sono tutti diversi da zero, 
applica il metodo di Gauss-Seidel al sistema A x = b utilizzando come criterio d’arresto 

1 Dimostrazione omessa.
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quello esposto in (b) dell’Osservazione (2.83).

(3) INTERPOLAZIONE E MINIMI QUADRATI

(3.01) Problema.

Siano assegnate k+1 coppie di numeri reali (dette dati):

(x0,y0) , ... , (xk,yk)

con x0,...,xk distinti, e un sottospazio vettoriale F dello spazio vettoriale su R delle 
funzioni continue da I ⊂ R in R tale che:

dim F = m

• Il problema dell’interpolazione consiste nel determinare gli elementi g ∈ F tali 
che:

g(x0) = y0 , ... , g(xk) = yk

Ciascuno degli elementi g che verifica le condizioni si chiama un elemento di F che 
interpola i dati.

La condizione che x0,...,xk siano distinti è necessaria affinché il problema 
dell’interpolazione possa avere almeno una soluzione.

• Sia m < k+1. Il problema dei minimi quadrati consiste nel determinare gli elementi
g ∈ F punti di minimo assoluto della funzione SQ: F → R definita da:

SQ(f) = (f(x0) – y0)2 + ... + (f(xk) – yk)2

Ciascuno degli elementi g che verifica la condizione si chiama un elemento di F che 
meglio approssima i dati nel senso dei minimi quadrati.

Si osservi che in questo problema non si richiede la condizione che x0,...,xk siano 
distinti.

(3.02) Osservazione (interpretazione geometrica dei due problemi).

Si rappresentino in un piano cartesiano i k+1 punti:2

P0 ≡ (x0,y0), ... ,Pk ≡ (xk,yk)

Il problema dell’interpolazione consiste nel determinare gli elementi g ∈ F il cui grafico 
contiene tutti i k+1 punti (vedere la figura seguente).

2 Assegnato un piano cartesiano, la scrittura P ≡ (x,y) significa che la coppia di numeri 
reali (x,y) costituisce le coordinate del punto P del piano.
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Per ogni f ∈ F, siano:

Q0 ≡ (x0,f(x0)), ... ,Qk ≡ (xk,f(xk))

Il valore SQ(f) è la somma dei quadrati delle lunghezze dei segmenti P0Q0, ... ,PkQk. Questo 
valore può essere pensato come ‘distanza’ del grafico di f dai dati (vedere la figura 
seguente).

(3.03) Esempio (riformulazione del problema dell’interpolazione).

Si considerino i dati (k = 2): (x0,y0),(x1,y1),(x2,y2), con x0,x1,x2 distinti, e lo spazio 
vettoriale F = span{ f1(x),f2(x) } = { a1 f1(x) + a2 f2(x) con a1, a2 ∈ R }. Le condizioni di 
interpolazione:

g(x0) = y0 , g(x1) = y1 , g(x2) = y2

si riscrivono (utilizzando l’espressione di g(x) in termini dei generatori f1(x),f2(x)):

a1 f1(x0) + a2 f2(x0) = y0 , a1 f1(x1) + a2 f2(x1) = y1 , a1 f1(x2) + a2 f2(x2) = y2

Dunque:
g(x) = a1 f1(x) + a2 f2(x) interpola i dati

⇕

[a1

a2] è soluzione del sistema [f1(x0) f2(x0)

f1(x1) f2(x1)

f1(x2) f2(x2)
] z = [y0

y1

y2
]

Il sistema ha tante equazioni quanti sono i dati da interpolare, tante incognite quanti 
sono i generatori di F assegnati.

(3.04) Osservazione (interpolazione polinomiale).

Si considerino i dati: (x0,y0),...,(xk,yk), con x0,...,xk distinti, e lo spazio vettoriale F = 

y

x
 x0  x1  xk

 x0  x1  xk

x

grafico di f(x)

Q0

Q1

Qk

P0

P1

Pk

P0

P1

Pk

y

Grafico di g(x)
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Pk(R).3 Si osservi che in questo caso la dimensione di F è uguale al numero di dati. Il 
problema di determinare gli elementi di Pk(R) che interpolano i dati si chiama problema 
dell’interpolazione polinomiale. Per studiare il problema si introduce una base in Pk(R). La 
scelta della base influisce sulla forma del sistema da risolvere e sull’espressione degli 
eventuali elementi di F determinati. Vediamo tre possibili scelte.

(1) Si consideri la base:
1,x,x2,...,xk

detta base di Vandermonde di Pk(R). Il sistema che traduce le condizioni di 
interpolazione è:

[1 x0 … x0
k

⋮ ⋮ ⋮
1 xk … xk

k ] c= [y0

⋮
yk

]
la cui matrice si chiama matrice di Vandermonde. Se c* = (c0,...,ck)t è una soluzione 
del sistema, il polinomio:

pk(x) = c0 + c1 x + ⋅⋅⋅ + ck xk

interpola i dati e l’espressione ottenuta si chiama forma di Vandermonde del 
polinomio.

(2) Si consideri la base:

1,(x – x0),(x – x0)(x – x1),...,(x – x0)⋅⋅⋅(x – xk-1)

detta base di Newton di Pk(R). Si verifica facilmente che il sistema che traduce le 
condizioni di interpolazione, ad esempio nel caso k = 3, è:

[1 0 0 0
1 x1−x0 0 0
1 x2−x0 (x2−x0)(x2−x1) 0
1 x3−x0 (x3−x0)(x3−x1) (x3−x0)(x3−x1)(x3−x2)

] c= [y0

y1

y2

y3
]

La matrice del sistema è triangolare inferiore e invertibile (si ricordi che i numeri 
x0,...,xk sono distinti). La base di Newton è costruita appositamente affinché la 
matrice del sistema risulti triangolare inferiore. Se c* = (c0,...,ck)t è una 
soluzione del sistema, il polinomio:

pk(x) = c0 + c1 (x - x0) + ⋅⋅⋅ + ck (x - x0)⋅⋅⋅(x – xk-1)

interpola i dati e l’espressione ottenuta si chiama forma di Newton del polinomio.

(3) Si considerino i k+1 elementi di Pk(R) definiti da:

3 Si indica con Pk(R) lo spazio vettoriale su R dei polinomi a coefficienti reali di grado 
al più k.
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l0(x) =
(x–x1)⋅ ⋅ ⋅(x–xk)

(x0–x1)⋅ ⋅ ⋅(x0–xk)
,l1(x) =

(x–x0)(x−x2)⋅ ⋅ ⋅(x–xk)

(x1–x0)(x1−x2)⋅ ⋅ ⋅(x1–xk)
,…,lk(x) =

(x–x0)⋅ ⋅ ⋅(x–xk−1)

(xk–x0)⋅ ⋅ ⋅(xk–xk−1)

Questi elementi sono costruiti in modo tale che per i = 0,...,k si abbia: li(xi) = 1 
e li(xj) = 0 per j ≠ i. Inoltre, sono elementi linearmente indipendenti di Pk(R) 
(infatti: se A(x) = a0 l0(x) + ⋅⋅⋅ + ak lk(x) = 0 per ogni x ∈ R allora per i = 0,...,k 
si ha: A(xi) = ai = 0) e quindi, poiché dim Pk(R) = k+1, sono una base di Pk(R), detta 
base di Lagrange di Pk(R). 

Si verifica facilmente che il sistema che traduce le condizioni di interpolazione è:

c= [y0

⋮
yk

]
infatti la matrice del sistema è la matrice identità. La base di Lagrange è 
costruita appositamente affinché accada questo. Infine, il polinomio:

pk(x) = y0 l0(x) + ⋅⋅⋅ + yk lk(x)

interpola i dati e l’espressione ottenuta si chiama forma di Lagrange del polinomio.

(3.05) Teorema (esistenza ed unicità del polinomio interpolante)

Assegnati i dati: (x0,y0),...,(xk,yk), con x0,...,xk distinti, esiste un solo elemento p(x) ∈ 
Pk(R) che li interpola. Il polinomio p(x) si chiama il polinomio interpolante.

(Dimostrazione. Per quanto mostrato nel punto (3) dell’osservazione precedente, esiste una 
sola combinazione lineare degli elementi della base di Lagrange che interpola i dati. 
Dunque esiste un solo elemento di Pk(R) che interpola i dati.)

(3.06) Osservazione.

Per risolvere un problema di interpolazione polinomiale si sceglie una base di Pk(R), si 
determina la soluzione del sistema che traduce le condizioni di interpolazione e si 
individua la combinazione lineare degli elementi della base scelta che interpola i dati. A 
seconda della base scelta si ottiene una forma diversa dell’unico polinomio interpolante.

(3.07) Esercizio (per casa).

Si risolvano i seguenti problemi, nessuno dei quali è di interpolazione polinomiale 
(perché?).

(1) Assegnati i dati (-1,1), (0,0), (1,0), determinare gli elementi g ∈ P1(R) che 
interpolano i dati.

(2) Assegnati i dati (-1,0), (0,0), (1,0), determinare gli elementi g ∈ P1(R) che 
interpolano i dati.

(3) Assegnato il dato (0,0), determinare gli elementi g ∈ P1(R) che interpolano i dati.
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(3.08) Definizione (funzioni continue e lineari a tratti).

Assegnati numeri reali ordinati x0 < x1 < ⋅⋅⋅ < xk e posto, per j = 1,...,k: Ij = [xj-1,xj], una 
funzione f: [x0,xk] → R si dice continua e lineare a tratti su x0,...,xk se:

• f è continua;
• f è lineari a tratti su  x0,...,xk ovvero: detta pj(x) la restrizione di f a Ij si ha: 

pj ∈ P1(R). 

L’insieme delle funzioni continue e lineari a tratti su x0,...,xk si indica con 
C-LAT(x0,...,xk).

(3.09) Esempio.

La figura (1) rappresenta il grafico di una funzione continua e lineare a tratti su 0,1,2. 
La figura (2) rappresenta il grafico di una funzione lineare a tratti su 0,1,2 ma non 
continua. La figura (3) rappresenta il grafico di una funzione continua e lineari a tratti 
ma non su 0,1,2.

(3.09) Osservazione.1

(1) L’insieme C-LAT(x0,...,xk) è un sottospazio vettoriale dello spazio delle funzioni
    continue su [x0,xk], di dimensione k+1. I k+1 elementi s0(x),...,sk(x) di 
    C-LAT(x0,...,xk) definiti da:

si(xj) = 1 se i = j  ,  si(xj) = 0 se i ≠ j

    sono la ‘base canonica’ di C-LAT(x0,...,xk).

    Ad esempio, i grafici degli elementi della base canonica di C-LAT(0,1,2,3) sono:

(2) Assegnati numeri reali y0,...,yk, la combinazione lineare y0 s0(x) + ⋅⋅⋅ + yk sk(x) è
    l’unico elemento di C-LAT(x0,...,xk) che interpola i dati (x0,y0),...,(xk,yk).

1 La dimostrazione degli asserti di questa Osservazione è omessa.

  

 0      1     2  0      1     2  0       1      2
         (1)                   (2)                      (3)

x x x

 s0    s1     s2   s3

  0      1      2     3
x
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(3.10) Applicazioni.

(1) Grafici in Scilab.

    Sia f: [a,b] → R una funzione continua. La sequenza di istruzioni:

    > x = linspace(a,b,n)’;
    > plot(x,f(x));

    genera, in una finestra grafica, il grafico della spezzata di vertici i punti di  
    coordinate (x(1),f(x(1)),...,(x(n),f(x(n)). Questa spezzata è il grafico dell’unico 
    elemento σn(x) ∈ C-LAT(x(1),...,x(n)) che interpola i dati (x(1),f(x(1)),...,
    (x(n),f(x(n)). Il grafico di σn(x) è utilizzato come approssimazione di quello della 
    funzione f(x). Vedremo tra poco quanto sia accurata l’approssimazione.

(2) Formula dei trapezi.

    Sia f: [a,b] → R una funzione continua. Si vuole conoscere il valore (certamente 
    esistente per la continuità di f):

I=∫
a

b

f(x)dx

    Un procedimento che fornisce un’approssimazione di I è il seguente:
• scelto k, si suddivide l’intervallo [a,b] in k sottointervalli di uguale 

ampiezza:
b−a
k

individuati dai k+1 punti x0 = a,x1,...,xk-1,xk = b (detti nodi):
• si considera l’unico elemento σk(x) ∈ C-LAT(x0,...,xk) che interpola i dati 

(x0,f(x0)),...,(xk,f(xk));
• si approssima I con:

Jk =∫
a

b

σ k(x)dx

    
    Il valore Jk si calcola facilmente. Introdotta la base canonica s0(x),...,sk(x) di
    C-LAT(x0,...,xk) si ha:

Jk =∫
a

b

σ k(x)dx =∫
a

b

(f(x0)s0(x) + ⋯+ f(xk)sk(x))dx = f(x0)∫
a

b

s0(x)dx + ⋯+ f(xk)∫
a

b

sk(x)dx

    e quindi:

Jk = h [ f(x0)

2
+ f(x1) + ⋯+ f(xk−1) +

f(xk)

2 ]
    Quest’ultima espressione si chiama formula dei trapezi. Vedremo tra poco quanto sia 
    accurata l’approssimazione.
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(3.11) Teorema (errore nell’interpolazione polinomiale).

Assegnati numeri reali x0 < x1 < ⋅⋅⋅ < xk, e posto I = [x0,xk], siano f: I → R con derivata di 
ordine k+1 continua e pk ∈ Pk(R) il polinomio che interpola i dati (x0,f(x0)),...,(xk,f(xk)).
Allora, per ogni x ∈ I esiste θ ∈ I tale che:

f(x) − pk(x) =
f(k+1)(θ)
(k+1)!

(x−x0)⋯(x−xk)

Inoltre, posto:
Mj = maxx∈I|f

(j)(x)|

si ottiene facilmente la limitazione:

maxx∈I|f(x) − pk(x)| ⩽
Mk+1

(k+1)!
(mis I)k+1

Dimostrazione: omessa.

(3.12) Osservazione (approssimazione con elementi di C-LAT).

Siano f: [a,b] → R con derivata seconda continua e, per j = 0,...,k:

xj = a +
b−a
k

j

I punti x0,...,xk dividono l’intervallo [a,b] in k intervalli di uguale ampiezza.

Si consideri l’intervallo [x0,x1]. Detto p1 ∈ P1(R) il polinomio che interpola i dati 
(x0,f(x0)),(x1,f(x1)), utilizzando la limitazione mostrata nel teorema precedente, si ha:

maxx∈[x0,x1]
|f(x) − p(x)| ⩽

M2

2 ( b−ak )
2

Ripetendo il ragionamento si ottiene la stessa limitazione per ciascuno dei k 
sottointervalli di [a,b]. Perciò, detto σk(x) l’elemento di C-LAT(x0,...,xk) che interpola i 
dati (x0,f(x0)),...,(xk,f(xk)), si ha:

maxx∈[a ,b]|f(x) − σ k(x)| ⩽
M2

2 ( b−ak )
2

(3.13) Osservazione (accuratezza delle approssimazioni nelle applicazioni).

(1) Scelta come misura (assoluta) dell’errore commesso approssimando il grafico di f(x) con
    quello di σn(x) la quantità:

en(f) = maxx∈[a ,b]|f(x) − σ n(x)|

    il risultato dell’osservazione precedente mostra che: se f ha derivata seconda continua 
    allora:

lim
n →∞

en(f) = 0
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    e l’approssimazione può essere resa accurata quanto si vuole scegliendo n 
    opportunamente grande.

(2) Scelta come misura (assoluta) dell’errore commesso approssimando I con Jk la quantità
    |Jk – I|, il risultato dell’osservazione precedente mostra che: se f ha derivata seconda 
    continua allora:

|Jk − I| = |∫
a

b

(σ k(x)−f(x))dx| ⩽ ∫
a

b

|σ k(x)−f(x)|dx ⩽ ∫
a

b
M2

2 ( b−ak )
2

dx =
M2

2
(b−a)3

k2

    Anche in questo caso si ha dunque:
lim
k →∞

|Jk − I| = 0

    e l’approssimazione può essere resa accurata quanto si vuole scegliendo k 
    opportunamente grande.

(3.14) Esempio (riformulazione del problema dei minimi quadrati).

Si considerino i dati (k = 2): (x0,y0),(x1,y1),(x2,y2) e lo spazio vettoriale F = 
span{ f1(x),f2(x) } = { a1 f1(x) + a2 f2(x) con a1, a2 ∈ R }. Lo scarto quadratico SQ(f)
si riscrive, utilizzando l’espressione di f(x) in termini dei generatori f1(x),f2(x):

SQ(f) = (a1 f1(x0) + a2 f2(x0) – y0)2 + (a1 f1(x1) + a2 f2(x1) - y1)2 + (a1 f1(x2) + a2 f2(x2) - y2)2

Osservando che se v = (v1,...,vn)t ∈ Rn si ha (N2(v))2 = v1
2 + ⋅⋅⋅ + vn

2, l’ultima somma può 
essere riscritta come:2

‖ [a1f1(x0) + a2f2(x0) − y0

a1f1(x1) + a2f2(x1) − y1

a1f1(x2) + a2f2(x2) − y2
]‖

2

= ‖ [f1(x0) f2(x0)

f1(x1) f2(x1)

f1(x2) f2(x2)
] [a1

a2] − [y0

y1

y2
]‖

2

e quindi, posto:

A = [f1(x0) f2(x0)

f1(x1) f2(x1)

f1(x2) f2(x2)
] , x = [a1

a2] e b = [y0

y1

y2
]

si ha infine:
SQ(f) = ∥ A x – b ∥2

(3.15) Osservazione.

Il sistema A x = b ottenuto nell'esempio precedente è il sistema che traduce le condizioni 
di interpolazione f(x0) = y0 , f(x1) = y1 , f(x2) = y2. 

2 Per alleggerire la notazione, per ogni v ∈ Rn, in questa parte indicheremo con ∥ v ∥ la 
norma due di v.
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(3.16) Definizione (soluzione nel senso dei minimi quadrati di un sistema).

Siano A ∈ Rr × c con r > c, e b ∈ Rr. Un elemento x* ∈ Rc si chiama soluzione del sistema  
A x = b nel senso dei minimi quadrati se x* è punto di minimo assoluto della funzione
SQ: Rc → R definita da:

SQ(x) = ∥ A x – b ∥2

Si osservi che: se y ∈ Rc è una soluzione di A x = b allora y è anche una soluzione di
A x = b nel senso dei minimi quadrati (come mai?) ma, salvo casi particolari, una soluzione 
di A x = b nel senso dei minimi quadrati non è una soluzione di A x = b.

Vediamo come si determinano le soluzioni di A x = b nel senso dei minimi quadrati.

(3.17) Osservazione (scomposizione ortogonale di un vettore).

Siano A = (a1,...,ac) ∈ Rr × c con r > c, e b ∈ Rr. Detta b* la proiezione ortogonale1 di b su 
span{ a1,...,ac } = C(A)2, e posto b⊥ = b – b* si ottiene la scomposizione ortogonale:

b = b* + b⊥

Si osservi che:
(1) Poiché b* ∈ C(A), esiste y ∈ Rc tale che b* = A y;
(2) Per definizione di proiezione ortogonale, la colonna b⊥ = b – b* è ortogonale a tutti
    gli elementi di C(A).

(3.18) Osservazione.

Per determinare le soluzioni di A x = b nel senso dei minimi quadrati si osservi che, 
utilizzando la scomposizione ortogonale di b introdotta nell’osservazione precedente, per 
ogni x ∈ Rc si ha:

SQ(x) = ∥ A x – b ∥2 = ∥ A x – b* + b⊥ ∥2 = ∥ A x – A y + b⊥ ∥2 = ∥ A (x – y) + b⊥ ∥2

Poiché A (x – y) ∈ C(A) e b⊥ è ortogonale a tutti gli elementi di C(A), per il Teorema di 
Pitagora3 si ha:

∥ A (x – y) + b⊥ ∥2 = ∥ A (x – y) ∥2 + ∥ b⊥ ∥2

Allora:
• Per ogni x ∈ Rc si ha: SQ(x) = ∥ A (x – y) ∥2 + ∥ b⊥ ∥2 ⩾ ∥ b⊥ ∥2

1 La proiezione ortogonale di v ∈ Rn su un sottospazio W ⊂ Rn è l’unico elemento v* ∈ W 
tale che la differenza v – v* è ortogonale a tutti gli elementi di W.

2 C(A) si chiama anche spazio delle colonne di A e coincide con l’immagine 
dell’applicazione lineare da Rc in Rr definita da x → A x.

3 Siano a,b elementi di Rn, e sia <a,b> = bt a il prodotto scalare di a e b. Se a e b sono 
ortogonali (ovvero, se <a,b> = 0) allora si ha:

∥ a + b ∥2 = <a + b,a + b> = <a,a> + 2 <a,b> + <b,b> = <a,a> + <b,b> = ∥ a ∥2 + ∥ b ∥2
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• SQ(x) = ∥ b⊥ ∥2 ⇔ ∥ A (x – y) ∥2 = 0 ⇔ A (x – y) = 0, ovvero x – y ∈ ker A.4

Dunque, l’insieme SMQ(A,b) delle soluzioni di A x = b nel senso dei minimi quadrati è dato 
da:

SMQ(A,b) = y + ker A

(3.19) Osservazione (equazioni normali).

Per determinare tutte le colonne y ∈ Rc tali che b* = A y si osservi che, per definizione di 
proiezione ortogonale su C(A):

y ∈ Rc è tale che A y = b* ⇔ b - b* = b - A y è ortogonale a tutti gli elementi di C(A)

Ma: perché una colonna v ∈ Rr sia ortogonale a tutti gli elementi di C(A) è necessario e 
sufficiente che v sia ortogonale alle colonne di A (dimostrarlo!). Dunque: v ortogonale a 
tutti gli elementi di C(A) ⇔ <v,a1> = a1

t v = 0,...,<v,ac> = ac
t v = 0 ⇔ At v = 0. Allora:

y ∈ Rc è tale che A y = b*  ⇔  At (b - A y) = 0  ⇔  At A y = At b

Il sistema At A x = At b si chiama sistema delle equazioni normali associato al sistema A x = 
b. 

Si osservi che: ker A = ker At A (infatti: x ∈ ker A ⇒ A x = 0 ⇒ At (A x) = 0 ⇒ At A x = 0 ⇒ 
x ∈ ker At A; viceversa: x ∈ ker At A ⇒ At A x = 0 ⇒ xt (At A x) = 0 ⇒ (xt At)(A x) = 0 ⇒ (A x)t 

(A x) = 0 ⇒ ∥ A x ∥2 = 0 ⇒ A x = 0 ⇒ x ∈ ker A). Allora:

SMQ(A,b) = y + ker A = y + ker At A = { soluzioni del sistema delle equazioni normali}

Inoltre:

• La matrice At A ∈ Rc × c è simmetrica e semidefinita positiva (infatti, per ogni 
colonna x ≠ 0 di Rc si ha: xt (At A) x = (xt At)(A x) = (A x)t (A x) = ∥ A x ∥2 ⩾ 0) ed è 
definita positiva se e solo se le colonne di A sono linearmente indipendenti 
(dimostrarlo!).

• Le colonne di A sono linearmente indipendenti ⇔ ker A = ker At A = {0} ⇔ il sistema 
delle equazioni normali ha una sola soluzione ⇔ la matrice At A è invertibile.

• Le colonne di A sono linearmente dipendenti ⇔ dim ker A = dim ker At A > 0 ⇔ il 
sistema delle equazioni normali ha infinite soluzioni ⇔ la matrice At A non è 
invertibile.

4 Se A ∈ Rr × c, si indica con ker A il sottospazio vettoriale di Rc delle soluzioni del 
sistema omogeneo A z = 0.



Lezione 27 (ore 54,55) – 26 novembre 2025, 11:30 – 13:30 A13

(3.20) Esempi.

(1) Determinare le soluzioni nel senso dei minimi quadrati del sistema A x = b:

[111] x = [100]
e la proiezione ortogonale di b su C(A).

Soluzione: Il sistema delle equazioni normali è: 3 x = 1 e quindi l’unica soluzione nel 
senso dei minimi quadrati è: x* = 1/3. La proiezione ortogonale di b su C(A) è:

b* = 1/3 [111]
(2) Determinare le soluzioni nel senso dei minimi quadrati del sistema A x = b:

[1 2
1 2
1 2] x = [100]

e la proiezione ortogonale di b su C(A).

Soluzione: Il sistema delle equazioni normali è:

[3 6
6 12] x = [12]

e:

ker At A = span{ [ 2
−1] }

Posto:

y = [1/3
0 ]

si ottiene:

SMQ(A,b) = [1/3
0 ] + span{ [ 2

−1] } = { [1/3+2 λ
−λ ] , λ ∈ R }

In questo caso, l’insieme SMQ(A,b) ha infiniti elementi perché le colonne di A sono 
linearmente dipendenti.

La proiezione ortogonale di b su C(A) è:
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b* = 1/3 [111]
La proiezione è la stessa dell’esempio precedente perché b = b e C(A) = C(A).

(3.21) Esempio (minimi quadrati pesati).

Si considerino il sistema A x = b:

[1 −1
1 0
1 1] x = [011]

ed il sistema A x = b, ottenuto moltiplicando per due la prima e la terza equazione del 
sistema A x = b:

[2 −2
1 0
2 2] x = [012]

I due sistemi sono equivalenti ma: SMQ(A,b) ≠ SMQ(A,b). Infatti:

SMQ(A,b) = [2/3
1/2]  ,  SMQ(A,b) = [5/9

1/2]
Questo non deve sorprendere, infatti per i due sistemi si ha SQ(x) ≠ SQ(x):

SQ(x) = (x1 – x2)2 + (x1 – 1)2 + (x1  + x2 – 1)2

e:
SQ(x) = 4 (x1 – x2)2 + (x1 – 1)2 + 4 (x1  + x2 – 1)2

La funzione SQ si ottiene pesando gli addendi della funzione SQ con ‘pesi’ positivi.

(3.22) Esempio.

Si considerino i dati (-1,0), (0,1), (1,1). Determinare gli elementi di F = span{ 1,x } che 
meglio approssimano i dati nel senso dei minimi quadrati.

Si osservi che, scelto un piano cartesiano, ciascuno degli elementi di F ha per grafico una 
retta non verticale. Il problema si può quindi riformulare in: Determinare le rette che 
meglio approssimano i dati nel senso dei minimi quadrati.

Per quanto mostrato nell’Esempio (3.14) e nell’Osservazione (3.15) della Lezione 25, il 
problema si risolve determinando le soluzioni nel senso dei minimi quadrati del sistema 
(che traduce le condizioni di interpolazione):

[1 −1
1 0
1 1] x = [011]

Il sistema delle equazioni normali ha una sola soluzione (infatti le colonne...):
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x* = [2/3
1/2]

e l’unica retta che meglio approssima i dati nel senso dei minimi quadrati è il grafico 
dell’unico elemento di F = span{ 1,x } che meglio approssima i dati nel senso dei minimi 
quadrati:

p(x) =
2
3

+
1
2
x

(3.23) Esempio.

Si considerino i dati (1,0), (1/2,1), (1/3,2). Determinare gli elementi di 
F = span{ 1,1/x } che meglio approssimano i dati nel senso dei minimi quadrati.

Procedendo come nell’esempio precedente, il problema si risolve determinando le soluzioni 
nel senso dei minimi quadrati del sistema (che traduce le condizioni di interpolazione):

[1 1
1 2
1 3] x = [012]

Il sistema delle equazioni normali ha una sola soluzione:

x* = [−1
1]

e l’unico elemento di F che meglio approssima i dati nel senso dei minimi quadrati è:

f(x) =−1 +
1
x

(3.24) Osservazione.

Siano A ∈ Rr × c con r > c, b ∈ Rr e SMQ(A,b) l’insieme delle soluzioni di A x = b nel senso 
dei minimi quadrati. Si ha:1

esiste una sola colonna y* ∈ SMQ(A,b) di norma minima2

(3.25) Esempio.

Sia A x = b il sistema:

[1 1
1 1] x = [10]

Risulta:

SMQ(A,b) = [1/2
0 ] + span{ [−1

1] }

e, disegnando l’insieme SMQ(A,b) su un piano cartesiano, si verifica facilmente che 

1 Dimostrazione dell’asserto omessa.
2 Più formalmente: la funzione ∥ x ∥ ha un solo punto di minimo assoluto su SMQ(A,b).
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l’elemento di norma minima (ovvero quello più vicino all’origine) è:

y* = [1/4
1/4 ]

(3.26) Osservazione (matrice pseudoinversa).

Sia A ∈ Rr × c con r > c. Per ogni b ∈ Rr, sia SMQ(A,b) l’insieme delle soluzioni di A x = b 
nel senso dei minimi quadrati. 

La funzione F:  Rr → Rc definita da:

F(b) = l’elemento di SMQ(A,b) di norma minima

è un’applicazione lineare da Rr in Rc.3 Quindi esiste una matrice di dimensione c × r, che si 
indica con A+, tale che:

F(b) = A+ b

La matrice A+ si chiama matrice pseudoinversa di A.

Se le colonne di A sono linearmente indipendenti allora (si veda l’Osservazione (3.19) 
della Lezione 26) SMQ(A,b) ha un solo elemento, che è quello di norma minima, e dalle 
equazioni normali si ottiene, essendo At A invertibile:

F(b) = (At A)-1 At b

In questo caso si ha allora:
A+ = (At A)-1 At

Si osservi che se A ∈ Rn × n è una matrice invertibile, allora risulta A+ = A-1. Questo spiega 
perché A+ si chiami matrice pseudoinversa.

(3.27) Esempio.

Determinare la matrice pseudoinversa di:

A = [1 1
1 1
1 1]

Per definizione A+ ∈ R2 × 3 è l’unica matrice tale che: per ogni b ∈ Rr, A+ b = l’elemento di 
SMQ(A,b) di norma minima. Le tre colonne di A+ sono allora, dette e1, e2, e3 le colonne della 
base canonica di R3:

 F(e1) , F(e2) , F(e3)

Si ha:

SMQ(A,e1) = [1/3
0 ] + span{ [−1

1] }

e quindi, ragionando come nell’Esempio (3.25):

3 Dimostrazione omessa.
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F(e1) = [1/6
1/6]

Allo stesso modo si determinano:

F(e2) = F(e3) = [1/6
1/6]

Infine:

A+ = [1/6 1/6 1/6
1/6 1/6 1/6]

(3.28) Definizione (fattorizzazione QR caso non quadrato).

Sia A ∈ Rr × c con r > c. Una fattorizzazione QR di A è una coppia U,T tale che:
• U ∈ Rr × c è una matrice a colonne ortonormali
• T ∈ Rc × c è una matrice triangolare superiore

• U T = A

(3.29) Esempio (di calcolo di una fattorizzazione QR nel caso non quadrato, con GS).

Sia:

A = [1 0
1 1
1 1] ∈ R3 × 2

Per cercare una fattorizzazione QR di A possiamo utilizzare una ovvia variante della 
procedura GS. Dette a1 e a2 le colonne di A:

Passo uno.

Cerchiamo Ω = [ω1,ω2] ∈ R3 × 2 a colonne ortogonali e Θ ∈ R2 × 2 triangolare superiore con θkk = 
1 tali che Ω Θ = A. Se matrici siffatte esistono, riscrivendo l’ultima uguaglianza per 
colonne si ha:

ω1 = a1 = [111]    ,    ω1 θ1,2 + ω2 = a2 = [011]
La prima uguaglianza determina ω1. Dalla seconda segue che:

 (ω1 θ1,2) • ω1 + ω2 • ω1 = a2 • ω1 = [011] • [111] = 2

Poiché ω1 e ω2 sono ortogonali, si ha ω2 • ω1 = 0. Allora, essendo ω1 ≠ 0, si ha 
necessariamente:

θ1,2 = (a2 • ω1) / (ω1 • ω1) = 2/3
e quindi:

ω2 = a2 - ω1 θ1,2 = [−2/3
1/3
1/3]

Dunque:
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Ω = [1 −2/3
1 1/3
1 1/3]    e   Θ = [1 2/3

0 1 ]
Passo due.

La fattorizzazione di A trovata al passo precedente non è una fattorizzazione QR perché le 
colonne di Ω non hanno norma unitaria. Questo secondo passo determina, se possibile, una 
fattorizzazione QR normalizzando le colonne di Ω.

Sia: Δ = diag(∥ ω1∥,∥ ω2∥) = diag(sqrt(3),sqrt(2/3)). Si verifica facilmente che la coppia

U = Ω Δ-1 = [1/√3 − √2/3
1/√3 1/√6
1/√3 1/√6]  ,   T = Δ Θ = [√3 2/√3

0 √2/3]
è una fattorizzazione QR di A. Si osservi che per la matrice T, triangolare superiore, si 
ha:

Tk,k = ∥ ωk∥ > 0

(3.30) Osservazione (fattorizzazione QR e minimi quadrati).

Sia U,T una fattorizzazione QR della matrice A ∈ Rr × c con r > c. Si ha:

At A = (U T)t (U T) = (Tt Ut) (U T) = Tt (Ut U) T

Poiché la matrice U ∈ Rr × c ha colonne ortonormali, allora si ha Ut U = I ∈ Rc × c. Allora:

At A = Tt T
Inoltre:

At b = (U T)t b = Tt Ut b

Se la matrice T è invertibile, ovvero se le colonne di A sono linearmente indipendenti, 
allora anche Tt è invertibile e i sistemi

At A x = At b   e   T x = Ut b

sono equivalenti. I due sistemi, però, non hanno le stesse proprietà di condizionamento. 
Infatti si ha:4

c2(At A) = (c2(T))2

ovvero: il sistema At A x = At b ha proprietà di condizionamento peggiori di quelle del 
sistema T x = Ut b. Per determinare le soluzioni di A x = b nel senso dei minimi quadrati 
utilizzando un calcolatore si determina una fattorizzazione QR di A e si risolve il sistema 
T x = Ut b.

4 Dimostrazione omessa.
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(3.31) Scilab.

La funzione predefinita pinv di Scilab restituisce la matrice pseudoinversa di una matrice. 
Ad esempio (si veda l’Esempio (3.27) della Lezione 27):

--> A = [1,1;1,1;1,1]

 A = [3x2 double]

   1.   1.
   1.   1.
   1.   1.

--> pinv(A)

 ans = [2x3 double]

   0.1666667   0.1666667   0.1666667
   0.1666667   0.1666667   0.1666667

La funzione predefinita backslash (\) è utilizzata per risolvere un sistema di equazioni 
lineari. Precisamente, se A ∈ Rr × c è una matrice e b ∈ Rr è una colonna, dopo 
l’assegnamento:

x = A\b

si ha:1

• se   r = c  e  c1(A) ⩽ 1
10u

allora:
x è un’approssimazione della soluzione del sistema A x = b calcolata con un 
procedimento equivalente all’applicazione delle procedure EGPP, SA, SI;

• se   r = c  e  c1(A) >
1

10u
 oppure  r > c

allora:
x è un’approssimazione di un elemento di SMQ(A,b) – di solito non quello di norma 
minima - calcolato con un procedimento che utilizza una fattorizzazione QR di A.

Ad esempio (vedere l’Eesempio (3.25) della Lezione 27):

--> A = [1,1;1,1]

 A = [2x2 double]

   1.   1.
   1.   1.

1 Sia N una norma in Rn. In Scilab, quando A ∈ Rn × n è una matrice non invertibile, si pone: 
cN(A) = +∞.
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--> b = [1;0]

 b = [2x1 double]

   1.
   0.

--> x = A\b

 x = [2x1 double]

   0.5000000
   0.

--> y = pinv(A) * b

 y = [2x1 double]

   0.2500000
   0.2500000

Le funzione predefinita qr restituisce un’approssimazione di una fattorizzazione QR di una 
matrice, anche non quadrata. Precisamente, se A ∈ Rr × c con r > c, dopo l’assegnamento:

[Q,R] = qr(A)

la matrice Q ∈ Rr × r è un’approssimazione della matrice ortogonale calcolata con il metodo 
di Householder (Osservazione (2.21) della Lezione 17) applicato ad A e R ∈ Rr × c è una 
matrice con elementi nulli sotto la diagonale principale. Ad esempio:

--> A = [1,0;1,1;1,1]

 A = [3x2 double]

   1.   0.
   1.   1.
   1.   1.

--> [Q,R] = qr(A)

 Q = [3x3 double]

  -0.5773503   0.8164966  -8.756D-17
  -0.5773503  -0.4082483  -0.7071068
  -0.5773503  -0.4082483   0.7071068

 R = [3x2 double]

  -1.7320508  -1.1547005
   0.         -0.8164966
   0.          0.
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Per ottenere un’approssimazione di una fattorizzazione QR di A come definita nella 
Definizione (3.28) della Lezione 27 si può utilizzare la funzione qr come segue:

--> [U,T] = qr(A,'e')

 U = [3x2 double]

  -0.5773503   0.8164966
  -0.5773503  -0.4082483
  -0.5773503  -0.4082483

 T = [2x2 double]

  -1.7320508  -1.1547005
   0.         -0.8164966

I fattori U,T sono ottenuti dai fattori Q,R eliminando, rispettivamente, la terza colonna 
di Q e la terza riga di R. Infatti, se si esegue il prodotto Q R per colonne, si osserva 
che, dette q1,q2,q3 le colonne di Q e rij gli elementi di R, si ha:

Q R = (r11 q1 + 0 q2 + 0 q3 , r12 q1 + r22 q2 + 0 q3) = U T

(4) METODI NUMERICI PER EQUAZIONI DIFFERENZIALI ORDINARIE

(4.01) Esempio (oscillatore armonico smorzato).

I moti di un oscillatore armonico smorzato sono descritti dall'equazione differenziale:

(*)                             x”(t) + a x'(t) + b x(t) = 0

in cui l'incognita è la funzione a valori reali x(t). Questa è un'equazione differenziale 
del secondo ordine (lineare, a coefficienti costanti, omogenea). Una soluzione 
dell'equazione è una funzione y(t) a valori reali con derivata seconda che soddisfa 
l'uguaglianza y”(t) + a y'(t) + b y(t) = 0 per ogni t in R. L'equazione differenziale 
determina tutti i possibili moti dell'oscillatore (l'equazione (*) ha infinite soluzioni). 
Ciascuno dei moti è individuato dalle condizioni iniziali:

(CI)       x(t0) = x0    ,    x'(t0) = v0

Si chiama Problema di Cauchy quello di determinare le soluzioni dell'equazione 
differenziale che soddisfano le condizioni iniziali.

L'equazione differenziale del secondo ordine (*) è equivalente ad un sistema di due 
equazioni del primo ordine. L’equivalenza significa, in questo caso, che: se y(t) è 
soluzione dell'equazione (*) allora, posto:

u1(t) = y(t)    ,    u2(t) = y'(t)
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si ha:

u1'(t) = u2(t)    ,    u2'(t) = - a u2(t) – b u1(t)

dunque la colonna (u1(t), u2(t))t è soluzione del sistema

(**)                  x1'(t) = x2(t)    ,    x2'(t) = - a x2(t) – b x1(t)

Viceversa: se (y1(t), y2(t))t è una soluzione del sistema (**), allora, posto y(t) = y1(t) si 
ha: y'(t) = y1'(t) = y2(t) e y”(t) = y1”(t) = y2'(t) = - a y2(t) – b y1(t) ovvero:

y”(t) + a y'(t) + b y(t) = 0

cioè y(t) è soluzione dell'equazione (*). Inoltre, y(t) è soluzione del Problema di Cauchy:

x”(t) + a x'(t) + b x(t) = 0   ;   x(t0) = x0  ,  x'(t0) = v0

se e solo se (y(t), y'(t))t è soluzione del Problema di Cauchy:

x1'(t) = x2(t)  ,  x2'(t) = - a x2(t) – b x1(t)   ;   x1(t0) = x0  ,  x2(t0) = v0

(4.02) Osservazione.

Le procedure che descriveremo sono pensate per approssimare la soluzione del Problema di 
Cauchy:

(§)                       x'(t) = F( t,x(t) )    ,    x(t0) = x0

per t in un intervallo limitato [t0,tf]. L'incognita del problema è la funzione x(t) a 
valori in Rn; i dati sono: la funzione F definita in R x Rn a valori in Rn, gli istanti t0 e 
tf > t0 e la colonna x0 in Rn.

L'asserto precedente presuppone che per il problema (§) si abbia esistenza ed unicità della 
soluzione. Vedremo poi che anche per descrivere le procedure sarà necessario fare 
un’ipotesi ulteriore.

(4.03) Ipotesi (di esistenza ed unicità).

Per ogni t in R e x in Rn esiste una sola soluzione dell’equazione differenziale:

x'(t) = F( t,x(t) )

che verifica la condizione iniziale:
x(t) = x

Indicheremo tale soluzione con y(t; x,t).

(4.04) Definizione (metodo numerico).

Un metodo numerico per l'approssimazione della soluzione del Problema di Cauchy (§) su 
[t0,tf] è una procedura che costruisce, in base al valore di un parametro E controllato 
dall'utilizzatore, numeri reali t(0) = t0,...,t(N) in [t0,tf], colonne x(0) = x0,...,x(N) in 
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Rn e, per k = 0,...,N, suggerisce di utilizzare x(k) come approssimazione di y(t(k); x0,t0).

I numeri t(0),...,t(N) si chiamano istanti di integrazione e, per k = 0,...,N-1, il numero 
h(k) = t(k+1) – t(k) si chiama passo di integrazione all'istante t(k).

Una realizzazione in Scilab di un metodo numerico ha la struttura seguente:

function [T,X] = MetodoNumerico(x0,t0,tf,F,E)

k = 0; t(0) = t0; x(0) = x0;
while t(k) < tf,
   SCEGLI h(k) in base al valore di E;
   CALCOLA x(k+1);
   t(k+1) = t(k) + h(k);
   k = k+1;
end;

endfunction

Le variabili di uscita sono, rispettivamente, la riga T e la matrice X tali che:

T = (t(0),...,t(N))    ,    X = (x(0),...,x(N))

Un metodo numerico è specificato dalle procedure di scelta di h(k) e calcolo di x(k+1).
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(4.05) Definizione (errore totale).

Siano t(k) un istante di integrazione e x(k) la corrispondente approssimazione generati da 
un metodo numerico per l'approssimazione della soluzione del problema

(§)                x'(t) = F( t,x(t) )    ,    x(t0) = x0    ,    t ∈ [t0,tf]

La colonna:
et(k) = x(k) – y(t(k); x0,t0) ∈ Rn

si chiama errore totale all'istante t(k). La norma di et(k), che si indica con ET(k), è una 
misura di quanto il metodo sbaglia, all'istante t(k), nel seguire la soluzione del problema 
(§).

(4.06) Definizione (metodo convergente per E → 0).

Un metodo numerico per l'approssimazione della soluzione del problema (§) è convergente per 
E → 0 se: per ogni Δ > 0 esiste E* tale che se E < E* allora per gli istanti t(0) = 
t0,...,t(N) e le colonne x(0) = x0,...,x(N) determinati dal metodo si ha:

t(N) = tf      e      max { ET(0), ... ,ET(N) } < Δ

(4.07) Definizione (errore locale).

Siano t(k-1) e t(k) due istanti di integrazione consecutivi e x(k-1), x(k) le 
corrispondenti approssimazioni generati da un metodo numerico per l'approssimazione della 
soluzione del problema (§). La colonna:

el(k) = x(k) – y(t(k); x(k-1),t(k-1)) ∈ Rn

si chiama errore locale all'istante t(k). La norma di el(k), che si indica con EL(k), è una 
misura di quanto il metodo sbaglia, all'istante t(k), nel seguire la soluzione 
dell'equazione differenziale x'(t) = F( t,x(t) ) che all'istante t(k-1) passa per x(k-1).

(4.08) Osservazione (relazione tra errore locale e totale).

Si ha:

       et(k) = x(k) – y(t(k); x0,t0) = ( x(k) – y(t(k); x(k-1),t(k-1)) ) +

                                         + ( y(t(k); x(k-1),t(k-1)) – y(t(k); x0,t0) )
da cui:

et(k) = el(k) + ( y(t(k); x(k-1),t(k-1)) – y(t(k); x0,t0) )

Introducendo la notazione:

Δy(t”; s, t') = y(t”; y(t'; x0,t0) + s, t') – y(t”; y(t'; x0,t0), t')
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si riscrive, infine:
et(k) = el(k) + Δy(t(k); et(k-1), t(k-1))

La quantità Δy(t”; s, t') descrive come l'equazione differenziale tramanda all'istante t” 
lo scostamento, s, all'istante t', dalla soluzione y(t; x0,t0) del problema (§).

(4.A)  METODO TS(1) – EULERO ESPLICITO

(4.09) Ipotesi (regolarità delle soluzioni).

Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano 
derivata seconda continua.

La richiesta è certamente soddisfatta se tutte le derivate parziali prime della funzione
F( t,x ) esistono e sono funzioni continue di t ed x.

(Infatti: se y(t) è soluzione dell'equazione differenziale si ha: 

y”(t) = (y'(t))' = ( F( t,y(t) ))' = ∂
t
F( t,y(t) ) + ∂

x
F( t,y(t) ) · y'(t)

che risulta continua perché lo sono ∂
t
F( t,x ) , ∂

x
F( t,x ) , y(t) e y'(t).)

(4.10) Definizione (metodo TS(1) – Eulero esplicito).

Il metodo TS(1) (o metodo di Eulero esplicito) è definito dalle procedure seguenti.

• SCELTA di h(k). Dati E > 0 e λ > 0, per ogni k si pone:

d(k) = max { λ , || y”(t(k); x(k),t(k)) || }

e poi:

h(k) = min { √ 2Ed(k)
, tf – t(k) } 

• CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:

x(k+1) = x(k) + F( t(k),x(k) ) h(k)

Il nome del metodo è conseguenza del fatto che la funzione x(k) + F( t(k),x(k) ) h si 
ottiene troncando al termine di ordine uno la serie di Taylor di y(t(k) + h; x(k),t(k)) in 
h = 0.

(4.11) Osservazione (sulla scelta di h(k)).

Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, sia s la 
funzione da R in Rn definita da:
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s(h) = x(k) + F( t(k),x(k) ) h – y(t(k) + h)

Detto G il grafico di y(t), il valore s(h) rappresenta lo scostamento tra G e la retta 
tangente a G in (t(k),x(k)), misurato all'istante t(k) + h. Per h > 0 la quantità s(h) è 
l'errore locale all'istante t(k) + h.

Poiché y(t) ha derivata seconda continua, anche s(h) ha derivata seconda continua. Per la 
Formula di Taylor in h = 0 con resto di Lagrange, esiste una funzione z da R in Rn tale che:

s(h) = s(0) + s'(0) h + 
1
2
 s”(0) h

2
 + z(h) h

2     e    z(h) → 0 per h → 0

e quindi, essendo s(0) = x(k) – y(t(k)) = 0, s'(0) = F( t(k),x(k) ) - y'(t(k)) = 0 e
s”(0) = - y”(t(k)):

s(h) = - 
1
2
 y”(t(k)) h

2
 + z(h) h

2     con    z(h) → 0 per h → 0

Se y”(t(k)) non è zero allora:

• Per h piccolo: - 
1
2
 y”(t(k)) h

2  è una buona stima di  s(h)

(nel senso che l'errore relativo tende a zero per h → 0)

• Si ha:

|| - 
1
2
 y”(t(k)) h

2 || = E  ⇔   h = √      2E|| y”(t(k)) ||

La scelta di h(k) garantisce che, in ogni caso e per ogni λ > 0, si ha:

|| - 
1
2
 y”(t(k)) h(k)

2 || ⩽ E

Il parametro λ ha lo scopo di evitare che possa essere d(k) = 0 e garantisce, inoltre, 
che:

per ogni k: d(k) ⩾ λ  e quindi h(k) ⩽ √2Eλ
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(4.12) Teorema (convergenza del metodo TS(1)).

Siano t0 un numero reale, F una funzione definita in R x Rn a valori in Rn e x0 in Rn e si 
consideri il Problema di Cauchy:

(§)              x'(t) = F( t,x(t) )      ,      x(t0) = x0      ,      t ∈ [t0,tf]

Se tutte le derivate parziali prime di F(t,x) sono funzioni continue di t ed x e il 
Problema (§) ha una sola soluzione, allora per ogni λ > 0 il metodo TS(1) applicato al 
Problema (§) è convergente per E → 0 e:

• N tende a infinito come 1 / √E ;

• Per ogni k: ET(k) tende a zero come √E .

(4.13) Realizzazione in Scilab (TS_1_pv).

function [T, X, PASSO] = TS_1_pv(x0, t0, tf, F, G2, E, LAMBDA, HMIN)
//
// Integra numericamente, sull'intervallo [t0,tf], il Problema
// di Cauchy in R(n):
// 
// x' = F(t,x)
// x(t0) = x0
//
// con il metodo TS(1) - Eulero esplicito - a passo variabile.
//
// x0: condizione iniziale (colonna di n elementi)
// t0: istante iniziale (numero reale)
// tf: istante finale (numero reale)
// F: function che definisce l'equazione differenziale; F(t,x) deve
//    essere una colonna di n numeri reali
// G2: function che restituisce la derivata seconda in t della soluzione
//     dell'equazione differenziale che all'istante t assume valore x;
//     G2(t,x) deve essere una colonna di n numeri reali
// E: valore massimo della stima dell'errore locale (numero reale)
// LAMBDA: numero reale che stabilisce il valore massimo del passo
//         (OPZIONALE - valore predefinito: 1d-5)
// HMIN: valore minimo consentito del passo
//       (OPZIONALE - valore predefinito: (tf - t0) / 1d6)
//
// T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione
// X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni
// PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione
//
// Valore degli argomenti opzionali
//
if ~exists('LAMBDA','l') then LAMBDA = 1d-5; end;



Lezione 30 - 2

if ~exists('HMIN','l') then HMIN = (tf - t0) / 1d6; end;
//
// Inizializzazione delle variabili di uscita
//
T(1,1) = t0;
X(:,1) = x0;
PASSO = [];
//
// ciclo principale
//
while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf
  //
  // scelta del passo
  //
  Nd2x = norm(G2(T(1,$),X(:,$)));
  d = max(LAMBDA, Nd2x);
  PASSO(1,$+1) = min(sqrt(2*E/d), tf - T(1,$));
  //
  // calcolo approssimazione e nuovo istante di integrazione
  //
  X(:,$+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,$);
  T(1,$+1) = T(1,$) + PASSO(1,$);
  //
  // arresta la costruzione se il passo calcolato risulta troppo
  // piccolo e non ha raggiunto tf
  //
  if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;
  //
end;
//
// Verifica se l'integrazione ha raggiunto tf
//
if T(1,$) < tf then
   printf("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
end;
//
endfunction

(4.14) Esempio (svolto in classe il 4 dicembre).

Si consideri un pendolo realizzato da un punto pesante di massa m collegato da un filo 
inestensibile di lunghezza L ad un punto fisso. Supposto piano il moto del punto ed 
adottato l'angolo x tra la verticale discendente ed il filo, misurato in senso antiorario, 
come coordinata lagrangiana, l'equazione del moto risulta:

(ED)                            x”(t) = -
g
L
sen x(t)

Per approssimare nell'intervallo [t0,tf] = [0,3] s la soluzione del Problema di Cauchy che si 
ottiene considerando le condizioni iniziali:

(CI)                           x(0) = x0 = π/4 rad   ,    x'(0) = 0
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si utilizza, in Scilab, la procedura TS_1_pv. L'uso della procedura richiede:

• La determinazione di un sistema di due equazioni differenziali di ordine uno 
equivalente all'equazione (ED). Introdotte le variabili u1(t) = x(t), u2(t) = x'(t) 
si ottiene:

(ED')              u1'(t) = u2(t)     ,    u2'(t) = -
g
L
sen u1(t)

che si completa con le condizioni iniziali:

(CI')                     u1(0) = x0    ,    u2(0) = 0

• La scrittura della function che definisce il sistema (ED'):

function y = F(t,u)

   y = [                  u(2)  ;
         - (g/L) * sin( u(1) ) ];

endfunction

• La determinazione della funzione che, dati t ed u, restituisce il valore della 
derivata seconda, calcolata in t, della soluzione del sistema (ED') che passa per u 
all'istante t:

u”(t) = [ u2'(t)

−(g /L) u1'(t) cos(u1(t))] = [ −(g /L) sen (u1(t))

−(g /L) u2(t) cos(u1(t))]
e la scrittura della relativa function:

function y = G2(t,u)

   y = [        - (g/L) * sin( u(1) );
         - (g/L) * u(2) * cos( u(1) ) ];

endfunction

• L'assegnamento dell'istante finale tf (s):

tf = 3;

• L'assegnamento della colonna delle condizioni iniziali (CI'):

u0 = [x0;0];

• L'assegnamento del valore ai parametri:

g = 9.82; // m/s^2
L = 1; // m
m = 1; // kg
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• La scelta del valore massimo consentito per la stima dell'errore locale, E.

Per ottenere un valore di E adeguato, occorre un criterio per giudicare l’accuratezza 
dell’approssimazione ottenuta dalla procedura. Per il sistema fisico in esame 
possiamo procedere come segue.

(A) Considerato che durante il moto l’energia meccanica:

EN(x(t)) = mgL(1−cos x1(t)) +
1
2
mL2(x2(t))

2

    assume valore costante e pari al valore EN(t0) assunto all’istante t0, come    
    misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la  
    variazione relativa dell’energia durante il moto approssimato:

Var_EN =
max EN(u(t

k
)) − min EN(u(t

k
))

EN(u(t
0
))

(B) Considerato che il moto del pendolo è periodico e che si ha:

min x1(t) = - max x1(t)    ⇒    max x1(t) + min x1(t) = 0

    come misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la 
    variazione relativa dell’ampiezza dell’oscillazione durante il moto approssimato:

Var_A =
max u1(tk

) + min u1(tk
)

u1(t0
)

    Questa scelta è ragionevole se l'intervallo [t0,tf] include almeno una 
    oscillazione della funzione u1(tk).

(C) Si ottiene la tabella che segue:

E N Var_EN (%) Var_A (%)
10-3 267 35.89 6.3
10-5 2587 3.25 5.99 10-1

10-7 25779 0.32 5.97 10-2

    Quale sia un valore di E adeguato dipende da quello che l’utilizzatore vuole    
    ottenere. La tabelle suggerisce che al diminuire di E l’accuratezza 
    dell’approssimazione aumenta.

(4.15) Osservazione (variazione di N e ET con E).

Siano N e M, rispettivamente, il numero di istanti di integrazione e il massimo valore di 
ET(k) ottenuto utilizzando la procedura TS_1_pv con E = E e N' e M' i corrispondenti valori 
ottenuti con E = α E. Per quanto detto nel Teorema (4.12) ci si aspetta che:

N'/N ≈ 1/α1/2    e    M'/M ≈ α1/2
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Nella tabella finale dell’esempio precedente si ha α = 10-2, dunque ci si aspetta:

N'/N ≈ 10    e    M'/M ≈ 1/10

La relazione riguardante l’aumento del numero di istanti di integrazione è evidentemente 
verificata:

 2587/267 = 9.69    e    25779/2587 = 9.96

Non avendo possibilità di accedere all’errore totale, ci limitiamo a constatare che per la 
variazione relativa dell’energia si ha:

Var_EN'/Var_EN = 3.25/35.89 ≈ 0.90 10-1    e    0.32/3.25 ≈ 0.98 10-1

e per la variazione relativa dell’ampiezza:

Var_A'/Var_A = 5.99 10-1/6.3 ≈ 0.95 10-1    e    5.97 10-2/5.99 10-1 ≈ 0.99 10-1

(4.B)  METODO TS(2)

(4.16) Ipotesi (regolarità delle soluzioni).

Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano 
derivata terza continua.

La richiesta è certamente soddisfatta se tutte le derivate parziali seconde della funzione 
F(t,x) esistono e sono funzioni continue di t ed x.

(Infatti:
G
2
(t,x) = ∂

t
F( t,x ) + ∂

x
F( t,x ) ⋅ F( t,x )

ha derivate parziali prime continue e quindi:

G
3
(t,x) = ∂

t
G
2
( t,x ) + ∂

x
G
2
( t,x ) ⋅ F( t,x )

è continua. Allora, se y(t) è soluzione dell'equazione differenziale: 

y(3)(t) = ((y'(t))')' = ( ( F(t,y(t)) )' )' = ( G
2
( t,y(t) ) )' = G

3
( t,y(t) )

è continua perché lo sono G
3
( t,x ) ed y(t).)

(4.17) Definizione (metodo TS(2)).

Il metodo TS(2) è definito dalle procedure seguenti.

• SCELTA di h(k). Dati E > 0 e λ > 0, per ogni k si pone:



Lezione 30 - 6

d(k) = max { λ , ‖y(3)(t(k); x(k),t(k))‖ }
e poi:

h(k) = min {
3√ 6E
d(k)

, tf – t(k) } 

• CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:

x(k+1) = x(k) + F( t(k),x(k) ) h(k) + 
1
2
 G2( t(k),x(k) ) h(k)

2

Il nome del metodo è conseguenza del fatto che la funzione di h utilizzata per il calcolo 
di x(k+1) si ottiene troncando al termine di ordine due la serie di Taylor di y(t(k) + h; 
x(k),t(k)) in h = 0.

(4.18) Osservazione (sulla scelta di h(k)).

Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, per lo 
scostamento s(h) tra y(t(k) + h) e l'approssimazione calcolata dal metodo con un passo di 
lunghezza h a partire da ( t(k),x(k) ) si ha, utilizzando la Formula di Taylor in h = 0 con 
resto di Lagrange:

s(h) = - 
1
6
 y
(3)

(t(k)) h
3
 + z(h) h

3    con: z(h) → 0 per h → 0

Se y(3)(t(k)) non è zero allora:

• per h piccolo: - 
1
6
 y

(3)
(t(k)) h

3 è una buona stima di s(h)

• si ha:

‖ -
1
6
 y(3)(t(k)) h3 ‖ = E  ⇔   h = 3√ 6E

‖y(3)(t(k))‖

Il parametro λ garantisce che:

per ogni k: d(k) ⩾ λ   e quindi  h(k) ⩽ 
3√ 6E

λ

(4.19) Teorema (convergenza del metodo TS(2)).

Siano t0 e tf > t0 numeri reali, F una funzione definita in R x Rn a valori in Rn, x0 in Rn e 
si consideri il Problema di Cauchy:

(§)              x'(t) = F( t,x(t) )      ,      x(t0) = x0      ,      t ∈ [t0,tf]

Se tutte le derivate parziali seconde di F(t,x) sono funzioni continue di t ed x e il 
Problema (§) ha una sola soluzione, allora per ogni λ > 0 il metodo TS(2) applicato al 
Problema (§) è convergente per E → 0 e:

• N tende a infinito come 1 /
3√E ;
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• Per ogni k: ET(k) tende a zero come
3√E2 = E2/3

(4.20) Osservazione.

Si consideri il Problema di Cauchy (§). Per ogni E > 0, indichiamo con N1(E) e ET1(E) il 
numero di istanti di integrazione e l’errore totale massimo generati dal metodo TS(1) e con 
N2(E) e ET2(E) il numero di istanti di integrazione e l’errore totale massimo generati dal 
metodo TS(2). Per quanto detto nel Teorema (4.12) e nel Teorema (4.19), per E → 0 si ha:

• N1(E) / N2(E) → +∞ come 1 /
6√E , dunque N1(E) tende ad ∞ più rapidamente di N2(E)

• ET1(E) / ET2(E) → +∞ come 1 /
6√E , dunque ET2(E) tende a 0 più rapidamente di ET1(E)

Ci si aspetta allora che, con lo stesso valore di E: 

• TS(2) generi un errore totale massimo più piccolo di quello generato con TS(1)

• TS(2) raggiunga tf con un numero di passi inferiore rispetto a TS(1)
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(4.C) METODI RUNGE-KUTTA

(4.21) Esempio.

Nel metodo TS(2) è richiesta all'utilizzatore la determinazione e realizzazione delle 
funzioni:

G
2
(t,x)   per il calcolo di x(k+1)

e:
G
3
(t,x)   per la scelta di h(k)

In generale il compito è tanto più gravoso quanto più alto è l'ordine del metodo: nel 
metodo TS(p) l'utilizzatore deve determinare e realizzare le funzioni:

 G
2
(t,x),...,G

p
(t,x)   per il calcolo di x(k+1)

e:
G
p+1

(t,x)   per la scelta di h(k)

I metodi Runge-Kutta sono pensati per eliminare questo onere.

Per introdurre la struttura dei metodi, vediamo come si trasforma il calcolo di x(k+1) nel 
metodo TS(2) utilizzando una stima numerica del valore G

2
(t,x).

(4.22) Osservazione (stima numerica di G
2
)

Il valore G
2
(t(k),x(k)) = y”(t(k)) può essere stimato con le considerazioni seguenti:

(a) Per definizione:
y'(t(k) + τ) - y'(t(k))

τ
→ y”(t(k))   per   τ → 0

dunque:

per τ piccolo y'(t(k) + τ) - y'(t(k))
τ

è una buona approssimazione di y”(t(k))

(b) Poiché y(t) è la soluzione dell'equazione differenziale che vale x(k) all'istante 
t(k) si ha:

y'(t(k)) = F( t(k),y(t(k)) ) = F( t(k),x(k) )
e:

y'(t(k) + τ) = F( t(k) + τ , y(t(k) + τ) )

Quest'ultimo valore non è calcolabile perché, assegnato τ, la procedura non conosce 
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y(t(k) + τ). Allora:

si approssima y(t(k) + τ) con y(t(k)) + y'(t(k)) τ = x(k) + F( t(k),x(k) ) τ

Complessivamente:

     scelto τ piccolo, si stima G
2
(t(k),x(k)) = y”(t(k)) con

    
F( t(k) + τ  , x(k) + F( t(k),x(k) ) τ  ) - F( t(k),x(k) )

τ

Questa quantità, dato τ, è calcolabile senza usare G
2
.

La stima è ragionevole. Infatti, indicando con F(k) il valore F( t(k),x(k) ), si consideri 
la funzione di τ:

H(τ) = F( t(k) + τ , x(k) + F(k) τ )

Poiché si suppone che F(t,x) abbia derivate parziali prime continue, anche H ha derivata 
prima continua. Allora:

H(τ) = H(0) + H'(0) τ + z(τ) τ   con z(τ) → 0 per τ → 0

Ma: H(0) = F(k) e

H'(0) = ∂
t
F( t(k),x(k) ) + ∂

x
F( t(k),x(k) ) ⋅ F( t(k),x(k) ) = G

2
( t(k),x(k) ) = y”(t(k))

dunque:
H(τ) = F(k) + y”(t(k)) τ + z(τ) τ

e:
 H( τ) - F(k)

τ
 - y”(t(k)) = z(τ) → 0 per τ → 0

(4.23) Osservazione (uso della stima numerica).

In TS(2):

x(k+1) = x(k) + F( t(k),x(k) ) h(k) + 
1
2
 G

2
( t(k),x(k) ) h(k)

2

Scegliendo τ = h(k) nella stima dell'Osservazione (4.22) si ottiene:

G
2
( t(k),x(k) ) = 

F( t(k) + h(k) , x(k) + F( t(k),x(k) ) h(k) ) - F( t(k),x(k) )
h(k)

da cui (posto F(k) = F( t(k),x(k) )):

x(k+1) = x(k) + F(k) h(k) + 
1
2
 [ F( t(k) + h(k) , x(k) + F(k) h(k) ) - F(k) ] h(k)

       = x(k) + 
1
2
 [ F(k) + F( t(k) + h(k) , x(k) + F(k) h(k) ) ] h(k)
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Questa procedura di calcolo di x(k+1) può essere riscritta, in modo più semplicemente 
generalizzabile, come segue: il valore x(k+1) si ottiene, dopo aver scelto h(k), ponendo:

• ST1 = F( t(k),x(k) )
• ST2 = F( t(k) + h(k) , x(k) + ST1 h(k) )

e poi

x(k+1) = x(k) +
1
2

(ST1 + ST2) h(k)

(4.24) Definizione (metodi RK a due e tre stadi).

Si chiamano metodi Runge-Kutta (RK) a due stadi quelli nei quali, scelti opportunamente 
numeri reali c2, a21, b1 e b2, il valore x(k+1) si ottiene, dopo aver scelto h(k), ponendo:

• ST1 = F( t(k),x(k) )
• ST2 = F( t(k) + c2 h(k) , x(k) + a21 ST1 h(k) )

e poi

• x(k+1) = x(k) + (b1 ST1 + b2 ST2) h(k)

Si chiamano metodi Runge-Kutta (RK) a tre stadi quelli nei quali, scelti opportunamente 
numeri reali c2, c3, a21, a31, a32, b1, b2 e b3, il valore x(k+1) si ottiene, dopo aver scelto 
h(k), ponendo:

• ST1 = F( t(k),x(k) )
• ST2 = F( t(k) + c2 h(k) , x(k) + a21 ST1 h(k) )
• ST3 = F( t(k) + c3 h(k) , x(k) + [ a31 ST1 + a32 ST2 ] h(k) )

e poi

• x(k+1) = x(k) + (b1 ST1 + b2 ST2 + b3 ST3) h(k)

(4.25) Definizione (ordine di un metodo per h → 0)

Sia s(h) la funzione scostamento per il metodo in esame. Il numero intero p si dice ordine 
del metodo per h → 0 se:

s(m)(0) = 0    per m = 0,...,p    e    s(p+1)(0) ≠ 0

ovvero se il primo termine dello sviluppo di Taylor di s(h) per h = 0 è quello di ordine 
p+1:

s(h) = 
1

(p+1)!
 s(p+1)(0) hp+1 + ...

(4.26) Osservazione (determinazione dei parametri in un metodo Runge-Kutta).

In un metodo Runge-Kutta a più stadi i valori dei parametri ci, aij, bi sono determinati (non 
univocamente) dalla condizione che: per ogni funzione F che definisce il Problema di 



Lezione 32 - 4

Cauchy, l’ordine del metodo per h → 0, sia il più elevato possibile.

(4.27) Esempio.

Si consideri il metodo Runge-Kutta a due stadi. Per ogni k, posto y(t) = y(t;x(k),t(k)), si 
ha:

s(h) = x(k) + [b1 ST1 + b2 ST2(h)] h – y(t(k) + h)
Allora:

s(1)(h) = b1 ST1 + b2 ST2'(h) h + b2 ST2(h) – F[t(k) + h,y(t(k) + h)]

s(2)(h) = b2 ST2"(h) h + 2 b2 ST2'(h) - ∂t F[t(k) + h,y(t(k) + h)] - 

                   - F[t(k) + h,y(t(k) + h)] · ∂t F[t(k) + h,y(t(k) + h)]

da cui, essendo ST2(0) = ST1 = F[t(k),x(k)]:

s(0)(0) = s(0) = x(k) – y(t(k)) = 0

s(1)(0) = (b1 + b2 - 1) F[t(k),x(k)]

s(2)(0) = 2 b2 ST2'(0) - ∂t F[t(k),x(k)] - F[t(k),x(k)] · ∂t F[t(k),x(k)]

Poi, posto F[t(k) + c2 h , x(k) + a21 ST1 h] = Fk(h) e quindi ST1 = F[t(k),x(k)] = Fk(0):

ST2'(h) = c2 ∂t Fk(h) + a21 Fk(0) ∂x Fk(h)

da cui:

s(2)(0) = (2 b2 c2 - 1) ∂t Fk(0) + (2 b2 a21 - 1) Fk(0) ∂x Fk(0)]

Infine:

s(1)(0) = 0 per ogni F    ⇔     b1 + b2 – 1 = 0
s(2)(0) = 0 per ogni F    ⇔     2 b2 c2 – 1 = 0  e   2 b2 a21 – 1 = 0

e il metodo risulta di ordine almeno due per h → 0 se e solo se:

b1 + b2 = 1   ,    2 b2 c2 = 1   ,    2 b2 a21 = 1

Ad esempio:
b1 = b2 = 1/2  ,  c2 = a21 = 1   (metodo di Heun)1

b1 = 0  ,  b2 = 1  ,  c2 = a21 = 1/2   (metodo di Eulero modificato o del punto medio)

(4.28) Osservazione.

Per un metodo di ordine p si ha:2

• N tende a infinito come 1 /
p+1√E ;

• Per ogni k: ET(k) tende a zero come
p+1√Ep  = E

p
p+1

1 É il metodo dell’Esempio (4.23), detto anche ‘metodo di Eulero migliorato’.
2 Dimostrazione omessa.
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(4.29) Osservazione.

La Definizione (4.24) si estende a metodi con un numero qualsiasi di stadi. Inoltre: 
l’ordine massimo di un metodo ad uno stadio è uno (esiste un solo metodo ad uno stadio di 
ordine uno: il metodo TS(1)), di un metodo a due stadi è due e di un metodo a tre stadi è 
tre. In generale, l’ordine massimo di un metodo è minore o uguale al numero di stadi.
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(4.30) Osservazione (scelta di h(k) nei metodi Runge-Kutta).

Coerentemente con l'intento di eliminare l'onere della determinazione e realizzazione delle 
funzioni G

j
(t,x), la scelta di h(k) nei metodi RK avviene, usualmente, come segue.

Siano: RK il metodo di Runge-Kutta, di ordine p per h → 0, scelto per il calcolo di x(k+1) 
e RK' un altro metodo di Runge-Kutta, di ordine p' = p+1. Allora:

• SCELTA di h(k). Dati E > 0 e λ > 0, per ogni k si sceglie τ piccolo, si calcolano:

(1) XX  = un passo di RK  a partire da (x(k),t(k)), di lunghezza τ

(2) XX' = un passo di RK' a partire da (x(k),t(k)), di lunghezza τ

si pone:
d(k) = max { λ , ∥ XX – XX' ∥ }

e poi:

h(k) = min { p+1√ E
d(k)

 τ , tf – t(k) } 

Questa procedura di scelta si spiega considerando che:

(a) Il metodo RK ha ordine p per h → 0 dunque, posto C = 
s(p+1)(0)
(p+1)!

:

si stima s(h) con C hp+1

(b) Poiché:

   XX – y(t(k) + τ) =
             = C τ p+1 + z(τ) τ p+1 ,  con z(τ) → 0 per τ → 0  (RK  ha ordine p)

   XX' – y(t(k) + τ) =
             = C' τ p+2 + w(τ)τ p+2 ,  con w(τ) → 0 per τ → 0  (RK' ha ordine p+1)
allora:

 XX - XX'

τp+1
 = C + [ z( τ) - (C' + w( τ)) τ  ]  → C   per τ → 0

e:

scelto τ piccolo, si stima C con  XX - XX'

τp+1

(c) Complessivamente:

scelto τ piccolo, si stima s(h) con 
 XX - XX'

τp+1
 hp+1

dunque:
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‖ XX - XX'τp+1
 hp+1‖ = E    ⇔    h = p+1√ E

‖ XX - XX' ‖
 τ

(4.31) Realizzazione in Scilab (RK12_pv).

Come esempio di realizzazione, consideriamo il metodo RK che utilizza Eulero esplicito, di 
ordine 1 per h → 0, per il calcolo di x(k+1) e che sceglie h(k) affiancandolo con il metodo 
dell'Osservazione (4.23), metodo di Heun di ordine 2 per h → 0. Ne risulta un metodo di 
ordine 1 per h → 0 e quindi convergente di ordine 1/2 per E → 0.

01  function [T, X, PASSO] = RK12_pv(x0, t0, tf, F, E, LAMBDA, HMIN, TAU)
02  //
03  // Integra numericamente, sull'intervallo [t0,tf], il Problema
04  // di Cauchy in R(n):
05  //
06  // x' = F(t,x)
07  // x(t0) = x0
08  //
09  // con il metodo di Eulero esplicito (RK di ordine 1) - a passo
10  // variabile - affiancato, per la scelta del passo, dal metodo
11  // RK di ordine 2 definito da c(2) = 1, a(21) = 1 e b(1) = b(2) = 1/2.
12  //
13  // x0: condizione iniziale (colonna di n elementi)
14  // t0: istante iniziale (numero reale)
15  // tf: istante finale (numero reale)
16  // F: function che definisce l'equazione differenziale - F(t,x) deve
17  //    essere una colonna di n numeri reali
18  // E: valore massimo della stima dell'errore locale (numero reale)
19  // LAMBDA: numero reale che stabilisce il valore massimo del passo
20  //         (OPZIONALE - valore predefinito: 1d-5)
21  // HMIN: valore minimo consentito del passo
22  //       (OPZIONALE - valore predefinito: (tf - t0) / 1d6)
23  // TAU: valore del passo per il calcolo delle stime utilizzate
24  //      nella scelta di h(k) (OPZIONALE - valore predefinito: (tf - t0) / 1d3)
25  //
26  // T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione
27  // X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni
28  // PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione
29  //
30  // Valore degli argomenti opzionali
31  //
32  if ~exists('LAMBDA','l') then LAMBDA = 1d-5; end;
33  if ~exists('HMIN','l') then HMIN = (tf - t0) / 1d6; end;
34  if ~exists('TAU','l') then TAU = (tf - t0) / 1d3; end;
35  //
36  // Inizializzazione delle variabili di uscita
37  //
38  T(1,1) = t0;
39  X(:,1) = x0;
40  PASSO = [];
41  //
42  // ciclo principale
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43  //
44  while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf
45    //
46    // scelta del passo
47    //
48    // XX1 = X(:,$) + F(T(1,$),X(:,$)) * TAU;
49    ST1 = F(T(1,$),X(:,$));
50    ST2 = F( T(1,$) + TAU,X(:,$) + ST1 * TAU );
51    // XX2 = X(:,$) + ( (ST1 + ST2)/2 ) * TAU;
52    //
53    //     XX1 - XX2 = (ST1 - ST2)/2 * TAU
54    //
55    d = max(LAMBDA, norm( ((ST1 - ST2)/2) * TAU ));
56    PASSO(1,$+1) = min(sqrt(E/d) * TAU, tf - T(1,$));
57    //
58    // calcolo approssimazione e nuovo istante di integrazione
59    //
60    X(:,$+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,$);
61    T(1,$+1) = T(1,$) + PASSO(1,$);
62    //
63    // arresta la costruzione se il passo calcolato risulta troppo
64    // piccolo e non ha raggiunto tf
65    //
66    if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;
67    //
68  end;
69  //
70  // Verifica se l'integrazione ha raggiunto tf
71  //
72  if T(1,$) < tf then
73     printf("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
74  end;
75  //
76  endfunction
77  //
78  // Esempio per assegnare valori ai parametri opzionali:
79  //
80  //    [T,X,PASSO] = RK12_pv(x0,t0,tf,F,G,E,HMIN = y);
81  //
82  //         => LAMBDA = valore predefinito, HMIN = y, TAU = valore predefinito
83  //

Si osservi che:

• Nella scelta del passo la differenza XX1 – XX2 può essere determinata senza 
calcolare XX1 ed XX2 (righe 48-55). Risulta infatti:

XX1 - XX2 = 
ST1 - ST2

2
 TAU

• Per la scelta del passo si è utilizzato lo stesso valore di τ ad ogni iterazione.
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Il file che contiene la procedura, insieme ad un esempio di applicazione all’equazione del 
pendolo (la stessa dell’Esempio (4.14) della Lezione 30), si può trovare nella pagina web 
del corso, sezione “altro materiale didattico”.
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In questa lezione svolgiamo alcuni esercizi.

Esercizio 1

Sia:

F(x) = [ x1 - x2 - 1

x1
2 + x2

2 - 1] : R2 → R2

(1) Determinare graficamente gli zeri di F;
(2) Posto G(x) = x – F(x), verificare che gli zeri di F sono tutti e soli i punti uniti 

di G;
(3) Decidere se il metodo ad un punto definito da G sia utilizzabile per approssimare 

gli zeri di F;

(4) Dato  x(0) = [01] , determinare l’elemento x(1) ottenuto utilizzando un passo del 

metodo di Newton applicato ad F;
(5) Decidere se il metodo di Newton applicato ad F sia utilizzabile per approssimare gli 

zeri di F.

Soluzione.

(1) Posto:
F1(x) = x1 – x2 – 1    e    F2(x) = x1

2 + x2
2 – 1

l’equazione F(x) = 0 è equivalente al sistema:

F1(x) = 0    e    F2(x) = 0

L’insieme degli zeri di F1 è la retta di equazione x2 = x1 – 1; l’insieme degli zeri 
di F2 è la circonferenza di equazione x1

2 + x2
2 = 1, di centro l’origine e raggio 1. 

Rappresentando graficamente i due insiemi in un piano cartesiano si determinano i due 
zeri di F:

α1 = [10]     e    α2 = [ 0
−1]

(2) L’equazione x = G(x) si riscrive: x = x + F(x), e quest’ultima è equivalente 
all’equazione F(x) = 0. Dunque Le equazioni x = G(x) e F(x) = 0 sono equivalenti 
ossia hanno le stesse soluzioni. Le soluzioni della prima sono i punti uniti di G, 
quelle della seconda sono gli zeri di F.

(3) Per quanto detto nella Lezione 14, il metodo definito da G è utilizzabile per 
approssimare il punto unito αk se e solo se il raggio spettrale1 della matrice 
jacobiana di G calcolata in αk, JG(αk), è minore di 1. La matrice jacobiana di G è:

1 Si veda la Definizione (2.65) nella Lezione 22.



Lezione 34 - 2

JG(x) = [ 2 −1
2x1 2x2+1]

Per α1 si ha:

JG(α1) = [2 −1
2 1]

Il polinomio caratteristico è:

det(JG(α1) – λI) = (2 – λ)(1 – λ) + 2 = λ2 – 3λ + 4

e gli autovalori sono:

λ1 =
3 + i√7

2
    e    λ2 =

3 - i√7
2

Allora: ρ(JG(α1)) > 1 e il metodo definito da G non è utilizzabile per approssimare  
α1.

Per α2 si ha:

JG(α1) = [2 −1
0 −1]

Gli autovalori sono:
λ1 = 2    e    λ2 = -1

Di nuovo: ρ(JG(α2)) > 1 e il metodo definito da G non è utilizzabile neppure per 
approssimare α2.

(4) Il metodo di Newton applicato ad F è il metodo ad un punto definito dalla funzione:

N(x) = x – JF(x)-1 F(x) : R2 → R2

Si ha:

JF(x) = [ 1 −1
2x1 2x2]     e    JF(x(0)) = [1 −1

0 2]
La matrice JF(x(0)) è invertibile, dunque x(1) è definito e si ha:

x(1) = N(x(0))    ovvero    x(1) = x(0) – JF(x(0))-1 F(x(0))

Detta v la soluzione del sistema JF(x(0)) z = F(x(0)), si riscrive:

x(1) = x(0) – v

Si ha:

v = [−2
0]     e infine:    x(1) = [21]

(5) Per quanto detto nell’Osservazione (1.90) della Lezione 14, condizione sufficiente 
per l’utilizzabilità del metodo di Newton per approssimare lo zero αk di F è che: F 
abbia derivare (parziali) seconde continue in un intorno di αk e JF(αk) sia 
invertibile. Nel caso in esame le funzioni F1 ed F2 hanno derivate parziali di ogni 
ordine su R2 e sia JF(α1) che JF(α2) sono invertibili. Il metodo di Newton risulta 
quindi utilizzabile per approssimare entrambi gli zeri di F.
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Esercizio 2

Siano:

A = [4 1 1
1 4

2
1 4

]   e  b = [5105]
(1) Decidere se la matrice A è a predominanza diagonale forte per righe;
(2) Determinare la matrice HJ e la colonna cJ che definiscono il metodo di Jacobi 

applicato al sistema A x = b;
(3) Determinare lo spettro ed il raggio spettrale di HJ;
(4) Determinare ∥ HJ ∥∞;
(5) Decidere se il metodo di Jacobi è convergente;

(6) Dato x(0) = [1001] , determinare l’elemento x(1) ottenuto utilizzando un passo del 

metodo di Jacobi.

Soluzione.

(1) Per tutte le righe di A il valore assoluto dell’elemento sulla diagonale è maggiore 
della somma dei valori assoluti dei restanti elementi della riga. Quindi la matrice 
è a predominanza diagonale forte per righe.

(2) Posto: A = D + M con:

D = diag(A) = [4 4
2

4
]     e    M = A – D = [0 1 1

1 0
0

1 0
]

si ha:

HJ = - D-1 M = - [ 0 1/4 1/4
1/4 0

0
1/4 0

]     e    cJ = D-1 b = [1/4
0
0
1/4 ]

(3) Il polinomio caratteristico di HJ è:

det(HJ – λI) = λ2 (λ2 – 1/8)

dunque:
σ(HJ) = { 0,0,1/√8,-1/√8 }    e    ρ(HJ) = 1/√8

(4) La norma infinito di HJ è, usando la formula di calcolo riportata nell’Osservazione 
(2.32) della Lezione 18:

∥ HJ ∥∞ = max{ 1/2,1/4,0,1/4 } = 1/2

(5) Per decidere se in questo caso il metodo di Jacobi è convergente si può usare il 
Teorema di caratterizzazione dei metodi convergenti (Teorema (2.66) della Lezione 
22). Dal risultato del punto (3) si ha: ρ(HJ) = 1/√8 < 1, dunque il metodo è 
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convergente.

Allo stesso risultato si poteva arrivare utilizzando il Teorema (2.72) della Lezione 
23: la predominanza diagonale forte per righe di A (stabilita al punto (1)) è una 
condizione sufficiente per la convergenza del metodo di Jacobi. Alternativamente, per 
il Teorema (2.73) della Lezione 23, ∥ HJ ∥∞ < 1 è una condizione sufficiente per avere 
ρ(HJ) < 1 e quindi la convergenza del metodo di Jacobi. Il calcolo di ρ(HJ), che è in 
generale difficile da fare, non solo consente di decidere con certezza della 
convergenza del metodo (le due condizioni richiamate sopra sono solo sufficienti: se 
non sono verificate...) ma, nel caso in cui il metodo risulti convergente, fornisce 
anche informazioni sulla rapidità di convergenza (Teorema (2.81) della Lezione 23).

(6) Si ha:

x(1) = HJ x(0) + cJ = [ 0
−1/4
0
0 ]

Esercizio 3

Si consideri l’equazione differenziale:

y”(t) = y(t) + (y'(t))2 + sen t

(1) Determinare un sistema di equazioni di ordine uno equivalente all’equazione data;
(2) Determinare la funzione G2(t,x) che restituisce il valore della derivata seconda 

della soluzione del sistema che all’istante t passa per x;
(3) Dati x(k), t(k) ed h(k), determinare x(k+1) con il metodo TS(1).

Soluzione.

(1) Posto x1(t) = y(t) e x2(t) = y'(t), un sistema di equazioni di ordine uno equivalente 
all’equazione data è:

x1'(t) = x2(t)    ,    x2'(t) = x1(t) + (x2(t))2 + sen t    (#)

(2) Se x(t) = [x1(t)x2(t)] è una soluzione del sistema (#) allora:

x1”(t) = x2'(t) =  x1(t) + (x2(t))2 + sen t
e:

x2”(t) = x1'(t) + 2 x2(t) x2'(t) + cos t = 

    = x2(t) + 2 x2(t) [x1(t) + (x2(t))2 + sen t] + cos t

quindi:

G2(t,x) = [ x1 + x2
2 + sen t

x2  + 2 x1 x2 + 2 x2
3  + 2 x2 sen t + cos t]

(3) L’approssimazione x(k+1) con TS(1) è:
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x(k+1) = x(k) + F(t(k),x(k)) h(k) = [ x1(k) + x2(k) h(k)

x2(k) + [x1(k) + (x2(k))
2 + sen t(k)] h(k)]

Esercizio 4

Per approssimare il grafico della funzione:

f(x) = sen 3x

sull’intervallo [a,b] = [0,5], in Scilab si utilizzano i seguenti comandi:

> x = linspace(0,5,n + 1)’;
> plot(x,f(x));

L’effetto è quello di disegnare, in un piano cartesiano, il grafico della funzione σn(x) 
continua e lineare a tratti sugli intervalli determinati dai punti x(1),...,x(n + 1) che 
interpola i valori di f in x(1),...,x(n + 1).

Determinare un valore di n in modo che:

en(f) = max
x∈[0,5]

|σn (x) - f(x)| ⩽ 10-2

Soluzione.

La funzione f ha derivata seconda continua: f”(x) = - 9 sen 3x. Per ogni x ∈ [x(k),x(k+1)] 
si ha allora (usando il Teorema (3.11) della Lezione 25):

|σn(x) – f(x)| ⩽
M2
2

|x - x(k)||x - x(k+1)|   con  M2 = maxx∈[0,5]
|f"(x)| = 9

e quindi:

max
x∈[x(k),x(k+1)]

|σn (x) - f(x)| ⩽
M2
2

max
x∈[x(k),x(k+1)]

|x - x(k)||x - x(k+1)|

Inoltre:

max
x∈[x(k),x(k+1)]

|x - x(k)||x - x(k+1)| = (x(k+1) - x(k)2 )
2

perciò:

max
x∈[x(k),x(k+1)]

|σn (x) - f(x)| ⩽
M2
8

[ x(k+1) - x(k) ]2 =
M2
8 (b - an )

2

Si ottiene infine:

en(f) = max
x∈[0,5]

|σn (x) - f(x)| ⩽
M2
8 (b - an )

2

Per ottenere en(f) ⩽ 10-2 basta che sia:

M2
8 (b - an )

2
⩽ 10-2    ovvero    n ⩾ 10 √ M28 (b - a) = 53.03 ···
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Dunque n ⩾ 54.


