Lezione 02 (ore 01,02) - 24 settembre 2025, 11:30 - 13:30 A13

(1) ZERI DI FUNZIONI E ARITMETICA DEL CALCOLATORE

(1.01) Problema.

Data f:[a,b] = R continua e tale che esiste t in R t.c. f(t) = 0, determinare t. Il numero

t si chiama ‘zero di f’.

(1.02) Teorema (di esistenza degli zeri)

Sia f:[a,b] #+ R continua e t.c. f(a)f(b) < 0. Allora: esiste t in (a,b) t.c. f£(t) = 0.
(1.03) Osservazione.

La condizione f(a)f(b) < O & equivalente alla condizione:

f(a) non é zero & f£(b) non é zero & segno f(a) diverso da segno f(b)

(1.04) Metodo di bisezione.

Idea: utilizzare il Teorema di esistenza degli zeri per ottenere una successione di
intervalli I(k) = [a(k),b(k)] tale che:

* per ogni k, esiste zero di f in I(k)
e I(k+1) incluso in I(k)

* quando k + © si ha mis I(k) = O

(1.05) Descrizione del metodo.

Z = Bisezione(f,a,b)
ingresso: f:(a,b) * R t.c. £(a)f(b) < O

e a(0) = a; b(0) = b; I(0) = [a(0),b(0)]; x(0) = (a(0) + b(0)) / 2;
e per k =1,2,3,. ripeti:
se f(x(k-1)) = 0 allora STOP; altrimenti
e se T(x(k-1))f(b(k-1)) < 0 allora a(k) = x(k-1); b(k) = b(k-1);
altrimenti a(k) = a(k-1); b(k) = x(k-1);
e I(k) = [a(k),b(k)]; x(k) = (a(k) + b(k)) / 2;

uscita: quando un opportuno criterio d’arresto & verificato: z = x(k), punto medio

dell’ultimo intervallo determinato.
(1.06) Osservazione.

(A) mis I(k) = b(k) - a(k) = mis I(k-1) / 2' = mis I(k-2) / 2°= ... = mis I(0) / 2¥ e
quindi:
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quando k + o si ha mis I(k) =+ O
(B) se f continua allora: per ogni k, I(k) contiene uno zero di f e
quando k + ® si ha x(k) = t con £(t) =0
(Dimostrazione ...)

(1.07) Criterio d’arresto.

I1 metodo di bisezione & un metodo iterativo, ovvero un metodo che approssima 1’oggetto
cercato costruendo una successione. Poiché €& materialmente impossibile costruire tutts gli

elementi della successione, & mecessario introdurre un criterio d’arresto, ovvero una
condizione che, quando verificata, arresta la costruzione delle successione.

Un esempio di criterio d’arresto &: dato A numero reale positivo
se mis I(k) < A allora STOP
Proprieta del criterio d’arresto:

(1) la condizione mis I(k) < A ‘@ calcolabile’

(2) la condizione & certamente verificata dopo un numero finito di iterazioni (vedi
1’Osservazione (B) in (1.06)): il criterio ‘& efficace’

(3) se f continua e k & tale che mis I(k) < A allora:

* esiste t in I(k) zero di f

e Ix(k) - tl <mis I(k) / 2 < A/2 <A

ovvero la procedura restituisce un valore x(k) che & un’approssimazione di uno zero di
f con errore assoluto |x(k) - t| minore di A: ‘la procedura restituisce
un’approssimazione accurata quanto richiesto dall’utilizzatore’.
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(1.08) Realizzazione Scilab.

function [z, v, info, k, mis]
//

// Uso:

// [ z,v,info, [k, [mis]] ]
/7

/7

// Approssima uno zero della funzione f:[a,b] -> R, che deve

bisezione(f, a, b, E, kmax)

bisezione(f,a,b,E, kmaz)

// essere continua, con %l metodo di bisezione. La funzione f
// deve assumere valori non nulli e di segno opposto in a e b.
/7

// L'iterazione si arresta quando:

// (*) la funzione f ha valore zero nel punto medio x_m

// dell'intervallo considerato [a(k),b(k)];

// (*¥) l'intervallo considerato [a(k),b(k)] ha misura minore di

// E: 4n tal caso st ha, in teoria, che z approssima uno zero di
// f con errore assoluto mon superiore ad E/2;

// (%) dopo kmaz iteraziont.

//

// kmaz: valore opzionale (valore predefinito: 50).

//

// z: approssimazione finale (zero di f oppure punto medio

// dell'ultimo intervallo gemerato);

// v: valore di f in z;

// info = 0: individuato valore in cut f si annulla (f(z) = 0);

/7 =1: f(z) ~= 0 e l'ultimo intervallo constderato ha misura
/7 minore di E (mis < E);

// =2: f(z) ~= 0, mis >= E e il numero dt iterazioni ha

// raggiunto il massimo consentito (k = kmaz);

// k: numero di tterazioni effettuate;

// mis: ampiezza dell'ultimo intervallo determinato.
/7

//

// Inizializzazions

//

if ~exists('kmax','l') then kmax = 50; end;

k_bis = 0; // contatore delle iterazioni eseguite

/7

// Costruzione successioni
V4

xm= (a+ b)/2;
fm=£f(x_m;

while (abs(b-a) >= E & f_ m ~= 0 & k_bis < kmax),
k_bis = k_bis+1;
if sign(f_m) == sign(£(b)) then b = x_m; else a = x_m; end;
xm= (a+ b)/2;
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fm=f(x_m;
end;
/7
// Fine costruzione: assegno wvartabili dt uscita
/7
z=3xm; v=1=%m; k =5k bis; mis = abs(b-a);
if £fm== then info = O;

else if abs(b-a) >= E then info = 2; else info = 1; end;

end;
/7
endfunction

(1.09) Osservazione.
I1 costrutto Scilab

while condizione,
istruzioni;
end;

€ equivalente a:

ripeti:
se condizione & vera allora istruzioni;
altrimenti esci dal ciclo;

1.10) Esempio
( ) mpi o

Sia f(x) = cos(x).

} ¢ ; "
e La funzione & continua in [a,b] = [1,2] e 1/ﬂ\\\\\s

f(a) >0, £(b) <0
. Scelto E > 0 si ha:

mis I(k) < E & mis I(0) / 2 < E N
& 2 > mis I(0) / E = k > log,( mis I(0) / E)

dunque: ci aspettiamo di ottenere un’approssimazione di pi/2 con errore assoluto
minore di E in

VA = parte intera superiore di log,( mis I(0) / E )

iterazioni.
. Si ottiene (utilizzando il file EsempioBisezione.sce scaricabile dalla sezione

‘altro materiale didattico’ della pagina web del corso):
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E info mis k VA kmax
107° 1 7.6 107° 17 17 50
107 1 5.8 107" 34 34 50
107" 1 8.8 107 50 50 50
107 2 2.2 107 60 54 60
107 2 2.2 107 100 54 100

Dalle ultime due righe della tabella si osserva che quando E = 107" la funzione bisezione si
arresta perché ha raggiunto il numero massimo di iterazioni consentito ma, mentre nel primo
caso (penultima riga) questo é coerente con le teoria, nel secondo caso (ultima riga) non é
coerente con la teoria: la procedura avrebbe dovuto arrestarsi dopo 54 iterazioni con info
=1.

Per capire come mai accade questo, occorre studiare in maggior dettaglio 1’ARITMETICA DEL
CALCOLATORE.

(1.11) Domande.

(A) Con quali numeri & capace di operare il calcolatore?
(B) Cosa sa fare con questi numeri?

(1.12) Osservazione.

Siano x un numero reale non zero, [ un numero intero maggiore o uguale a due (base). Esiste una

sola fattorizzazione di x nella forma:

x=(0° g
con:
* s in {0,1}, segno di x
* b: numero intero, esponente di x in base [
®* g: numero reale in [1/8,1), frazione di x in base (3

(Dimostrazione:
. se x > 0 allora s = 0, se x < 0 allora s = 1;
®* Db é 1’unico numero intero tale che

c g=1x1 /8

(1.13) Esempio.

(1) x = sqrt(5), f= 10 = s
(2) x = sqrt(6), =2 = s =

| L}

o O

o o
|

N =

sqrt(5) / 10
sqrt(5) / 4

0q 0”
]

(1.14) Osservazione.

La condizione g numero reale in [1/5,1) si traduce cosi: la scrittura posizionale di g in

base 8 ha la forma:

0.cqcoc3... con cq diverso da zero

In particolare: se = 2 si ha necessariamente ci = 1.
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(1.15) Esempio.
(1) x=1/10, =10 = s =0, b =0, g =1/10 = 0.1
(2) x =1/10, =2 = s =0, b =-3, g = 8/10 = 4/5 = 0.1100

(Ragionamento':

1
* 4/56 = 0.cqcoc3... = 8/6 = cqy.coc3... e quindi:
x [8/5] = [cq.coc3...] e {8/5} = {cq.coc3...} ovvero:

* cq4 =1e 3/6 = 0.coc3cqg...

* 3/6 = 0.coc3cq... = 6/5 = cg.c3Cq... € quindi:
x [6/5] = [cg.c3cq...] e {6/5} = {cg.c3cq...} ovvero:

* cog=1e 1/5 = 0.c3cqcs5. ..

* 1/5 = 0.c3cqeC5... = 2/5 = c3.cqC5... e quindi:
x [2/5] = [c3.cqc5...] e {2/5} = {c3.cqc5...} ovvero:
* c3 =0 e 2/5 = 0.cqcpeqg. . -

4)
* 2/b = 0.cgc5cg... = 4/5 = cq.c5cq... e quindi:
x [4/5] = [cq.cscg...] e {4/5} = {cq.c5cg...} ovvero:
* c4=0e 4/5 = 0.cgcgC7. .-

Si osserva adesso che si & ottenuta una nuova scrittura del numero iniziale

4/5. Se ne deduce che 4/5 ha scrittura periodica di periodo quattro.
Fine del ragionamento.)
Si osservi che in entrambi gli esempi si ha x = 1/10 ma nell’esempio (1) la fraziomne

ha scrittura posizionale di lunghezza finita, nell’esempio (2) ha lunghezza
tnfinita. La lunghezza della scrittura posizionale dipende dalla base.

1 Se q & un numero reale, con [q] si indica la parte intera di q e con {q} la parte
frazionaria di q, ovvero {q} = q - [q].
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(1.16) Definizione (numeri in virgola mobile e precisione finita).

Siano f un numero intero maggiore o uguale a due e m un numero intero maggiore o uguale a

1. L’insieme

F(B,m) = {0} U {x in R t.c. x = (-1)° 8° 0.c1...cy con

s € {0,1}, b € Z, ¢4,...,¢cy cifre in base 8, cq4 # 0}

si chiama ‘insieme dei numeri in wvirgola mobile e precisione m in base (.
(1.17) Esempio.
Si consideri F(10,1).

* 1/100 € F(10,1): 1/100 = 107 = 10" 0.1

* 11/100 ¢ F(10,1): 11/100 = 0.11 = 10° 0.11 e la frazione 0.11 non & compatibile con

la precisione m = 1
* tutti gli elementi di F(10,1) positivi con esponente zero:
B={0.1;0.2; ... ; 0.9}

tutti quelli con esponente b € Z:

10° B (positivi) -10° B (negativi)

e F(10,1) = Upecz (1) 10°B U {0} U Up ¢ z 10" B
(1.18) Osservazione (proprieta di F(8,m)).
(1) & sottoinsieme proprio di Q (dunque numerabile e ordinato)
(2) & simmetrico rispetto a zero
(3) zero & (1’unico) punto di accumulazione

(4) sup F(B,m) = +oo , inf F(B,m) = -oco

(1.19) Osservazione (distanza tra elementi consecutivi).

In F(10,1): 10" B B 10 B
TN T ——
(positivi) * X WS K V3 %
0.1 0.9 1 2 9

Distanza tra comsecutivi: 10" 0.1 (b = -1), 0.1 = 10° 0.1 (b =0), 1 = 10" 0.1 (b = 1).

* esponente b, distanza tra consecutivi in F(10,1): 10° 0.1 = 10" 107
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b
e in F(B,m): dato £ = 8 g e detto o(§) il successore di & si ha:

b-m

o) - €= B

®* la distanza & tanto maggiore quanto 1’esponente & grande (‘tanto pid £ & lontano da

zero’).
(1.20) Osservazione.

Nell’Esempio (1.10) della Lezione 3, la situazione &:

* a € (1,2)
1 2
v N YR * din Sciladb (Oct , Matlad):
>< )( - in Scilab (Octave atlab)
/\
2' 0.1 2> 0.1 F(2,53)
. - sd

b = 1 = distanza tra consecutivi = 2" = 27 ~ 2.22 107

* Nel caso E = 107" la function bisezione ha trovato 1’intervallo (non degenere) piil
piccolo possibile che contiene lo zero a e di estremi in F(2,53), ma questo

intervallo ha misura > E.

N b-m
e E 4nutile scegliere E < 8 .

(1.21) Criterio d’arresto (con richiesta sull’errore relativo).

Dato E numero reale positivo...
8€ ——————————————————-- < E allora STOP
min{la(®) |, |b(k) |}
Proprietd del criterio d’arresto:

(1) la condizione & calcolabile
(2) se 0 ¢ I(0) si ha: per ogni k, 0 ¢ I(k) e

{ | ]

. 1 T { = min{la(k) |,Ibk) |} = a(k) > 0
0 a(0) b(0)
e a(0) < a(k) < b(0) = quando k -+ oo, mis I(k) / a(k) = O
. } ‘; +— = min{la@1, b} = [b&I > 0
a(0) b(0) 0

e b0 < bk) < |a(0)| = quando k =+ oo, mis I(k) / |bk)| =+ O

quindi: la condizione & certamente verificata dopo un numero finito di iterazioni

(criterio efficace).
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(3) se £ & continua allora:
* esiste a € I(k) zero di f
[x(k) - «f mis I(k) / 2 mis I(k)

| o | | a | min{la(®) |, Ib(k) |}

* x(k) approssima « con errore relativo < E: ‘la procedura restituisce
un’approssimazione accurata quanto richiesto dall’utilizzatore’

. . . 1-m
e & inutile scegliere E < 8
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(1.22) 0Osservazione (conseguenze di F(2,53) # R).

Indichiamo

con M 1’insieme dei numeri che il calcolatore sa manipolare, i ‘numeri di

macchina’ del calcolatore. Quale insieme sia esattamente M dipende dal calcolatore che si

considera.

Nel caso di Scilab (e Octave e Matlab) 1’insieme M & ‘sostanzialmente’ F(2,53).

Riservandoci di chiarire pit avanti le differenze tra i due insiemi, assumiamo che:

in Scilab si ha M = F(2,53)

Consideriamo i seguenti esempi (il carattere > & il prompt della console di Scilabd).

Poiché 0.1 = un decimo ¢ F(2,53), dopo 1’assegnamento il valore di x non pué essere

un decimo.

* > (1-9/10) * 10 - 1

ans

= - 2.220D-16

Si ha: 1, 9, 10 € F(2,53) ma nove decimi ¢ F(2,53). Ovvero:

¢ Sia

(a)

(B

ans

esistono x,y € F(2,53) t.c. x/y ¢ F(2,53)

x(x - 1)
f(x) = —————--———- , definita per x > 0 e x # 1.
x - sqrt(x)
x* - x (x + sqrt(x)) (x - sqrt(x))
Si ha: f(x) = --—-——————-—- = e = x + sqrt(x)
x - sqrt(x) x - sqrt(x)

Per x = 2 € F(2,53) si ha:

=2 % (2 - 1)/(2 - sqrt(2));
=2 + sqrt(2);

== D

=F

(1.23) Definizione (funzione arrotondamento).

I1 calcolatore usa gli elementi di F(B,m) per approssimare numeri reali. L’approssimazione

& realizzata dalla funzione arrotondamento rd: R = F(8,m) cosi definita:

rd(x) = 1’elemento di F(B,m) pid vicino ad x o, in caso di ambiguita,
quello dei due elementi di F(f,m) equidistanti da x che ha la
frazione che termina con una cifra parc.
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(1.24) Osservazione.

La definizione & ben posta se & pari em > 2. In tal caso, se 1’ultima cifra della
frazione di £ € F(8,m) & pari (rispettivamente: dispari), 1l’ultima cifra della frazione del

successore di £ & dispari (rispettivamente: pari).

Se f & pari e m = 1 oppure  é dispari, invece, la definizione non & ben posta. Ad esempio,

in F(3,2) gli elementi positivi con esponente zero sono:
3°0.10 ; 3° 0.11 ; 3°0.12 ; 3°0.20 ;

e gli ultimi due elementi scritti sono consecutivi ed hanno entrambi 1’ultima cifra della

frazione pari.
(1.25) Esempio.
Sia x = 1/10. Si vuole determinare 1’arrotondato di x imn F(2,3).

Si & gia determinato (Esempio (1.15)) che: x = 27° 0.1100. Allora si ha la situazione di

figura:
P elementi di F(2,3) adiacenti ad x (quello a sinistra si
k:/,/’””’w> Ef/// ottiene troncando la scrittura della frazione di x
al numero di cifre indicato dalla precisione - in
% { >< i questo caso 3 - quello a destra & il successore)
27 0.110 27 0.111

punto medio = 27° 0.1101 > x = rd(x) = 2° 0.110 ( = 3/32 )
(1.26) Osservazione.

La funzione rd nmon é una funzione che il calcolatore mette a disposizione
dell’utilizzatore, ma & indispensabile per capire come:

(1) il calcolatore ‘legge’ i numeri reali;
(2) il calcolatore fa operazioni sugli elementi di F(S,m).

(1.27) Esempio.

Riprendiamo il primo esempio dell’Osservazione (1.22). In Scilab l’effetto

dell’assegnamento:

é: viene assegnata alla variabile x il valore rd(0.1) € F(2,53) (se al momento
dell’assegnamento la variabile x non esistesse, viene creata).

Il calcolatore approssima il numero reale con il suo arrotondato imn F(B,m). Ci si domanda

q'u,ale errore venga commesso.



Lezione 5 - 3

(1.28) Teorema (limitazione dell’errore relativo).
Sia rd la funzione arrotondamento in F(f,m). Per ogni numero reale x # 0 si ha:

1-m

d —
E;lfl_ﬁﬂ < B = u (precisione di macchina)

1
X 2

(Dimostrazione...)
(1.29) Osservazione.

¢* La limitazione & uniforme, nel senso che la quantitad che limita 1’errore &
indipendente da x (dipende solo dai parametri f ed m che definiscono 1’insieme dei

numeri) .
1-53 -53 -16
* In F(2,53) si ha u = % 2 =97 x 1,11 10 .

® Se si considera 1l’errore assoluto, dal Teorema precedente si ottiene, per ogni
numero reale x, la limitazione (non untforme!):

[rd(x) - x| < u Ix|

Se ne deduce che tanto pid lontano da zero é x tanto pid grande pud essere l’errore
assoluto.

La differenza sostanziale tra le due limitazioni, una € uniforme e 1l’altra no, &

dovuta a come sono distribuiti gli elementi di F(f,m). Questi ultimi sono pensatt
appositamente per ottenere la limitazione uniforme dell’errore relativo.

(1.30) Esempio.
Siano ¢ un elemento positivo di F(2,53) e ¥ il successore di {. Si ha:

* ¢/2 € F(2,563) ¥9/2 € F(2,53)

K ™

X =

)
!

N
&+ M/2

A

*  £/2 + 9/2 ¢ F(2,53) >

Scelto £ = 1, in Scilab si ha il seguente dialogo (per ogni t € F(2,53), nearfloat(‘succ’,t)
& il successore di t):

> c = 1/2 + nearfloat(‘succ’,1)/2

ans = T

Per capire il dialogo €& necessario approfondire come Scilab esegue la somma di due numeri
di macchina. Se £,9 € F(2,53), indichiamo con £ @ ¢ il valore assegnato da Scilab
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all’espressione & + ¢¥. Per definizione si ha:
ED Y =rd + D

I1 valore é definito ‘nel modo migliore possibile’ nel senso che 1l’errore tra il valore
esatto £ + ¥ e quello definito £ & ¥ & 4l minimo possibile.

Torniamo all’esempio. Il valore che Scilab assegna a c &, allora:
1/2 @ nearfloat(‘succ’,1)/2 = rd(1/2 + nearfloat(‘succ’,1)/2)

che, secondo la definizione di arrotondamento, vale 1 (quello, tra i due elementi adiacenti
al numero da arrotondare, che ha ultima cifra della frazione pari).

Quello che accade nel primo assegnamento &:

1/2 + nearfloat(‘succ’,1)/2
\xd rd
1/2
N

c 1 l

calcolatore

rd«: R -+ F(10,5)

V
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(1.31) Definizione (funzioni predefinite).

Sia M = F(B,m) 1’insieme dei numeri di macchina del calcolatore in esame, e rd la funzione
arrotondamento in M. L’insieme FP delle funzionti predefinite, ovvero delle funzioni che il
calcolatore sa calcolare operando con gli elementi di M é costituito da tre classi.

* L’insieme delle funzioni predefinite corrispondenti ad operazioni aritmetiche. Se - &
una delle operazioni aritmetiche tra numeri reali +, -, X, / allora la funzione
predefinita corrispondente si indica con il simbolo ® (un cerchietto contenente il
simbolo dell’operazione considerata) ed & definita, per ogni coppia £, ¥ di elementi

di F(B,m) facenti parte del dominio dell’operazione -, da
EO© Y =rdl W

¢ L’insieme delle funzioni predefinite corrispondenti alle usuali funzioni elementari
(sen, cos, arcsen, arccos, ln, exp ...). Se f:A + R & una delle funzioni elementari
allora la funzione predefinita corrispondente si indica con il simbolo F ed &
definita, per ogni elemento ¢ di F(8,m) facente parte del dominio A della funzione
elementare f, da

F(® = rd(£(©)

¢ L’insieme delle funzioni predefinite corrispondenti ai confrontt tra numeri reali
(<, <, =, #, =2, >). In questo caso, poiché gli elementi di F(S,m) sono numeri
reali, essi vengono confrontati come tali. Quindi le funzioni predefinite
corrispondenti ai confronti sono semplicemente le restrizioni a F(B,m) x F(8,m) dei

confronti tra numeri reali (e non & necessario introdurre simboli nuovi per
indicarle).

(1.32) Definizione (algoritmo, algoritmo ingenuo).

Siano f;,...,f; funzioni elementari o operazioni aritmetiche e sia f:A -+ R, con A un
opportuno sottoinsieme di R, la funzione ottenuta componendo f,,...,f;:

f(x) = f,o ... of (%)
(ad esempio: f(x) = sen(x) + cos(x), dove f;(x) = sen(x), f,(x) = cos(x) e fi(xy,%x,) = x +

X,). Se chiediamo a Scilab di valutare la funzione f con 1’istruzione
> £(x)
il valore restituito sara

F,o ... oF . (rd(x))

dove Fy,...,F.(x) sono, rispettivamente, le funzioni predefinite corrispondenti a f,,...,
£ (x).

L’espressione F;o ... oF,(rd(x)) definisce una funzione ¢: A + M detta algoritmo ingenuo
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per f (per la funzione dell’esempio: ¢(x) = SEN(rd(x)) & COS(rd(x)), definita per ogni x in
R). Con il termine algoritmo ci si riferisce, in generale, ad una sequenza finita di
operazioni di calcolo di funzioni predefinite.

Salvo casi molto particolari, ci saranno valori di x per i quali f(x) # @(x). In questi
casi si utilizza ¢(x) per approssimare f(x) ed & interessante avere informazioni
sull’errore commesso.

Per ottenere queste informazioni introduciamo le nozioni di algoritmo accurato, algoritmo
stabile e di calcolo ben condizionato del wvalore di una funzione.

(1.33) Definizione (algoritmo accurato).

Siano f:A -+ R una funzione, ¢:A =+ M 1’algoritmo utilizzato per approssimare i valori di f e
x € A.

L’algoritmo ¢ si dice accurato (quando utilizzato per approssimare il valore di f in x) se
esiste un numero reale ¢ tale che:

1) o) = 1 +¢e) £(x)
(2) & ‘piccolo’

Se 1’algoritmo & accurato per ogni x € B C A, si dird che 1’algoritmo & accurato in B. In
tal caso ¢ dipendera da x.

(1.34) Osservazione.
* Siano f ed x tali che f(x) # 0. La (1) della Definizione precedente & equivalente
alla seguente:

px) - £(x)

In questo caso dunque, 1l’algoritmo €& accurato equivale a dire che 1’errore relativo
commesso approssimando f(x) con p(x) & ‘piccolo’.

* Se l’algoritmo & accurato si ha: f(x) = 0 & ¢(x) = 0.

e La definizione di algoritmo accurato € qualitativa perché non si quantifica il
termine ‘piccolo’ relativo ad e. Il significato concreto del termine ‘piccolo’
dipende caso per caso. Ad esempio, se, come nel caso del metodo di bisezione,
interessa soltanto che p(x) e f(x) abbiano lo stesso segno, € ‘piccolo’ significa
e > -1.

Esercizio: Si approssima una L > O con A. Che errore relativo ¢ si commette
utilizzando A = 07 Quale valore di A si deve usare per ottenere un
errore relativo € = 17

(1.35) Definizione (algoritmo stabile).

Siano f:A -+ R una funzione, ¢:A -+ M 1’algoritmo utilizzato per approssimare i valori di f e
x € A.
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L’algoritmo ¢ si dice stabile (quando utilizzato per approssimare il valore di f in x) se

esistono numeri reali &, &y tali che:

W) = (1 +ey) £ + g)%)

(2) €5, &y ‘piccoli’

Se 1’algoritmo & stabile per ogni x € B C A, si dird che 1’algoritmo & stabile in B. In tal

caso €5, €y dipenderanno da x.

(1.36) Osservazione.

* Se un algoritmo & accurato allora & stabile (g5 = 0, &, = €) ma non viceversa.
* Informalmente: un algoritmo stabile restituisce una buona approssimazione (&y

‘piccolo’) del valore di f in un punto wicino ad x (g5 ‘piccolo’).

(1.37) Osservazione (algoritmo ‘buono’).
La nozione di stabilitd formalizza 1’idea di algoritmo ‘buono’ per approssimare i valori di
una data f. Ad esempio, se f & una funzione elementare e ¢ & 1l’algoritmo ingenuo per f
allora, detta F la funzione predefinita corrispondente ad f, si ha:

p(x) = F( rd(x) ) = rd( £( rd(x) ) )
(1.38) Teorema (errore relativo e perturbazione) .
Ricordando la definizione di errore relativo commesso approssimando un numero reale t con
1’arrotondato rd(t) ed il Teorema (1.28) della Lezione 5 sulla limitazione dell’errore

relativo, si ottiene:

Siano x un numero reale e rd la funzione arrotondamento in F(B,m). Esiste un numero reale ¢
tale che:

rd(x) = (1 + e)x e lel < u
L’uguaglianza esprime l’arrotondato di x come (piccola) perturbazione moltiplicativa di x.

(Dimostrazione: se x # 0 allora € & 1’errore relativo commesso approssimando x con rd(x);
se x = 0 (e quindi rd(x) = 0) 1l’uguaglianza sussiste, ad esempio, con € = 0.)

(1.39) Osservazione (continuazione della precedente).
Utilizzando due volte il Teorema precedente si ottiene infine:

px) = (1 +ex)fC (1 + e)x ) con le1] <u e legl <u
L’algoritmo ¢ restituisce la migliore approssimazione possibile del valore di f nel punto

piu vicino possibile ad x. In questo senso ¢ & l’algoritmo ‘migliore possibile’ che il
calcolatore possa utilizzare per approssimare f(x). Da qui, generalizzando, l’idea che un
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algoritmo ‘buono’ per approssimare il valore di una funzione in un punto assegnato sia un
algoritmo che restituisce una buona approssimazione del valore della funzione in un punto
vicino a quello in cui si voleva calcolarla.

(1.40) Definizione (calcolo ben condizionato del valore di una funzione).

Siano f:A + R una funzione e x € A. Il calcolo del valore di f in x & ben condizionato se:

per ogni numero reale o ‘piccolo’ esiste un numero reale ¢, ‘piccolo’ tale che

fC @ +a)x) =0+ efx)

Informalmente: il calcolo del valore di f in x & ben condizionato se il valore di f in ogni
punto ‘vicino’ ad x & una ‘buona’ approssimazione del valore di f in x.

(1.41) Osservazione.
®* La proprieta che il calcolo del valore di f in x sia ben condizionato riguarda

esclusivamente la funzione f. In particolare, non é legata a quale algoritmo si
sceglie per approssimare i valori di f.

* Se f(x) # 0, il valore di &y, una volta assegnato «, & determinato. Precisamente, &y

risulta:
f( 1 +a)x) - £

(1.42) Teorema (stabilitd + buon condizionamento => accuratezza).

Siano f:A + R una funzione, x € A e ¢ l’algoritmo utilizzato per approssimare f(x). Se
1’algoritmo & stabile e il calcolo di f in x é ben condizionato allora 1l’algoritmo &

accurato.

Dimostrazione. Per la stabilitd dell’algoritmo esistono &1 e &9 tali che:

px) = (1 +ex)f( (1 +epdx ) con €1 e €9 ‘piccoli’

Per il buon condizionamento del calcolo di f in x esiste €3 tale che:

fC @ +epdx) =1+ emf(x) e €3 ‘piccolo’

Allora possiamo riscrivere:

px) = (1 + )1 + e3)f(x)

e, posto (1 + e9)(1 + e3) =1 + t, ovvero t = €9 + €3 + €9e3, si ottiene infine:

plx) = (1 + £)f(x) con t ‘piccolo’
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dunque 1’algoritmo & accurato.
(1.43) Osservazione (stabilitd degli algoritmi ingenui nei casi elementari).

* Per quanto ricavato nelle Osservazioni (1.37) e (1.39), se f:A + R & una funzione
elementare e ¢ & l’algoritmo ingenuo per f, ¢ & stabile su A: 1l’algoritmo ingenuo

per ctascuna funzione elementare é stabile.
* Sia f(xy,xp) = x1 + x9. L’algoritmo ingenuo per f &:
p(xq,x9) = rd(xq) @& rd(xy)

Ricordando la definizione di @ (vedi Definizione (1.31)) ed utilizzando tre volte il

Teorema (1.38) si riscrive:

p(x1,x9) = (1 +e3)( (1 +ep)x + (1 + e9)x ) R con |€j| <u, j=1,2,3
Dunque, 1l’algoritmo ingenuo per la somma & stabile.

Allo stesso modo si dimostra che l’algoritmo ingenuo per ciascuna delle operazioni

aritmetiche é stabile.
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(1.44) Osservazione (stabilitd, caso non elementare).

Siano fy, f9:R =+ R due funzioni elementari e ¢1, @9:R + M gli algoritmi utilizzati per
approssimare, rispettivamente, i valori di f; ed fy. Siamo poi x € R, £(x) = f3(f1(x)) e
p(x) = po(p1(x)). Infine, supponiamo che gli algoritmi ¢4, (o siano stabili su R. Ci si
domanda se 1l’algoritmo ¢ & stabile quando utilizzato per approssimare f in x. Utilizzando

la stabilitd di ¢4 e o si ha: esistono numeri reali €41,...,&4 tali che Isj| <u, j=
1,2,3,4 e:

) = Eolp1(x)) = (1 + eg)fo( (1 + e3) (1 + ep)f1((1 + €9)x) )
Posto (1 + e3)(1 + &9) =1+ t, ovvero t = €3 + €9 + €0e3, si ha: [t] < 2u + u2 (< 1) e
(p(X) = (1 + 64)f2( (1 + t)f]_((l + 62)){) )

Indicato con ¥ l’errore relativo commesso approssimando fo( f£1((1 + €9)x) ) con fo( (1 +
t)f1((1 + €9)x) ) si riscrive:
fol (1 + £)f1((1 + e9)x) ) = (1 + Pfa( £1((1 + €9)x) )
e quindi:
ex) = (1 +ep)@ + PDfo( £1((1 + g9)x) )
Infine, posto (1 + g4)(1 +9) =1 + e, e €9 = €5, si ottiene:

) = (1 +ep)f((1 + g5)x)

Per poterne dedurre la stabilitd di ¢ quando utilizzato per approssimare f in x, occorre
indagare la grandezza delle perturbazioni ey e €,. Riguardo ad ¢, si ha |ezl < u, dunque €,
‘piccolo’. La grandezza di ey, invece, dipende da quella di ¥ che, a sua volta dipende dal

condizionamento del calcolo di fo in f1((1 + e9)x). Se quest’ultimo calcolo & ben

condizionato (dunque ¥ ‘piccolo’) allora ¢ & stabile quando utilizzato per approssimare f
in x, altrimenti nulla si pud dire riguardo alla stabilita di ¢.

(1.45) Osservazione (condizionamento del calcolo di funzioni regolari).

Siano f:A -+ R una funzione regolare (ovvero con derivata prima continua), e x € A tale che
f(x) # 0. Si vuole studiare il condizionamento del calcolo di f in x.

Poiché f(x) # 0, per quanto detto nell’Osservazione (1.41) della Lezione 6, si deve
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studiare, assegnato a € R ‘piccolo’, la quantita:

f( 1 +a)x) - £

Per la regolarita di f, utilizzando il Teorema di Lagrange, si ha:
esiste un numero reale ¥ compreso tra x e (1 + a)x tale che
f( 1 +a)x) - =1£0) ax

Quindi si riscrive:

Introdotto il numero di condizionamento del calcolo di f in x:

f'(x)
f(x)

c(x) = ’

X ‘

si ha allora:

ey | = cx) | a |

e il condizionamento del calcolo di f in x dipende solo dalla grandezza del numero di
condizionamento c(x).

(1.46) Esempio.

Sia f(x) = sen(x) e x € (0, ©/2). Il numero di condizionamento del calcolo di f in x &:

cos (x) X

_ X _ <
sen(x)X’ B ’tan(x)‘ B tan (x) !

c(x) = ‘

Dunque in questo caso il calcolo di sen(x) & ben condizionato. Ma se consideriamo x vicino
(ma non uguale) a m, tenuto conto che:

limc(x) = lim 00

t-m -

X —
tan(x)‘ -7

il calcolo di sen(x) non é ben condizionato.
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(1.47) Osservazione (condizionamento delle operazioni aritmetiche).

Siano f(x;,%x;) = %X, + X, e X;, X, tali che f(x;,x,) # 0. Si vuole studiare il condizionamento
del calcolo di f in x;, Xx,.

Poiché f(x;, x,) # 0, per quanto detto nell’Osservazione (1.41) della Lezione 6, si deve
studiare, assegnati numeri reali o; e a, ‘piccoli’, la quantita:

1+ a) xi+ (1 + ay) x - (x4 + %) Xy X,

Introdotti i numeri di condizionamento:

X

1 X

2

ci(xy,%,) = e ci(xy,%,) =

X1+X2 X1+X2

si ha:

se x;X, > 0 (ovvero i due addendi hanno lo stesso segno) allora:
ci(xy,x) < 1 e C(xy,%) < 1

e il condizionamento del calcolo della somma & buono. Invece, se xX, < 0 (ovvero i due

addendi hanno lo segno opposto), il condizionamento del calcolo pud essere tanto peggiore

quanto pid piccolo € X; + X,. Si ha infatti, assegnato x, # 0 e posto x, = y - x, (ovvero x,
+ x, =y) cony # O:

Xl Xi
ci(xy,x%) = ‘_ ,  ci(xy,x%) = ’1__
y y
e:
limc, (x,,x,) = 40 limc,(x,,x,) = +%
y-0 y-=0

Nel caso delle altre operazioni aritmetiche si ha:

Ey = a1 + a; + a; o (moltiplicazione)

a,—a,
gy = —— (divisione)
1-a,

e in entrambi i casi il calcolo & sempre ben condizionato.
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(1.48) Esempio (approssimazione numerica della derivata).
Si supponga di conoscere, agli istanti t; e t,, le posizioni x; e X, di un punto in moto su
una retta. La quantita:

v=(x- %) / (t, - ty)
€ la velocitd media del punto tra i due istanti. Se le quantitd x; e x, sono note soltanto
con errore relativo &, e &,, ad esempio perché ottenute tramite misurazioni, potremo

ottenere di v soltanto un’approssimazione:

(1 +e)x - (1 +epx,

Nel caso in cui la differenza x, - x; sia piccola (ad esempio quando v sia utilizzato come
stima della velocitd istantanea di un punto mobile con velocita elevata), per quanto
mostrato nell’GsservaziSne precedente, il calcolo risulta mal condizionato e 1l’errore
commesso approssimando v con w risulterad molto maggiore dei singoli errori ¢; e &,.
(1.49) Esercizio.
La scrittura:

(4) x=a+d con | d| <d
é equivalente alla scrittura:

(B) x € [a-4d, a+ d]
Si vogliono determinare y e E in modo che anche la scrittura:

(x) x=(1+¢e)y con | e | <E
risulti equivalente ad (A) e (B).
La scrittura (*) equivale a:

x € [(1 -EBy, (1+Ey]

Quest’ultima scrittura & equivalente alla (B) se e solo se:

(1 -BEy=a-4d e (1 +BEy=a+d
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Risolvendo il sistema si determina:
y=a e E=d/a

Quindi le scritture (A) e (B) sono equivalenti alla scrittura:

(©) x=Q+¢€)a con |lel|l <d/a
(1.50) Teorema (stabilita della procedura bisezione).
Si consideri la realizzazione in Scilab', della procedura bisezione.
Se 1’assegnamento

[z,v,info] = bisezione(f,a,b,delta)
termina con info = O oppure info = 1, allora:
| z - a* | < delta

dove a* & uno zero di una funzione g ‘vicina’ alla funzione f nel senso che:

per ogni x in [a,b] si ha |f(x) - g(x)| ‘piccolo’

Informalmente: se info = 0 oppure info = 1 allora la procedura restituisce una buona
approssimazione di uno zero di una funzione wicima a quella in esame.

(Dimostrazione omessa.)
(1.51) Osservazione (condizionamento degli zeri di una funzione regolare).

Siano f:[a,b] = R regolare (derivabile con f’ continua) con f’ # 0 e f(a)f(b) < 0, «
1’unico zero di f in [a,b], g:[a,b] + R continua e ‘vicina’ ad f, precisamente tale che:

per ogni x in [a,b] si ha |[f(x) - g(x)| < d con d ‘piccolo’ e d < min{[|f(a)|,|£(b) |}

Per le ipotesi fatte, g ha almeno uno zero in [a,b]. Si vuole sapere quanto distante pué
essere lo zero o di £ da uno zero di g.

Sia a* uno zero di g in [a,b]. Allora si ha (utilizzando il Teorema di Lagrange):
fla*) = f(a*) - f(a) = £7(®)(@* - @) con t tra ao* e «
Dunque, posto m = min{ [£’(x)|, x in [a,b] }, si ha:
[£(a*) | [£(a*) |
[£2(t) | m

Infine, essendo:

1 Asserto (1.08) nella Lezione 2.



Lezione 8 - 3

[f(a*) | = [f(a*) - gla*)] < d
si ottiene:
d
a* - a| < —-
m

La quantita 1/m ha il ruolo di numero di condizionamento: tanto pil & grande tanto piu gli
zeri di g possono essere lontani dallo zero di f.

Se £f’(x) = 0 per qualche x in [a,b], in particolare se f’(a) = 0, il condizionamento &
certamente cattivo, come evidenziato nell’esempio seguente.

(1.52) Esempio.

Sia f(x) = (x - 2)®. La funzione ha un solo zero, a = 2, ed & regolare nell’intervallo
[1,3]. Si consideri poi g:[1,3] =+ R continua tale che:

per ogni x in [1,3] si ha [f(x) - g(x)| < 107

Un esempio di grafico di g é rappresentato in figura.

1, & x-2)F

(x - 2)© + 10° ’

\}M il;')4AAEI/V\

2 - 10—9/13

J ) g(x)
o= A \" 2 N s B

BT NL\ 2 + 107/
NL\ (x - 2)% - 10

Nel caso peggiore la distanza tra lo zero a di f e uno zero a* di g & 10" ~ 0.2, molto
piu grande della distanza 10~° tra f e g.

(1.1) METODI AD UN PUNTO

I1 punto di forza del metodo di bisezione € la sua generalita: pud essere applicato a
qualunque funzione che sia semplicemente continua e che assuma valori di segno opposto agli
estremi di un intervallo. Per contro, in alcune applicazioni il metodo richiede un numero
eccessivo di iterazioni per ottenere 1l’accuratezza richiesta dall’utilizzatore. Per ovviare
a questo inconveniente, analizziamo altri metodi per approssimare lo zero di una funzione:
i metodi ad un punto.

(1.53) Definizione (metodo ad un punto).

Sia h:[a,b] = R una funzione continua. Il metodo ad un punto definito da h & la seguente
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procedura:
z = MetodoUnPunto(h,a,b,7y)
ingresso: h:[a,b] =+ R continua, < in [a,b]

. X(O) = 7;

e per k =1,2,3,... ripeti

se x(k-1) in [a,b] allora x(k) = h(x(k-1)) altrimenti STOP

uscita: quando un opportuno criterio d’arresto & verificato: z = x(k).
(1.54) Osservazione.
Se omettiamo il criterio d’arresto e per ogni k si x(k-1) in [a,b], il metodo ad un punto
definisce una successione x(0), x(1), x(2),... Se la successione & convergente, il limite &
un punto unito di h.’
(Dimostrazione. La successione x(0), x(1), x(2),... & identica alla successione h(x(0)),
h(x(1)), h(x(2)),... Quindi quest’ultima & convergente e, detto a il limite della

successione x(k):
limh(x(k)) = «

k-m
Poiché h & una funzione continua e la successione x(k) converge ad «, si ha:

limh(x(k)) = h(limx(k)) = h(a)

k-0 k-0
Per 1’unicita del limite di una successione convergente, si deduce che a = h(a).)
(1.55) QOsservazione.
Sia f la funzione continua della quale si & interessati ad approssimare qualche zero. Per
quanto detto nell’Osservazione precedente, il metodo ad un punto definito da h &
utilizzabile, ‘se tutto va bene’, per approssimare un punto unito di h. Perché il metodo ad
un punto possa essere utilizzato per approssimare qualche zero di f occorre scegliere la
funzione h che lo definisce in modo che:
€:)) {zeri di f} = {punti uniti di h}
Ci si domanda se esistono funzioni (continue) h con la proprietad richiesta.
Si consideri la funzione h cosi definita:

h(x) = £(x) + x

Se o & zero di f, ovvero f(a) = 0, si ha:

h(a) = f(a) + @ = @ = «a & punto unito di h

2 Il numero reale a & un punto unito di h significa che a = h(a).
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Viceversa, se a & punto unito di h (ovvero a = h(a)), si ha:
h(a) = f(a) + @ = f(a) =0 = o« zero di f
La funzione h & quindi una funzione che verifica la proprieta (#).

Si verifica facilmente che, se g & una funzione continua tale che g(x) # O per ogni x, la
funzione h definita da:

h(x) = gx)f(x) + x

é continua ed ha la proprietad (#). Dunque esistono infinite funzioni h che hanno come punti

uniti tutti e soli gli zeri di f.

Si pone adesso il problema di scegliere, tra tutte le possibili funzioni che hanno la
proprietd (#), una h in modo che il metodo da essa definito generi una successione

convergente.



Lezione 9 (ore 15,16) - 9 ottobre 2025, 8:30 - 10:30 F3

(1.56) Osservazione (costruzioni grafiche).

y kﬁ//,—- Grafico di y = x

lP2
l
'
I
1
Grafico di y = h(x) {
1 i ]
A !
™\ 7 :
| VYD A ]
L \ L il
1 D 1 f 1 X
a //’//, a1]\ X1 Xo b

Punti uniti di h
Si rappresentino su uno stesso piano cartesiano le porzioni del grafico della funzione y =
h(x) che definisce il metodo ad un punto da esaminare e della retta grafico della funzione
y = X, su un intervallo [a,b].

I punti uniti di h sono le ascisse (a; e a,) dei punti P, e P, comuni ai due grafici.

Assegnato il punto dell’asse delle ascisse che rappresenta x,, possiamo costruire il punto

dello stesso asse che rappresenta x; in tre passaggi: (I) si determina il punto (x,,h(x,))
(%X0,%;) intersezione tra il grafico di y = h(x) e la retta verticale per (x,,0); (II) si
determina il punto (h(x,),h(x,)) = (x;,%x;) intersezione tra il grafico di y = x e la retta
orizzontale per il punto (x%,,h(x,)) determinato al passaggio precedente; (III) si determina
il punto (h(x,),0) = (x;,0) intersezione tra l’asse delle ascisse e la retta verticale
passante per (x;,x,).

(1.57) Teorema (di convergenza) .

Siano h:[a,b] -+ R una funzione con derivata prima continua e 7 un punto di [a,b] tali che:
(1) esiste un punto unito « di h in [a,b];
(2) esiste un numero reale L € [0,1) tale che: per ogni x € [a,b] si ha |h’(x)| < L;
(3) 1a procedura MetodoUnPunto(h,a,b,vy) definisce una successione .t

Allora si ha:

(A) a & 1’unico punto unito di h in [a,b];
(B) la successione x, & convergente al limite a.

(1.58) Dimostrazione (del Teorema (1.57)).

1 Ovvero, per ogni k si ha: se x, € [a,b] allora x.; € [a,b].
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(A) Per assurdo. Se 8 & un altro punto unito di h in [a,b] si ha (utilizzando prima la
definizione di punto unito e poi il Teorema di Lagrange):

B - a=h(B) - hia)

h () (B - @ R con t numero reale compreso tra a e (3
Infine, ricordando che 8 - a # 0, si ottiene:
(#) ho(t) =1

Ma, siccome a e ( sono punti in [a,b], anche t lo &. Allora, per 1l’ipotesi (2),
1’uguaglianza (#) & assurda.

Si osservi che per questa dimostrazione si sono utilizzate solo le ipotesi (1) e (2).

(B) Si deve dimostrare che la successione x, tende ad «, ovvero che la successione x, - «
tende a zero. Si ha, utilizzando il Teorema di Lagrange per la seconda uguaglianza:

X - & = h(xe) - h(a) = h’ () Xy - @) con te; tra x,., e «@
Passando ai valori assoluti si ha (la disuguaglianza si ottiene utilizzando 1’ipotesi (2)):
% — a| = b’ &) | (% - al <L %y - al
Se k - 1 >0 si pud ripetere il ragionamento a partire da X,; - «a per ottenere:
[ Xy - Otl = |h’ (tea) | Ix - al <L Ixe, - alf
e, sostituendo nella precedente:
% — a|] < L? |xe, - al
Iterando all’indietro fino al primo elemento della successione si ricava:
% - a] < L° Ix - al
Ricordando che 0 < L < 1 si ottiene il risultato cercato:

lim |x, - a| =0

k-0
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(1.58) Osservazione.

L’uso del Teorema di convergenza (Teorema (1.57) della Lezione 9) richiede la verifica
delle ipotesi (1) - (3). Per le ipotesi (1) e (2) occorre decidere se esiste, ed
eventualmente determinare, un intervallo [a,b] che contiene un solo punto unito di h e in
tutti i punti x del quale |h’(x)| < L con 0 < L < 1. Una volta determinato un intervallo
[a,b] con le proprietad richieste, occorre decidere se sia verificata 1l’ipotesi (3), ovvero
se a partire da 7 il metodo definito da h genera una successione in [a,b].

I1 teorema e 1l’osservazione seguenti forniscono criteri concreti riguardo la verifica delle
ipotesi.

(1.59) Teorema (utilizzabilita del metodo definito da h).

Sia h:[a,b] =+ R una funzione con derivata prima continua e o un punto unito di h in [a,b].
Condizione necessaria e sufficiente affinché esista un intervallo I C [a,b] contenente a e

in tutti i punti x del quale si abbia |h’(x)] < L con 0 < L <1 é&:

b’ ()| <1

Dimostrazione.

La condizione & necessarta: se esiste un intervallo I C [a,b] contenente a in tutti i punti
x del quale |h’(x)| < L con 0 < L < 1, certamente si ha |h’(a)| < 1.

La condizione & sufficiente: se |h’(a)| < 1, per la continuita della funzione h’ esistono
un numero reale L con 0 < L < 1 e un intervallo I C [a,b] tali che ¢ € I e in tutti i
punti x € I si ha |h’(x)| < L.

(1.60) Osservazione (criterio di scelta del punto iniziale).

Sia h:[a,b] + R una funzione con derivata prima continua che verifica le ipotesi (1) e (2)
del Teorema di convergenza e sia a l’unico punto unito di h in [a,b]. Allora:

a partire da v = l’estremo di [a,b] pid vicino ad o, il metodo definito
da h genera una successione in [a,b] - dunque convergente ad a.

Dimostrazione.

Posto x, = 7, sia d = |x, - al|. Indicato con I(a,d) 1’intorno di centro a e raggio d, si ha
I(a,d) C [a,b]. Per quanto mostrato nel punto (B) della dimostrazione del Teorema di
convergenza, si ha |x; - al < |x, - al = d, quindi x; € I(a,d). Allo stesso modo si dimostra
che per ogni k si ha x, € I(a,d) C [a,b].

(1.61) Osservazione.
Siano h:[a,b] - R una funzione con derivata prima continua, « un punto unito di h e x, una

successione generata dal metodo definito da h. Se |h’(a)| > 1 allora uno soltanto dei
seguenti asserti sussiste:
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* esiste k tale che per ogni k > k si ha % = «

o Xy A O

(Dimostrazione solo in un caso particolare. Sia h(x) = A(x - @) + a con A > 1. Si ha: o &
1’unico punto unito di h, h’(x) = A e

X - o= A(x - @)

Mlora: se x, # «, per ogni M > O esiste n tale che k > n = |x, - al > M. Dunque per ogni

X # a si ha %, » «a.)

L’eventualitd di riuscire a determinare concretamente un punto iniziale a partire dal quale
risulti x, = o dopo un numero finito di termini & estremamente remota. Per questo motivo,
se |h’(a)| > 1 il metodo definito da h si dichiara non utilizzabile per approssimare .

Resta da chiarire cosa accade se |h’(a)| = 1. Vedremo che anche in questo caso il metodo
definito da h si dichiara non utilizzabile per approssimare «.

Si osservi, infine, che la condizione |h’(a)| < 1, necessaria e sufficiente per
1’utilizzabilita del metodo per approssimare il punto unito «, & verificabile graficamente
confrontando la pendenza (h’(a)) della retta tangente al grafico di y = h(x) in x = @ con
quella (1) della retta grafico di y = x e con quella (-1) della retta y = a - x.

(1.62) Esercizio.
Per ogni x > 0, sia f(x) = x + log(x). Si vuole (i) sapere se f ha qualche zero e, in caso
affermativo: (ii) separare gli zeri e, infine, (iii) decidere se ciascuno dei metodi
definiti da

h,(x) = - log(x) ; h,(x) = exp(-x) ; hy(x) = (exp(-x) + x)/2
sia utilizzabile per approssimare gli zeri di f.

Soluzione.

(i) La funzione f(x) & continua, f(x) + -0 quando x =+ 0 e f(x) + +o quando x - +o00. Se

ne deduce che f ha almeno uno zero. La funzione f(x) & anche derivabile e per ogni x > 0
risulta f’(x) # 0. Allora f ha al piu wno zero. Dunque f ha uno zero, a.'

(ii) Si ha: f(1) = 1, dunque a € [0,1], ovvero 1’intervallo [0,1] separa lo zero di f.
(iii) Si consideri la funzione h,;(x). Si verifica facilmente che gli zeri di f sono tutti e
soli i punti uniti di h;. Inoltre, h; & derivabile e per ogni x > O si ha h;’(x) = 1/x.
Essendo a € (0,1) si ha certamente |h,;’(a)| > 1. Per 1’Osservazione (1.61) il metodo

definito da h; non é utilizzabile per approssimare «.

Si consideri la funzione h,(x). Si verifica facilmente che gli zeri di f sono tutti e soli i

1 Sia f:[a,b] + R una funzione sufficientemente regolare. Se per ogni x in [a,b] si ha
f(k) (X) ?é 0

allora f ha al piu k zeri distintt nell’intervallo [a,b].
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punti uniti di h,. Inoltre, h, & derivabile e per ogni x si ha |h,’(x)| = exp(-x). Essendo
a € (0,1) si ha certamente |hy,’(a@)| < 1 e, per il Teorema (1.59), il metodo definito da h,
é utilizzabile per approssimare «. In base all’Osservazione (1.60), per determinare un
punto iniziale a partire dal quale il metodo definisce una successione convergente ad o &
sufficiente determinare un intervallo chiuso I che verifica le ipotesi (1) e (2) del
Teorema di convergenza. L’intervallo [0,1] non va bene perché 1’ipotesi (2) non &
verificata: per ogni x in (0,1] si ha 0 < |hy’(x)| = exp(-x) < 1 ma |h,’(0)| = 1. Allora, un
intervallo che verifica anche 1’ipotesi (2) & [t,1] con t € (0,a). Per determinare t si
utilizza il Teorema di esistenza degli zeri. Siccome f(1/2) < 0, si pone t = 1/2 e I =
[1/2, 1]. A questo punto & sufficiente decidere quale dei due estremi di I & piu vicino
allo zero. Si utilizza ancora il Teorema di esistenza degli zeri. Siccome £(3/4) > 0, si
sceglie x, = 1/2.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione
che definisce il metodo & negativa. Poiché, si riveda la dimostrazione dell’asserto (B) del
Teorema di convergenza, per ogni k si ha:

X - a = h’(tey) (X - @)

per qualche numero reale t,; in I, allora per ogni k & h’(t,;) < O e le differenze x, - a e
X1 — « hanno segno opposto. Ne segue che gli elementi della successione si trovano,
alternativamente, a destra e a sinistra di a: la successione ‘oscilla’ intorno allo zero.
La successione delle distanze |x, - al| & comunque monotona decrescente come mostrato nella
dimostrazione del Teorema di convergenza.

Si consideri infine la funzione h;(x). Si verifica facilmente che gli zeri di f sono tutti e
soli i punti uniti di h;. Inoltre, h; & derivabile e per ogni x si ha:

[hy’ (x)| = (1 - exp(-x))/2

Essendo a € (1/2,1) si ha certamente |h;’(a)| < 1 e, per il Teorema (1.59), il metodo
definito da h; é uttilizzabile per approssimare a. In base all’Osservazione (1.60), per
determinare un punto iniziale a partire dal quale il metodo definisce una successione
convergente ad o« & sufficiente determinare un intervallo chiuso I che verifica le ipotesi
(1) e (2) del Teorema di convergenza. L’intervallo I = [1/2,1] va bene, infatti per ogni x
in T si ha 0 < |hy’(x)| < 1. A questo punto & sufficiente decidere quale dei due estremi di

I & piu vicino allo zero. Procedendo come nel caso precedente, si sceglie x, = 1/2.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione
che definisce il metodo & positiva. Ragionando come nel caso precedente, le differenze x, -
a e Xy - a hanno lo stesso segno. Ne segue che gli elementi della successione si trovano
tutti dalla stessa parte rispetto ad «. Inoltre, anche in questo caso, la successione delle
distanze |x, - al & monotona decrescente, e quindi la successione x, risulta monotona
(crescente se x, & a sinistra di «, decrescente nel caso opposto). Infine, si osservi che
poiché per ogni x in I = [1/2, 1] la derivata prima della funzione che definisce il metodo
é positiva, dalla dimostrazione del criterio di scelta del punto iniziale (Osservazione
(1.60)) si deduce che per ogni %X, in I la successione x, converge ad «.

(1.63) Esercizio (per casa).

Per ogni x € R sia: h(x) = 2 arctg(x).
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(1) Determinare il numero di punti uniti di h e separarli.

(2) Per ciascuno dei punti uniti, decidere se il metodo iterativo definito da h sia
utilizzabile per 1’approssimazione e, in caso affermativo, indicare un punto
iniziale a partire dal quale la successione generata converge al punto unito in
esame.

(3) Rispondere alle domande precedenti utilizzando i metodi grafici, aiutandosi con
Scilab.
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(1.2) METODO DI NEWTON

(1.64) Definizione (metodo di Newton).
Sia f:[a,b] = R una funzione con derivata prima tale che f'(x) # 0 per ogni x in [a,Db].

I1 metodo di Newton applicato alla funzione f & il metodo ad un punto definito dalla
funzione hy:[a,b]-+ R tale che:

f(x)
f'(x)

hy(x) =x - (£'&x))7TEE) =x -

Si osservi che i punt? uniti d? hy sono tutti e soli gli zersi dt f.
(1.65) Osservazione (utilizzabilitad del metodo di Newton).

Sia f:[a,b] + R una funzione con derivata seconda continua e con f'(x) # O per ogni x in
[a,b]. Sia poi a uno zero di f in [a,b]. Si ha:

(£' (x))*-f' " (x) £ (x) £ (x)f(x)
hy'(x) =1 - . = -
(£'(x)) (f'(x))

La funzione hy' & continua e, essendo f(a) = 0 e f'(a) # 0, si ha
hy'(a) = 0

Per il Teorema (1.59) della Lezione 10, il metodo di Newton & utilizzabile per approssimare

o.
(1.66) Osservazione (criterio di utilizzabilita per il metodo di Newton).

Siano f:[a,b] - R una funzione con derivata seconda continua e o uno zero di f in [a,b].
Condizione sufficiente perché il metodo di Newton applicato ad f sia utilizzabile per

approssimare « é:
f'(a) #0
(1.67) Osservazione (interpretazione grafica del metodo di Newton).
Sia f:[a,b] = R una funzione con derivata prima e sia x, un numero reale tale che f'(x,) #
0. Si disegnino su uno stesso piano cartesiano il grafico della funzione f e quello della

retta tangente al grafico di f in x, (vedi figura). Poiché f'(x,) # 0, la retta tangente non
€@ orizzontale e quindi interseca l’asse delle ascisse nel punto x tale che:



Lezione 11 - 2

f'(xk)(ﬁ -x) + f(x) =0
ovvero in

f(x)
x =% - —— = h(x)
f'(x)

grafico della retta tangente y = f'(x)(x - x) + f(xx)

I ‘//////{i\\ grafico di y = f(x)
o — X
X \—T—:—g t.c. f'(x)(x - x) + f(x) =0

(1.68) Osservazione (criterio di scelta del punto iniziale per il metodo di Newton).

Sia f:[a,b] # R con derivata seconda continua tale che:
(1) esiste « zero di f in [a,b]
(2) per ogni x € [a,b] si ha f'(x) # 0 (e quindi a & l’unico zero di f in [a,b])
(B)f''(x) # 0 (f & convessa in [a,b])

Allora: a partire da 7 = l’estremo di [a,b] in cui £ e £'' hanno lo stesso segno, il metodo
di Newton genera una successione in [a,b] convergente ad o e monotona.

(Dimostrazione. Utilizzando le ipotesi, e ragionando graficamente, si mostra che la
successione generata a partire da y € monotona e limitata, e quindi convergente. Il limite
non pud che essere un punto unito di hy in [a,b], dunque «.)

(1.69) Osservazione.

Siano f:[a,b] -+ R una funzione con derivata seconda continua e a uno zero di f in [a,b].
Se f'(a) # 0 (dunque il metodo di Newton applicato ad f & utilizzabile per approssimare «)
allora esiste un intervallo I che verifica le ipotesi del criterio di scelta (1.67) se e
solo se f''(a) # O.

(1.70) Osservazione (ordine di convergenza di un metodo ad un punto).

Siano h:[a,b] » R, a un punto unito di h e x, una successione convergente ad a generata dal
metodo definito da h.

(1) Sia h con h' continua e 0 < |h'(a)| < 1. Allora:
© Sia d > 0 tale che h'(x) # 0 per ogni x € I(a,d). Detti A; e L,, rispettivamente,
il minimo ed il massimo di |h'(x)| su I(a,d) e y., la successione costituita

dagli elementi di x, in I(a,d), per ogni x in I(a,d) si ha:

Ae £ 1" < L

© Per ogni n si ha allora:

)\d” |Y0,d - al < |yn,d - «af < LS |Yo,d - al

ovvero:

la successione y,, - a converge a zero piu rapidamente della successione
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Ly |yo,s — al ma meno rapidamente della successione A |y, - «l
Scelto d molto piccolo si avra A; = L, = |h'(a)|. Dunque
[ Vna — al = [h'(@)I" | yo,a - &l

Questa proprieta della successione x, si esprime dicendo che ‘x, converge ad a in
modo esponenziale’.

(2) Sia h(x) = a + A(x - a)® con A # 0. Allora: a & punto unito di h e h'(a) = 0.
Inoltre, dato un numero reale X,, per ogni k si ha:

x —a=A" ( A(x, - o) )2k

Se |A(x, - a)| < 1, la successione x, converge ad a e, per ogni t in (0,1) si ha
————————— — 0 per k = x

ovvero: la successione x; — « tende a zero ptu raptidamente di qualsiasi successione
esponenziale.

In generale, se h ha derivata seconda continua e h'(a) = 0, la successione x, tende
ad a pid rapidamente di qualsiast successione di tipo esponenziale.

I1 sussistere della condizione ‘h con h' continua e 0 < |h'(a)| < 1’ si esprime con la
frase l’ordine di convergenza ad o del metodo definito da h é uno. Il sussistere della
condizione ‘h con h'' continua, h'(a) = 0 e h®(a) # 0’ si esprime con la frase l’ordine
dt convergenza ad o del metodo definito da h é due. In generale:

l’ordine di convergenza ad o del metodo definito da h é p
significa

h ha derivata di ordine p continua, h”(a) = 0 per m=1,...,p - 1e h? () #0

Tanto pid elevato € 1l’ordine di convergenza ad a del metodo, tanto piu rapidamente
convergono ad a le successioni generate dal metodo.
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(1.71) Esercizio.

Siano t un numero reale positivo, n un numero intero > 2 e f(x) = x" - t. La funzione f ha

un solo zero, la radice n-esima di t: £,

Decidere se il metodo di Newton sia applicabile per approssimare lo zero e, in caso
affermativo, determinare x, in modo che il metodo generi una successione convergente allo

zZero.
(1.72) Osservazione (criteri d’arresto).

I criteri d’arresto presentati per il metodo di bisezione non sono utilizzabili per i
metodi ad un punto: questi ultimi metodi, contrariamente al metodo di bisezione, non
generano una successione di intervalli di misura tendente a zero e ciascuno contenente uno
zero della funzione. Occorrono dunque criteri diversi. Discutiamo i due piu utilizzati,
entrambi di tipo assoluto.

Siano f la funzione della quale si vuole approssimare uno zero, h:[a,b] » R e = che
verificano le ipotesi del Teorema di convergenza, « il punto unito di h (e zero di f) in
[a,b] e x, la successione generata dal metodo definito da h a partire da . La successione
X, converge ad «.

(1) Dato un numero reale positivo E (1l’errore massimo richiesto dall’utilizzatore) e
inserito E tra le variabili di ingresso della procedura:

se |Xn - x| < E allora STOP

I1 criterio & calcolabile: a ciascuna iterazione la procedura conosce X, determina Xy, =
h(x,) e verifica la condizione del criterio.

I1 criterio & efficace: sia la successione x, che la successione x.; = h(x,) convergono ad «
(la funzione h & continua e o & punto unito di h), quindi la differenza tende a zero. La

condizione del criterio & certamente soddisfatta dopo un numero finito di iterazioni.

Per capire quanto buona sia x; come approssimazione di a quando la condizione & verificata,
si osservi che:

%1 = x| = |h(x) = %l = [(h(x) - @) + (@ - x)| = [ (h(x) - h(a)) + (a - x|
Utilizzando il Teorema di Lagrange:

h(x,) - h(a) = h'(t) (x - @) con t trazx, e«
dunque:

% = Xl = [h'(t) (% -~ @) + (@ - x)| = |h'(t) - 1] Ix - al = 11 - h' ()] |x - ol
L’accuratezza di x, come approssimazione di a dipende dal valore di h'(t,). Precisamente:

* seh'(ty) = 0 si ha x4 - x| = |x - al e il criterio d’arresto interrompe la
costruzione della successione non appena 1’approssimazione & accurata (si osservi
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che se f é sufficientemente regolare e £'(a) # 0 il Metodo di Newton rientra in
questo caso);

* seh'(ty) =~ 1sihal-nh'(t) = 0 e il criterio d’arresto interrompe la costruzione
della successione prima che 1’approssimazione sia accurata;

* seh'(ty) <0 sihall-h'(t)l >1 e quindi Ixu - %l <E = |x - al <E
(ma il criterio d’arresto potrebbe interrompere la costruzione della successione in
ritardo: 1’approssimazione potrebbe essere buona gia da qualche iterazione).

Esempio: Sia h(x) = a + A(x - @) e h'(x) = A. Per ogni k si ha: x - a = A"(x - a).

Se A =0.9 (1) ek & tale che X - X| = 0.99 E (criterio d’arresto verificato),
allora |x, — al = (0.99 / 0.1) E = 9.9 E > E e 1’accuratezza dell’approssimazione non

verifica la richiesta dell’utilizzatore.

Se A = -0.9 e k tale che |xu; — x| = 0.99 E (criterio d’arresto verificato),

allora |x, — al =E/ 1.9 = 0.5 E < E e 1’accuratezza dell’approssimazione verifica
la richiesta dell’utilizzatore. Perd: 6 iterazioni prima si aveva gid |x.e - al =
% — al / |AI®=E / (1.9 0.9°) =E / 1.009... < E, ovvero gid 6 iterazioni prima
1’accuratezza dell’approssimazione verificava la richiesta dell’utilizzatore.

(2) Dato un numero reale positivo E (1l’errore massimo richiesto dall’utilizzatore) ed
inserite tra le variabili di ingresso della procedura sia E che f:

se |f(x)| < E allora STOP

I1 criterio & calcolabile: a ciascuna iterazione la procedura conosce x,, determina f(x,) e

verifica la condizione del criterio.

Il criterio & efficace: la successione x, converge ad a e la successione f(x,) converge a

f(a) = 0 (la funzione f & continua e o & zero di f). La condizione del criterio & quindi
certamente soddisfatta dopo un numero finito di iteraziomi.

Per capire quanto buona sia x, come approssimazione di ¢ quando la condizione é verificata,
si supponga f regolare e si osservi che:

f(x,) = f(x) - f(a)
Utilizzando il Teorema di Lagrange:

f(x) - fla) = £'(t) (X - @) con t, tra x, € o
dunque:
fx) | = £ )| 1% - al

L’accuratezza di x, come approssimazione di a dipende dal valore di |f'(t,)|. Precisamente:

* se |[f'(ty)| ~ 1 si ha |[f(x)| = |z, - al e il criterio d’arresto interrompe la
costruzione della successione mon appena 1’approssimazione & accurata;

* se |[f'(ty)| =~ 0 il criterio d’arresto interrompe la costruzione della successione
prima che 1’approssimazione sia accurata;

* se |f'(t)| > 1 siha [fx)| <E = Ix, - al <E/ |[£f'(t)| <E
(ma il criterio d’arresto potrebbe interrompere la costruzione della successione in
ritardo: 1’approssimazione potrebbe essere buona gia da qualche iterazione).
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(1.73) Osservazione (criteri d’arresto, continuazione).

Entrambi i criteri d’arresto considerati nell’Osservazione (1.72) della Lezione 12
presentano il problema che, in alcuni casi, x, € un’approssimazione di « non
sufficientemente buona. Questo nasce dal fatto che, nel criterio d’arresto, stimando
1’errore assoluto commesso approssimando a con 1l’ultimo elemento della successione
calcolato (lx, - al) utilizzando la quantitad scelta (|xu; - %X/ in un caso, |f(x)|
nell’altro), si commette un errore relativo che non tende a zero quando k -+ oo.

I due criteri si possono modificare in modo da ottenere stime migliori. Ponendosi nel
medesimo contesto utilizzato per i due criteri precedenti:

(1-bis) Dato un numero reale positivo E (1’errore massimo richiesto dall’utilizzatore) e
inseriti E e la derivata h' tra le variabili di ingresso della procedura:

se X - x| / 11 - h'(x)| < E allora STOP

I1 criterio & calcolabile ed efficace.
Per capire quanto buona sia x, come approssimazione di o quando la condizione & verificata,
si osservi che, procedendo come in (1) dell’Osservazione (1.72):

1-h' (%)
=’4  —al = U +¢&) Ix - «
1-h' (x,)

k+

X1 ™%y
’1-h‘(xk)‘

con

h'(x)-h'(t,)
1-h' (x,)

In questo caso, quando k + ® si ha x, + @, tx *» a e quindi g - O.

(2-bis) Dato un numero reale positivo E (1’errore massimo richiesto dall’utilizzatore) ed
inserite E, f ed f' tra le variabili di ingresso della procedura sia:

se [f(x)|/1f'(x)| < E allora STOP
I1 criterio €& calcolabile ed efficace.
Per capire quanto buona sia x, come approssimazione di ¢ quando la condizione é verificata,

si osservi che, procedendo come in (2) dell’Osservazione (1.72):

f(xk) fl(tk)
‘7 _ ’7 x - al = (1 +¢&) |x - al

£r(x,) frix)

con



Lezione 13 - 2

£'(t)
e B,
£'(x,)

Anche in questo caso, quando k + o si ha x; + o, tx # o e quindi & -+ O.
(1.74) Osservazione (metodi ad un punto in F(8,m)).
Siano:

* h:[a,b] = R e v in [a,b] che verificano le ipotesi del Teorema di convergenza

¢ ¢:[a,b] » F(B,m) 1l’algoritmo usato per approssimare i valori di h, tale che:

per ogni 6 in [a,b] N F(B,m) , le(@ - b < 4,
Siano poi x, la successione generata dal metodo definito da h a partire da <, convergente ad
a per ipotesi, e & la successione definita da & = v , & = ¢(&). Si supponga che per ogni
k sia & in [a,b].
Si ha:
(1.75) Teorema (stabilitad dei metodi ad un punto, parte I).
Sia & > 0. Se MetodoUnPunto(h,a,b,d) eseguito in F(fB,m) definisce £ in F(B,m) tale che
|Ek+1 &) ékl < rd(d)

allora £ & punto unito di una funzione h":[a,b] - R tale che:

per ogni x in [a,b] , |h"(x) - h(x)| < 4, +

Informalmente: se d, ‘piccolo’, la procedura restituisce un punto unito di una funzione h’
‘vicina’ ad h.

(1.76) Teorema (stabilita dei metodi ad un punto, parte II).

Siano inoltre f:[a,b] - R una funzione regolare tale che f(a) = 0, e ¢:[a,b] » F(S,m)
1’algoritmo usato per approssimare i valori di f tale che:

per ogni 6 in [a,b] N F(B,m) , |¢@) - £ < dy
Sia § > 0. Se MetodoUnPunto(h,a,b,f,d) eseguito in F(fB,m) definisce £ in F(B,m) tale che
&)1 < rd(d)
allora £ & zero di una funzione f*:[a,b] - R tale che:
per ogni x in [a,b] , [f°(x) - £(x)| < dy + 9

Informalmente: se dy ‘piccolo’, la procedura restituisce uno zero di una funzione £’
‘vicina’ ad f.
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(1.77) Osservazione (efficacia dei criteri d’arresto in F(8,m)).

I due teoremi precedenti stabiliscono che se in F(f,m) la procedura definisce £ allora...
Questo lascia supporre che la procedura potrebbe non definire £. La supposizione &
corretta: come gia sappiamo, in F(B,m) i criteri d’arresto possono risultare non efficaci.

Esempio.

Sia [a,b] non contenente 0. Allora 4 = [a,b] N F(B,m) contiene un numero finito di
elementi. Sia A > 0 la minima distanza tra due elementi consecutivi di 4. Se ¢ non

ha punti uniti in [a,b], si ha allora:
|§k+1 - §k| = A e quindi |£k+1 © §k| = A

Se 1’utilizzatore sceglie § < A, la condizione |&.; © &I < rd(§) non pud essere

verificata.

Nell’altro caso, Se % non ha zeri in [a,b], detto I' > 0 il valore minimo di % in 4,

si ha:

(&) > T

Se 1’utilizzatore sceglie & < I', la condizione [9(§)| < rd(§) non pud essere

verificata.

(1.78) Esempio.

Sia f(x) = (x - 2)°. La funzione ha un solo zero, a = 2 e f'(a) = 0. Scelto x, > 2, per la

successione generata dal metodo di Newton applicato ad f si ha:

(x, +2) /2

Kyt

da cui:

X - 2= (1/2)* (x, - 2)

La successione converge ad a ma €& una successione di tipo esponenziale. In questo caso si
ha:
hy(x) = (x+2) /2

dunque h'(a) = 1/2 # 0. In questo caso, il metodo di Newton risulta avere ordine d%

convergenza ad o pari a uno.

(1.3) METODO DI NEWTON PER FUNZIONI DA RF IN Rn

(1.79) Osservazione.

Se f:R » R € una funzione regolare, ciascuna iterazione del metodo di Newton costruisce, a
partire da un valore x; noto, il numero reale X,., determinando lo zero (se esiste) della
funzione affine (si veda 1’0Osservazione (1.67) nella Lezione 11):
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A(x) = £(x) + £'(x) (x - x)

La funzione A,:R =+ R & lo sviluppo di Taylor di f(x) di ordine uno in x, (graficamente: la
retta di equazione y = A,(x) & la tangente al grafico di f(x) in x,).

L’idea del metodo di Newton nel caso in cui f:R" + R" sia regolare & la stessa: a ciascuna
iterazione, a partire da un valore noto x, € R", si costruisce lo zero (se esiste) dello
sviluppo di Taylor di f(x) di ordine uno in x:

Ax) = £(x) + Je(x) (x - %)

dove J:(x) € R"*" & la matrice jacobiana di f in x, ovvero la matrice di elemento i,j dato
da:
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(1.80) Esempio.
Sia f:R® -+ R® definita da:’
f(x) = [ £(x,%) 5 f2(x,%) 1 = [ x° - % ; - % + %, ]
La matrice jacobiana di f in x é:
& =[2% ,-1;-1,2x ] :R R
(1.81) Osservazione.’

Noto un elemento x(k) in R", il metodo di Newton per la funzione f:R" + R" determina

1l’elemento x(k+1) risolvendo 1l’equazione:
fx®) + J:(x®) x - xX) =0

ovvero:

Jx&k) x - xk&) = - fx&)

Quest’ultima equazione & un sistema di equazioni lineari. Se la matrice J;(x(k)) &
invertibile allora si ottiene:

x - x(k) = - Jx&)DT £(xk))
L’elemento x(k+1) & quindi:
x(k+1) = x(k) - @& £&x&)

(1.82) Esempio.

Si consideri la funzione f:R®* -+ R® dell’Esempio (1.80) e sia x(0) = [ 1 ; -1 ]. Per
determinare x(1) occorre calcolare J;(x(0)), f(x(0)) e poi risolvere il sistema

J:(x(0)) z = - £(x(0))
Si ha:

J&x@)=02,-1; -1, -21 , f(x(0)) =[2; 01
Si osserva che J;(x(0)) & invertibile. La soluzione del sistema risulta:

p=1[-4/5; 2/5]1]
Allora:

x(1) = x(0) +p=1[1/6; -3/5]

1 Per le matrici utilizzeremo la notazione di Sctlab.
2 Per le successioni di elementi in R", useremo la notazione x(0), x(1), x(2),



Lezione 14 - 2

(1.83) Definizione.

I1 metodo di Newton applicato alla funzione f:R" -+ R", con matrice jacobiana J:(x)
invertibile, & il metodo ad un punto definito dalla funzione:

N(x) = x - J(x)™" £f(x) : R =+ R
(1.84) Teorema (di convergenza locale per metodi ad un punto in R").
Siano h:R" + R” sufficientemente regolare e o punto unito di h.
Se tutti gli autovalori di J,(a) hanno modulo < 1 allora esiste un numero reale p > O tale
che:
[l x(0) —a |l <p = la successione x(k) generata dal metodo iterativo
definito da h a partire da x(0) converge ad «
(Dimostrazione omessa.)
Questo teorema fornisce una condizione sufficiente per l’utilizzabilitd del metodo definito
da h per approssimare «. Per un metodo ad un punto in R", essere utilizzabile significa che

per ogni x(0) sufficientemente vicino ad un punto unito a di h, la successione generata dal
metodo definito da h a partire da x(0) converge ad o.

(1.85) Esempio (prima parte).

Si consideri ancora la funzione f:R® -+ R® dell’Esempio (1.80).
La funzione ha due zeri:

f1(x1,%) =0

A%

Per approssimare i due zeri si considera il metodo f2(x1,%) = 0

definito dalla funzione

h(x) =x+£f(x) =[x +%° - % ; X - X + %]

Si verifica facilmente che i punti uniti di h somno
tutti e soli gli zeri di f£.

Per la matrice jacobiana si ha:
I =1+ J;(x)=[1+2%x%,-1;-1,1+2x]

da cui:
Jh(a’)=[11_1;_1’1]

Gli autovalori sono le radici del polinomio caratteristico:
p(A) = det( Jy(a') - AI) = (1 - N> -1 ovvero A =0, A =2

I1 Teorema di convergenza locale non & applicabile. Sussiste perd la seguente
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(1.86) Osservazione.

Nelle ipotesi del Teorema di convergenza locale: se almeno uno degli autovalori di J,(a) ha
modulo > 1 allora il metodo iterativo definito da h mon é utilizzabile per approssimare a.

(1.87) Esempio.

Per giustificare 1l’asserto precedente, si consideri il seguente caso particolare.

Siano h(x) = [ hy(x;) ; hy(x,) 1: R* = R* con h; e h, regolari, «; punto unito di h, e a, punto
unito di h,. Ne segue che a = [a; ; a,] & punto unito di h. La matrice jacobiana di h in «
e:

Jo(a) = [ h'(ay) , 0 ; 0, hy' (o) 1]
i cui autovalori somno:
A = hy' (ay) e A = hy' ()

Sia x(k) una successione generata dal metodo definito da h. Allora x,(k) e x,(k) sono,
rispettivamente, una successione generata dal metodo definito da h; e, rispettivamente, dal
metodo definito da h,. Se, ad esempio, |A;l = |h;'(a)| > 1, per la successione x;(k) si ha
(Osservazione (1.61) della Lezione 10): o x,;(k) = o; per un valore finito di k o x,;(k) non
converge ad ;. Come gid osservato a suo tempo, l’eventualita che accada la prima
condizione & molto remota. Dunque ci si aspetta che la successione non sia convergente. Se
in questa situazione il metodo iterativo definito da h fosse utilizzabile per approssimare
a allora per qualunque x(0) sufficientemente vicino ad a la successione x(k) risulterebbe
convergere al punto unito di h. Ne seguirebbe che per qualunque x;(0) sufficientemente
vicino ad «; la successione x;(k) risulterebbe convergere al punto unito di h;. Ma questo,
per quanto osservato sopra, non & possibile.

(1.88) Esempio (seconda parte).

Dal risultato finale della prima parte dell’esempio si deduce che il metodo definito da h
non € utilizzabile per approssimare a'.

Per a'' si ha:
Jha'')=[3,-1; -1, 3]

e quindi:

pA) = det( Jy(a'") - AI) = (3 - XM* -1 ovvero AMA=2, =4
e il metodo definito da h non é utilizzabile neppure per approssimare «''.
(1.89) Esercizio (per casa).
Sia f la funzione dell’Esempio (1.85). Determinare la funzione N:R® + R®> che definisce il
metodo di Newton applicato ad f e verificare (con tanta pazienza) che si ha: Jy(a') = 0 e
Jy(a'') = 0.

(1.90) Osservazione (utilizzabilitd del metodo di Newton).

Quanto mostrato nell’esercizio precedente vale in generale. Si ha infatti:
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Se f ha derivate seconde continue, J; & non singolare e o & uno zero di f, allora Jy(a) =0
e il metodo di Newton é utilizzabile per approssimare «. Si ha inoltre che, analogamente a
quanto accade nel caso di funzioni di una variabile, 1’ordine di convergenza ad a del

metodo di Newton & almeno due.
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(2) SISTEMI DI EQUAZIONI LINEARI

(2.01) Esempio.

Esempi di contesti in cui si devono risolvere sistemi di equazioni lineari:
* ad ogni iterazione del metodo di Newton per funzioni da R® in R";
* risoluzione di reti elettriche resistive lineari
* risoluzione di reti elettriche RLC lineari in regime sinusoidale

(2.02) Problema.

Dati A € R**® invertibile e b € R", determinare x* € R* t.c. Ax" = b. La colonna x* si chiama
soluzione del sistema Ax = Db.

(2.03) Osservazione.

Una matrice A € R"™" é& invertibile se verifica una delle seguenti proprieta equivalenti:

* esiste una matrice M € R"*" t.c. AM = MA = I (la matrice M si chiama matrice inversa

di A e si indica con A™)

* Ax =0 < x =0 (questa proprietd si esprime anche con ker A = { 0 })

* per ogni colonna b # 0 in R", esiste una sola soluzione x* del sistema Ax =D

e det A #O
(2.04) Osservazione (casi semplici).
Decidere se la matrice A del sistema é& invertibile e, in caso affermativo, determinare la
soluzione del sistema Ax = b & semplice quando la struttura di A ricade in uno dei seguenti
casi:

(D) diagomale (A é diagonale se i # j = a;; = 0)

. Si ha: det A = a;; -+ a,., quindi: det A = 0 & esiste k t.c. ay,x = 0. Dunque: A
invertibile se e solo se per ogni k si ha a,, # O.

. Se A & invertibile, le componenti della soluzione x* del sistema Ax = b si
determinano con:
Xk* = b, / Ay,
I1 numero di operazioni necessario per determinare la soluzione é:
n divisiont.

(T) triangolare (A & triangolare superiore se 1 > j = a;; = 0; & triangolare inferiore
se i <j = a,;=0)

¢ Anche in questo caso si ha: det A = a,; --- a,,. Dunque: A dnvertidbile se e solo se
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per ogni k st ha a,, # O.

* Se A & triangolare superiore invertibile, le componenti della soluzione x* del

sistema Ax = b si determinano con la seguente procedura di sostituzione

all’indietro:

z = SI(T,c)
se T non é triangolare superiore invertibile allora STOP;

altrimenti
Zy = Cy / ton;

per k = n-1,...,1 ripeti

S = tyurt ¥ Xpnn T oo F i ¥ X
X = (by = 8) / troxs

I1 numero di operazioni necessario per determinare la soluzione

oo n(n-1)
n divistoni + ——— (moltiplicazionsi + somme)

(2.05) Esercizio (per casa).
Descrivere la procedura di sostituzione in avanti di intestazione

z = SA(T,c)

che, dati una matrice triangolare inferiore invertibile T ed una colonna c, determina la

soluzione del sistema Tx = c. Determinare anche il numero di operazioni necessario per

determinare la soluzione.
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(2.06) 0Osservazione (casi semplici, conclusione).
(0) ortogonale (A & ortogonale se sussiste una delle tre condizioni equivalents:
(1) le colonne (o le righe) di A sono una base ortonormale di R" con
prodotto scalare canonico;
(2) A & invertibile e A™ = A%;
(3) A°A = AN =T )

e A é certamente invertidbile.

. La soluzione x" del sistema Ax = b si determina con:

I1 numero di operazioni necessario per determinare la soluzione & quello delle
operazioni necessarie per effettuare il prodotto di una matrice per una colonna:

n® moltiplicazioni + n(n-1) somme

(P) di permutazione (A & di permutazione se si ottiene dalla matrice identita I permutando

le colonne).

Le colonne di una matrice di permutazione sono quindi quelle della matrice identitad (a
parte 1’ordine). Dunque costituiscono una base ortonormale di R" con prodotto scalare

canonico (la base canonica). Se ne deduce che una matrice di permutazione é ortogonale.
* Anche in questo caso si ha: A & certamente invertidbile.

. La soluzione x* del sistema Ax = b si determina con:

I1 numero di operazioni necessario per determinare la soluzione &, questa volta,
zero perché A°, come A, & di permutazione e il prodotto Pv di una matrice di
permutazione P per una colonna v produce una colonna che ha le stesse componentt di

v ma in ordine diverso.
(2.07) Osservazione (caso generale).

Quando la matrice A del sistema non ha struttura tale da ricadere in un caso semplice, il

problema si affronta in due passi:
Primo Passo:
Si fattorizza A in prodotto di fattori semplic<.

Esempio: A = F;F,F;, con F, ortogonale, F, triangolare superiore e F; di permutazione.
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Secondo Passo:

Si utilizza la fattorizzazione per decidere se A € invertibile e, in caso affermativo,
per determinare la soluzione x'.

Esempio:
A = F,F;F; = det A = detF, detF, detF;

quindi: A é invertibile < ciascun fattore é invertibile. Poi:

1) Ax=b = FF,F,x=b = FFx=F7'b=c
e c; si ottiene risolvendo il sistema semplice F;x = b.

2) F,Fax = ¢, = F,x=F,'¢c; = ¢,

e C, si ottiene risolvendo il sistema semplice F,x = c;.

(3) Fax =¢c, = x"=Flc,

e x" si ottiene risolvendo il sistema semplice F;x = c,.

In generale, se A & invertibile, la soluzione si determina risolvendo tanti sistem?
semplici quanti sono i fattori di A.

(2.08) Definizione (fattorizzazione LR, LR con pivoting e QR).
Sia A € R™™".
Una fattorizzazione LR di A & una coppia S,D tale che:

* S € R"" & una matrice triangolare inferiore con s, = 1 per k = 1,...,n
* D € R"™" é una matrice triangolare superiore
e SD=A

Si osservi che il fattore sinistro S & invertibile. Allora: A é invertibile se e solo se lo

é il fattore destro D.
Una fattorizzazione LR con pivoting di A € una terna P,S,D tale che:

* P € R"" & una matrice di permutazione
e la coppia S,D é una fattorizzazione LR di PA

La relazione tra A,P,S e D é:
PA =SD ovvero A =P*'SD

Si osservi che sia P che il fattore sinistro S sono invertibili. Di nuovo: A é tnvertibile

se e solo se lo é il fattore destro D.
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Una fattorizzazione (R di A é una coppia U,T tale che:

* U € R"™" & una matrice ortogonale

* T € R"™" é una matrice triangolare superiore

e UT=A
Si osservi che il fattore sinistro U é invertibile. Anche in questo caso: A é invertibile
se e solo se lo é il fattore destro T.

(2.09) Definizione (matrice elementare di Gauss).

Data A € R"™", per cercare una fattorizzazione LR con pivoting si utilizza la procedura EGP
che si basa sul procedimento di eliminazione di Gauss. Per descrivere la procedura, occorre
la nozione di matrice elementare di Gauss.

H € R°*" & una matrice elementare di Gauss se: esistono un indice k € {1,...,n-1} e numeri
reali Awq,...,A\,tali che H si ottiene dalla matrice identitd I € R"*" sostituendo alla
colonna k-esima e, (le cui componenti sono tutte uguali a zero ed eccezione della k-esima
che vale uno) la colonna:
[0 ;... 0 ;1 5 At 3envs A
)

k-esima componente

Esempi:
® la matrice I € R"*" & elementare di Gauss;
® la matrice:
[1,0,0;
1,1,0;
-2,0,1]
€& elementare di Gauss;
® la matrice:
[1,0,1;
1,1,0;
-2,0,1]
non é elementare di Gauss.

(2.10) Proprieta (delle matrici elementari di Gauss).
Sia H una matrice elementare di Gauss. Allora:

* H & triangolare inferiore con h, = 1 per ogni k (dunque <nvertibile)
e H' si ottiene da H cambiando segno agli elementi al di sotto della diagonale
principale

(ad esempio:
H = [1,0,0; H' = [1,0,0;
1,1,0; -1,1,0;
-2,0,1] 2,0,11 )
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(2.11) Definizione (procedura EGP).

La seguente procedura EGP opera su una matrice A € R"*", e determina una terna P,S,D che &
una fattorizzazione LR con pivoting di A.

(P,S,D) = EGP(A)

A = Ay
per k = 1,...,n-1 ripeti:
determina opportunamente P, di permutazione, Hy, elementare di Gauss e pone Ay, = Hy Py Ag;
D = A,;
P=P,. ... Pg;
P (P H' w Poy® Hyy')

w0
I

Le matrici P, e Hy sono determinate in modo da ottenere A, triangolare superiore.

Si osservi che:

D=A, =H.,P,A,=... =H,,P., ... H P; A
da cui, ricavando A:
A= (PfH™ ... P H. ) D
La matrice P,H,* ... P, H,.,"' non é triangolare inferiore con elementi uguali ad uno sulla

diagonale ma la matrice
P (P"H," ... Ppy” Hiy™)

lo é. Quindi, la coppia S = P (P,"H," .. P,.,"* H.,')), D & una fattorizzazione LR di P A, come
si voleva.

Resta da chiarire come, ad ogni iterazione, di determinano le matrici P, e H.
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(2.12) Esempio.

Calcolo di EGP(A) con:

(%) A = A;

(*) k =1; A(1,1) 7é 0= P, =1I; T, = P, Ay;

H,=[1, 0, 0, 0;
A, 1, 0, O;
As, 0, 1, 0;
A, 0, 0, 11

I valori Ay, As;, A, sono determinati dalla richiesta che nella matrice H; T; gli elementi
di posto (2,1),(3,1) e (4,1) - ovvero gli elementi della k-esima colonna al di sotto
della diagonale - siano ugual<Z a zero:

ATi(1,1) + Ti(2,1) =0 ;5 A Ti(1,1) + T,(3,1)=0 ; AT(1,1) + T,(4,1) =0

Tenuto conto che T,(1,1) # 0, i valori A;,A;,As sono univocamente determinati:

T1(2,1) T1(3,1) T1(4,1)
sE e -2 A =-2  As- =
Ti(l,l) T1(1,1) Ti(l,l)
Infine:
(1, 0,0,0 [1,1,0,0;, = [1,1,0,0;
-2, 1, 0, 0; 2, 2, 1, 0; 0, 0, 1, 0;
2, 0, 1, O; -2, 0, 0,-1; 0, 2, 0,-1;
1, 0, 0, 11 -1, 1, 2,-1] 0, 2, 2,-1]
H, T, = A,

(*) k = 2; A,(2,2) = 0 = essendo A,(3,2) # 0, scambio la seconda riga con la terza: P, =

Pa.3s
(1, 0,0,0 [1,1,0,0;, = [1,1,0,0;
0, 0, 1, 0; 0, 0, 1, 0; 0, 2, 0,-1;
0, 1, 0, 0; 0, 2, 0,-1; 0, 0, 1, 0;
0, 0, 0, 11 0, 2, 2,-1] 0, 2, 2,-1]

P2,3 A, = T,
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Si ha cosi T,(2,2) # 0.

Poi:

I valori As;,\; sono determinati dalla richiesta che nella matrice H, T, gli elementi
di posto (3,2), e (4,2) - ovvero gli elementi della k-esima colonna al di sotto

della diagonale - siano ugual? a zero:
)\3T2(2’2) + T2(3’2)= O ; )\4T2(2’2) + T2(4’2) = O

Tenuto conto che T,(2,2) # 0, i valori A;,\, sono univocamente determinats:

T,(3,2) T, (4,2)
M= - =" =0 ; A=-2>2""1=-
T2(2,2) T2(2,2)
Infine:
(1, 0,0,0, [1,1,0,0;, = [1,1,0,0;
0, 1, 0, O; 0, 2, 0,-1; 0, 2, 0,-1;
0, 0, 1, 0O; 0, 0, 1, 0; 0, 0, 1, 0O;
0,-1, 0, 11 0, 2, 2,-1] 0, 0, 2, 0]
H, T, = A,
(*) k = 3; A;(3,3) # 0 = P; =1; Ty = Aj;
H3 = [ 1: 0, O’ O;
0, 1, 0, 0;
0, 0, 1, 0;
0, 0, A, 11

I1 valore )\, & determinato dalla richiesta che nella matrice H; T; 1’elemento
di posto (4,3) - ovvero gli elementi della k-esima colonna al di sotto

della diagonale - sia uguale a zero:
A T5(38,3) + T3(4,3) =0

Tenuto conto che T5(3,3) # 0, il valore A, & univocamente determinato:

T,(4,3)
YT,(3,3)
Infine:
(1, 0,0,0 [1,1,0,0;, = [1, 1, 0, 0;
0, 1, 0, 0; 0, 2, 0,-1; 0, 2, 0,-1;
0, 0, 1, O; 0, 0, 1, O; 0, 0, 1, O;
0, 0,-2, 11 0,0, 2, 0] 0, 0, 0, 0]

Hs Ts = A,



() D=A;; P=P;P,P; = I 2%F

Poi:
[ 1) 03 O) O! [ 1’ 0, O! O; [1! O) 03
2, 1, 0, 0; 0, 0, 1, 0; 0,1, 0,
_2, 0’ 1’ OJ O’ 1’ O, O; O, O, 1’
-1, 0, 0, 11 0, 0, 0,11 o0, 1, 0,
H™ P,5" Hy '
Infine:
S=PX

[1, 0, 0
0, 1, 0
0, 0, 1
0, 0, 2

H,™*

1, 0, 0O,
2, 1, 0,
2, 0, 1,

-1, 1, 2,
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Gli elementi T,(1,1), T,(2,2) e T3(3,3) utilizzati per ricavare le matrici elementari di
Gauss H;,, H, e H; (in generale 1’elemento T,(k,k) utilizzato per ricavare la matrice H,)
si chiamano piwvot. Il termine pivoting si riferisce agli scambi effettuati alla k-esima

iterazione per ottenere T.(k,k) # O.

(2.13) Esempio.

Calcolo di EGP(A) con:

A=10[1,1, 0, 0;
2, 2,1, 0;
-2,-2, 0,-1;
-1,-1, 2,-1 ]
(*) A1 = A,
() k=1; A(,1) #0 =P, =1; T, =P, A;
Hi = [ 1: 0’ O’ 05
)\2, 1’ 05 0:
AB: O, 13 O;
As, 0, 0, 1]

I valori A;,A;,A, sono determinati dalla richiesta che nella matrice H; T; gli elementi
di posto (2,1),(3,1) e (4,1) - ovvero gli elementi della k-esima colonna al di sotto
della diagonale - siano ugual? a zero:

)\2T1(1,1) + T1(2,1) =0
Tenuto conto che T;(1,1) # 0,

T, (2,1)
A= - T =
T,(1,1)

Infine:

;o AsTi(1,1) + T,(3,1)=0 ; AT (1,1) + T,(4,1) =0

i valori A,,As;, A\ sono wunivocamente determinati:

T,(3,1) T,(4,1)

T, (1,1) N

.o
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[ 1, 0, 0, O; [1, 1, 0, 0; = [1, 1, 0, O;

-2, 1, 0, 0O; 2, 2,1, 0; 0, 0, 1, 0;

2, 0, 1, 0; -2, 0, 0,-1; 0, 0, 0,-1;

1, 0, 0, 11 -1, 1, 2,-1] 0, 0, 2,-1]
H; T, = A,

(*) k = 2; A,(2,2) = 0 = essendo anche A,(3,2) = A,(4,2) = 0, gli elementi della k-esima
colonna al di sotto della diagonale somo gid uguali a zero si pone: P, = 1 e H, = I, da
cui Tg = P2A2 = A2 e A3 = H2T2 = H2A2 = Ag;

(*) k = 3; A;(3,3) = 0 = essendo A;(4,3) # 0O scambio la terza riga con la quarta: P; =

P;,., quindi:
Ts = P3A; = [

Questa matrice é gia triangolare superiore, quindi H; = I e A, = T;;

(*) D = A;; P=P3P,P; = Py,

Poi:
(1, o0,0,0 [1,0,0,0, = [1,0,0,0;
2, 1, 0, 0; 0, 1, 0, 0; 2, 1, 0, 0;
_2) 0’ 1) O] O) 0’ O) 1) _2’ b O’ 1;
-1, 0, 0, 1] 0, 0, 1, 01 -1, 0, 1, 0 1]
H™ P;.* T
Infine:
S=PX=1[1, 0, 0, O;
2, 1, 0, 0;
-1, 0, 1, 0;
-2, 0, 0, 11

(2.14) Teorema (esistenza della fattorizzazione LR con pivoting).

Sia A € R"*". La procedura EGP applicata ad A restituisce wuna fattorizzazione LR con
pivoting di A. Ovvero: per ogni A € R"*" esiste almeno una fattorizzazione LR con pivoting.

(Dimostrazione: segue dai due esempi precedenti.)
(2.15) Esercizio (uso della fattorizzazione LR con pivoting).

Siano:

EGP(A) = ([, 0,0, , [1,0,1; , [O0,1,0;, ) , b=11;
0, 1, 0; 0, 2, 1; 1, 0, O; 0;
1, 1, 1] 0, 0,-11 0, 0, 11 01
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Senza determinare A, decidere se A & invertibile e, in caso affermativo, determinare la
soluzione del sistema A x = b.

(2.16) Procedura (studio di un sistema di equazioni lineari con EGP).

// A € R"*", b € R

(8,D,P) = EGP(A);

se dy = 0 per qualche k allora STOP; altrimenti
c = SA(S,Pb);
x" = SI(D,c)

La procedura é soddisfacente nel senso che comunque assegnati i dati, decide se la matrice
& invertibile e, in caso affermativo, determina la soluzione.

(2.17) Definizione (procedura GS).

Una procedura per la ricerca di una fattorizzazione QR di una matrice A € R™*" & la
seguente procedura GS,' descritta nel caso particolare di n = 3.

Sia A = [a;,a,,a5] € R**°.
Passo uno.
Cerchiamo {2 = [w;,w,,w;] a colonne ortogonali e @ triangolare superiore con 6, = 1 tali
che 26 = A. Se matrici siffatte esistono, riscrivendo 1l’ultima uguaglianza per colonne si
ha:

Wy = a4 s Wi 91,2 T wy = s Wi 91,3 + wy 92,3 + w3 = a3 (%)
La prima uguaglianza determina w;. Dalla seconda segue che:’

(w, 91,2) s W t Wy, * w = a; ¢ w
Poiché w; e w, sono ortogonali, si ha w, ¢ w; = 0. Allora, se w; # 0, si ha mecessariamente:
91,2 = (a o w) / (wy o wy)
e quindi:
Wy; = a; = Wy 01,2

Dalla terza uguaglianza delle (*) si ha poi:

(w, 01,3) e w; + (W, 02,3) e w; tws e w = az e w

(w, 01,3) e w, + (w, 92,3) e W, t w3 ¢ Wy az * Wy
Poiché w, ¢ w; = 0 e, analogamente, w; ¢ w; = 0, allora si ha necessariamente:

01,3 = (3-3 . w1) / (w1 . UJ1)

1 Il nome GS della procedura deriva da quello della procedura di ortomormalizzazione dt
Gram-Schmidt, da cui concettualmente deriva.
2 Date due colonne v,w € R", si indica con v e w il loro prodotto scalare canonico: v e w

=VvViw r ...t VW,
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Essendo anche w; ¢ w, = 0, se w, # 0, si ha necessariamente:

02,3 = (az » wy) / (w; o wy)
e, infine:
Ws = az — W 91,3 - W 92,3

Passo due.

La fattorizzazione di A trovata al passo precedente non é una fattorizzazione (R perché le
colonne di {2 non hanno norma unitaria. Questo secondo passo determina, se possibile, una
fattorizzazione QR normalizzando le colonne di {2

Sia: A = diag(|| wi||, || wa||,]| wsl]) -® Se anche w; # 0, la matrice A & invertibile e si verifica
facilmente che la coppia
U=0A" , T=A06 (%)

é una fattorizzazione QR di A. Si osservi che per la matrice T, triangolare superiore, si
ha:
Tex = [[wil| >0

(2.18) Teorema (procedura GS e fattorizzazione QR).

La procedura GS descritta nella definizione precedente determina wuna fattorizzazione QR di
A € R"*" se e solo se A & invertibile.

(Dimostrazione. Se la procedura non si interrompe prematuramente perché w, = O per qualche
k, allora la coppia U,T determinata da (**) & costituita da due matrici invertibili (U
perché ortogonale, T perché triangolare con sulla diagonale le norme, non nulle, delle
colonne w,). Viceversa, se fosse w; = 0 allora sarebbe a; = 0 e quindi A non invertibile. Se
fosse w; # 0 e w, = 0 allora sarebbe 0 = a, - w; 0,, = a, - &, 0, ,, dunque a, e a, sarebbero
linearmente dipendenti, quindi A non invertibile. Se fosse w; # 0, w, # 0 e ws; = 0 ..)

(2.19) Osservazione (non unicitd della fattorizzazione QR).

Siano A € R**" e U,T una fattorizzazione QR di A. Se E € R"*" & una matrice diagonale con,
ad esempio, E(1,1) = -1 e E(k,k) = 1 per k = 2,...,n, allora la coppia:

U’ =UE , T =ET
€ una fattorizzazione QR di A diversa da U,T.
(2.20) Procedura (studio di un sistema di equazioni lineari con GS).

// A € R"*", b € R.

Se GS(A) determina w, = 0 per qualche k allora STOP; altrimenti
(U,T) = GS(A);
x" = SI(T,U°b)

3 Mutuando la simbologia da Scilab, con diag(vl,...n%) si indica la matrice diagonale di
dimensione n X n che ha sulla diagonale principale gli elementi vy,...,v,
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Anche questa procedura & soddisfacente nel senso che comunque assegnati i dati, decide se
la matrice & invertibile (utilizzando il Teorema (2.18)) e, in caso affermativo, determina
la soluzione.

(2.21) Osservazione (metodo di Householder).

Esistono procedure che determinano una fattorizzazione QR di una qualsiasi A € R'*" (anche
non invertibile). Ad esempio la seguente:

(U,T) = Householder(A)

\\ A € R*""
A, = A
per k = 1,...,n-1 ripeti:

determina X, € R"*" ortogonale tale che gli elementi sotto la diagonale principale
delle prime k colonne di X, Ay sono nulli e pone: A, = X Ay;

T = A

U=X". %o

La funzione predefinita qr di Scilab realizza questa procedura.
(2.22) Procedura (studio di un sistema di equazioni lineari con Householder).

// A € R"*", b € R.

(U,T) = Householder(4);
se ty = 0 per qualche k allora STOP; altrimenti x* = SI(T,U"b)

Anche questa procedura & soddisfacente.

(2.1) CONDIZIONAMENTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

Siano:

e A € R**" invertibile, b € R* e x* la soluzione del sistema Ax = b
e A' € R"™" invertibile, b' € R" e X la soluzione del sistema A' x = b'

(2.23) Definizione (perturbazioni, scostamento).

Siano:
0A = A' - A € R**" s b =b' - b €R"

le perturbazioni det dati e:

lo scostamento della soluzione.
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(2.24) Problema (condizionamento della soluzione di un sistema di equazioni lineari).
Assegnato un modo di misurare le perturbazioni dei dati e lo scostamento della soluzione,

determinare quanto grande pud essere lo scostamento della soluzione in funzione di quanto

grandi sono le perturbazioni dei dati.
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(2.25) Definizione (norma in uno spazio vettoriale).

Sia V uno spazio vettoriale su R. Una funzione N:V + R & una norma in V se verifica le
seguenti condizioni:

(1) per ogni v € V, N(v) 2 0 e N() =0 & v = 0;
(2) per ogni v € V ed ogni a € R si ha: N(av) = |lal N(v);
(3) per ogni v,w € V si ha: N(v + w) < N(v) + N(w).

La coppia V,N si chiama spazio nmormato.

(2.26) Esempio (norme usuali in R").

Siano V=R" e v = [vy,...,v,] € V. Le funzioni:
® N,:R* + R definita da N;(v) = |vy| + ... + |v,l
®* N,:R* -+ R definita da N,(v) = sqrt( vi° + ... + v;,> )

® No:R" » R definita da Ne(v) = max{ lv,l,...,lv,| }
sono norme in R".
(2.27) Esercizio (per casa).
Dimostrare che le funzioni N; ed N. verificano le proprietd della Definizione (2.25).
(2.28) Definizione (intorno sferico).
Siano R",N uno spazio normato, v € R® e r € R. L’insieme:
ILiv,r) = { x € R* tali che N(x - v) < r }

si chiama %ntorno sferico di centro v e raggio r. Nella figura seguente sono rappresentati
in nero 1’intorno I1,(0,1), in blu I.(0,1), in rosso I,(0,1), nel caso n = 2.

(2.29) Definizione (norma di matrice).

Siano R",N uno spazio normato e A € R**". La quantita:
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| A |ly = max{ N(Av), N(v) =1}

si chiama nmorma N d7 A.

(2.30) Proprieta (della norma di matrice).

(I) Si osservi che la norma N di A & ben definita: il sottoinsieme S dei vettori v di R"
definito da N(v) = 1 & chiuso e limitato e la funzione v + N(Av) & continua. Per il
Teorema di Weierstrass, quest’ultima ha massimo e minimo su S. In particolare:

esiste y € R” tale che N(y) =1 e || A ||y = N(Ay)

(ITa) Per ogni A € R"*" e v € R" si ha:

NAv) < || A |y N(W)
Infatti: La relazione & certamente vera se v = 0. Se v # 0 si ha:
N(Av) = NC AN(v) vers(v) )" = N( N(v) Avers(v) ) = N(v) N(A vers(v))
Inoltre, per la definizione di norma N di A: N(Avers(v)) < | A ||y, dunque:

NCAv) < || A |lv N(W)

(IIb) Esiste w € R" tale che:
N(A w)

A s NG

Per la proprieta (I), esiste y € R" tale che N(y) =1 e || A |y = N(Ay). Se vers(w) =

y si ha 1’asserto.
(III) Per ogni A,B € R"*" si ha:
FAB < ([ Al B [l

Infatti: per la proprietd (I) esiste y € R" tale che N(y) =1 e || AB |y = N(ABy).

Allora, utilizzando due volte la proprieta (II):

| AB [x=NABy) < || AlxNBy) < Al Bl NG = Al Bl

1 Siano R,N uno spazio normato e v € R" un vettore non nullo. Allora:

1
N(v)

vers(v) = v

& il wersore di v. Ovviamente si ha N(vers(v)) = 1.
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(2.31) Osservazione.

L’insieme R"*" &, con le usuali operazioni di somma di matrici e multiplo, uno spazio
vettoriale su R. Introdotta in R" una norma N, la funzione A = || A ||y da R**™ in R ¢é una
norma in R"*" (questo spiega il nome dato alla funzione). Dunque, sussistono le proprieta

della norma (Definizione (2.25)):
(1) per ogni A € R*", |[A|h >0 e ||A|x=0< A =0;
(2) per ogni A € R°*" ed ogni @ € R si ha: ||alA|y = lal ||A]L;

(3) per ogni A,B € R"*" si ha: ||A + Blly < |[Allx + || B

(2.32) Osservazione (formule di calcolo della norma di una matrice).

Sia A € R**" e siano a;,...,a, le colonne di A. Si ha:
e |IA]: = max{ N,(a),...,N,(a) }
* ||A|: = sqrt( massimo degli autovalori di A*A )?
* ||All~ = || A" |ls ovvero, dette r,...,r, le righe di A: ||A||» = max{ N,(xy),..., N (x)) }

Si osservi che mentre il calcolo di ||A|e|| A« & elementare, quello di || A || in generale
non lo €.

(2.33) Esempio (condizionamento nel caso JA = 0, éb # 0).

Torniamo al condizionamento della soluzione del sistema Ax = b. Sia N una norma in R".
Supponiamo che sia A = 0 e b # 0. Allora i vettori x" e % verificano:
Ax" =D , A%z =b + 6b
percid, ricordando 1’invertibilitd di A, per lo scostamento dx si ha:
dx =% -x=A"(+db) -A"b=A"6

Introducendo la misura assoluta dello scostamento N(dx) e quella della perturbazione N(db),
utilizzando la proprietd (IIa) si ottiene:

V db , N(Jx) = N(A™"6b) < || A™ ||y N(db)

La precedente é la migliore limitazione possibile per la misura assoluta dello scostamento
in funzione della misura assoluta della perturbazione. La proprieta (IIb) mostra infatti
che:

3 6b : N(6x) = || A |y N(ob)

Se b # 0 (e quindi x* # 0), possiamo introdurre anche le misure relative dello scostamento
g, = N(dx)/N(x") e della perturbazione &, = N(db)/N(b). Per tali misure si ha:

2 La matrice A'A & simmetrica e semidefinita positiva. I suoi autovalori sono tutti non
negativi.
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N(éx) | A ||y N(Sb)
Ex = —=——= L —mmm
N(x") N(x")
Ma
1 A
Ax"=b = N =NAx) < | At [fN(x) = --———- .
N(x") N(b)
da cui:

Véb ,Vb#0:e <A i Ale

La precedente é la migliore limitazione possibile per la misura relativa dello scostamento
in funzione della misura relativa della perturbazione. La proprietd (IIb) mostra infatti
che:
dbedIb#0:e=| A" ||| Aly &
(2.34) Definizione (numero di condizionamento di una matrice).
Sia A € R"*" una matrice <nvertibile e N una norma in R". Il numero:
() = [ A7 [l A [l
si chiama numero di condizionamento di A (in norma N).
(2.35) Osservazione.
Poiché A™ A = I, si ha (usando la proprietd (III) di (2.30)):
T b= A" A < AT [l A [l
Per definizione si ha poi:
I I |y =max{ N(Iv), N(v) =1} =max{ N(v), N(v) =13} =1
e quindi:
c(A) = [ A7 [l A fly > 1
(2.36) Teorema (di condizionamento).
Siano A € R"™" una matrice <nvertibile e N una norma in R". Allora: per ogni b # 0, ogni db

tale che b + db # 0 e ogni JA tale che cy(A) g, < 1 si ha:

Br o (ex + &)
1 - c;(4) &,
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(2.36) Esercizio (svolto in classe).
Siano V = R’ con norma 2 e v € R’ tale che | v, = 2.

v. Disegnare 1’insieme degli & tali che e, < 1/4.

e Sia x*

e Sia x" = v/2. Disegnare 1’insieme degli % tali che ¢, < 1/4.

(2.37) Esercizio (svolto in classe).

Siano V = R’ con norma 2 e v € R® tale che | v, = 2.

* Sia x" = v. Disegnare 1’insieme degli % tali che | x|, < 1/2.

* Sia x" = v/2. Disegnare 1’insieme degli % tali che || dx |, < 1/2.

(2.38) Esercizio.

In R® con norma 2 si siamo: x* = [ 2; 0,1] e % tali che ¢, < L. Determinare: max |dx, / x|

e max |dx, / x%,|.

Soluzione: ¢, < L = | x|, < L] x |.. Allora, per k = 1,2 si ha:
max |6x, / x%| = max |6x| / Ix*%| =max |[éx|, / Ix% < L|x ./ 1%l

Dunque:
max 6%, / x| < L| x|,/ Ix4| = sqrt(4 + 0.01) / 2 =~ L

max [0x, / x| < L x|l / Ix%,] = sqrt(4 + 0.01) / 0,1 ~ 20 L

Per la prima componente 1l’errore relativo ha una limitazione simile a quella dello
scostamento; per la seconda, invece, la limitazione & peggiore. Questo accade perché mentre
x|, / 1% ~ 1, ||[x ||, / 1x"2] & molto maggiore di 1.

(2.39) Osservazione.

Siano A € R**" una matrice invertibile, b € R*, x* la soluzione del sistema Ax = b e £ € R".
Si usa % per approssimare x°. Ci si domanda quanto & accurata 1l’approssimazione. Scelta una
norma in R", per misurare 1l’accuratezza si utilizza la quantitd N(% - x")/N(x").

(A) Per ottenere informazioni sull’accuratezza, si introduce il vettore residuo del sistema
Ax = b associato a X definito da:
r=AX-b>o

e si interpreta X come soluzione del sistema perturbato:

ottenuto con le perturbazioni JA = 0 e db = r. Con questa interpretazione di % la quantita
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N(® - x")/N(x") risulta essere la misura relativa &, dello scostamento della soluzione dovuto
alla perturbazione. Applicando il Teorema di condizionamento (2.36) della Lezione 18 si
ottiene la limitaziome:

NE - x)/NGED =6 < cy(B) & con & = N(xr)/N(b)
(B) Per ottenere informazioni sull’accuratezza, si cerca una matrice M € R"*" tale che:

Mx = -r

e, posto 0A = M si interpreta X come soluzione del sistema perturbato:

A+8)x=0D
Con questa interpretazione di % la quantitda N(X - x")/N(x") risulta essere la misura
relativa e, dello scostamento della soluzione dovuto alla perturbazione. Se cy(A) ¢, < 1, dal
Teorema di condizionamento (2.36) della Lezione 18 si ottiene la limitazione:

N@E - xD)/NED) =& < Q) gy / (1 - (A) g

(2.40) Esempio.
Si consideri il sistema di figura, composto da due punti
pesanti, P, di massa m;, e P, di massa m,, liberi di

: AOZ:=O 75“‘ scorrere lungo una guida verticale e collegati da tre
C1 P, ,m ! molle ideali e con lunghezza a riposo O come nel disegno.
g l Ca | h
: c P;,m, L Scelto 1l’asse z verticale discendente, per determinare le
V7 7 —~— configurazioni di equilibrio, per ciascuno dei punti si
scrivono le equazioni della statica:
z

mg - ¢ 2 +¢c(z,-2) =0
mg - ¢ (2, -2) +c3(h-2) =0

che, sotto forma di sistema, si riscrivono:

[ci+c, —Cx [z ; = [ m g 5
-C; , Cy + c3 ] z, ] mg + c;h ]
A Z = b

Scelti i valori dei parametri:
c; = C, = ¢c3 = 100 N/m s m =m =1 kg s h=5mn s g =9.81 m/s’

la soluzione z* del sistema é&:
z,"~ 1.76 m s z," &~ 3.43 m

. . . PN 1
Se adesso assumiamo come valore dell’accelerazione di gravitd un valore g' tale che:

lg' - gl =1 dg | <107

1 Si ricordi che il valore dell’accelerazione di gravitd & noto solo con approssimazione.
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il sistema Az = b si trasforma nel sistema perturbato Az = b + db con:
0b = [ mdg ; mydg ]
Scelta poi la norma uno in R® si ha:
& = N;(0b)/N;(b) < 4 x 10° e c;(A) =3

In base al Teorema di condizionamento, per lo scostamento della soluzione Z del sistema
perturbato dalla soluzione z" si ha la limitazione:

e, < (M) g, < 1.2 x 10"

Infine, essendo:
|z [: / 1zl = 3 e | 2" |l: 7/ 1zl = 1.5

si ottengono stime simili anche per quanto riguarda lo scostamento delle componenti (vedere
1’Esercizio (2.38)).
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(2.41) Esempio (continuazione).
Supponiamo che le costanti elastiche c, siano note con incertezza. Assumiamo, ad esempio,
che, per k = 1,2,3, sia:

Ce' = ¢y + Ocy con [dc,l < 1 N/m

I1 sistema Az = b si trasforma nel sistema perturbato (A+ 6A) z = b + db con:

éc,+dc —dc
oa = |°TO% 2 , b= | °
—8c, 8c,+6c, h éc,
Per le perturbazioni dei dati si ha:
ex = N, (6A)/N;(A) < 107 , & = N;(6b)/N;(b) < 107

Inoltre:
c;(A) g, < 3x 1072

In base al Teorema di condizionamento, per lo scostamento della soluzione Z del sistema
perturbato dalla soluzione z" si ha la limitazione:

c, (A)
g, < ————(g,+¢,) ~ 6.2 x 107
1-c, (M) g,

Per quanto riguarda lo scostamento delle componenti si ha, questa volta:
€1 < 0.19 (197) , Ex,2 < 0.09 (9%)

(2.42) Esempio (continuazione).

Sia adesso Z una colonna (ad esempio ottenuta dal calcolatore utilizzando una procedura per
la soluzione del sistema Az = b) da usare come approssimazione di z". Per ottenere una
limitazione dell’errore commesso si procede come nell’Osservazione (2.39) della Lezione 19.

I1 vettore residuo é:
r=AZ2-D0

(1) Si interpreta Z come soluzione del sistema perturbato Az = b + r. Per il Teorema di
condizionamento:

< ¢y (B) M

Nl(z* N1(b)

Domanda: esistono perturbazioni dei parametri &g, dc,, dm,, 6h che generano perturbazioni
dei dati 0A = 0 e db = r (ovvero: si riesce ad ‘interpretare fisicamente’ il sistema
perturbato Az =b + r) ?
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Osservazione: la limitazione trovata & valida indipendentemente dalla Tisposta alla
domanda: il sistema perturbato non deve necessariamente essere
fisicamente significativo.

Risposta: si. Ad esempio: dg = 0, dc, = 0, dh = 0 e dm, = r,/g, 0m, = r,/g.

(2) S8i cerca M € R**” tale che M2 = -r, e si interpreta Z come soluzione del sistema
perturbato (A + M) z = b. Per il Teorema di condizionamento, posto &, = ||M|/| Al::
N, (z2—2" c,(h)e
se C1(A)5A < 1 allora ! ) < = 2
Nl(Z* 1_C1(A)£A

Domanda: esistono perturbazioni dei parametri dg, dc,, 0m,, 6h che generano perturbazioni
dei dati 6A = M e db = 0 (ovvero: si riesce ad ‘interpretare fisicamente’ il sistema
perturbato Az =b + r) ?

(2.43) Esempio.

Sia:
. 1.8
z=
3.4
Allora:
10.19
r=Az-D>b-= N
—9.81
Cerchiamo a e 8 in modo che, posto:
a+f —[3}
M =
B B

si abbia:

Si ottiene un sistema di due equazioni nelle incognite a e [ la cui unica soluzione é&:
a=-(r, + 1,)/2, ~ -0.21 N/m e B = -r,/(2, - 2,) ~ -6.13 N/m

Si ottiene allora:
€2~ 4.1x10% e c,(A)e ~0.12< 1

da cui, per il Teorema di condizionamento:

g, < circa 0.14

Infine, la risposta & si: dg = 0, dm, = 0, h = 0 e dc; = a N/m, dc, = B N/m, dcz = O.
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(2.2) STUDIO DI UN SISTEMA DI EQUAZIONI LINEARI IN F(8,m)

(2.44) Osservazione (studio con EGP).

Siano A € R"*" e b € R". Il procedimento per lo studio del sistema Ax = b che usa la
procedura EGP é:

(8,D,P) = EGP(A);
se esiste k tale che dy, = 0 allora STOP;

~
altrimenti o
- -
c = SA(S,Pb);
x* = SI(D,c)

Quando si utilizza un calcolatore, con insieme di numeri di macchina F(8,m), la procedura
si trasforma in:

(8,D0,P) = EGPy(R);

se esiste k tale che dy = 0 allora STOP; Q%
. . N
altrimenti e
c = SA.«(S,Pb); g

x = SIy(D,c)

dove:

EGPy, SAy e SIy sono, rispettivamente, la procedura EGP, SA ed SI in cui ciascuna

operazione aritmetica & sostituita dalla corrispondente funzione predefinita,
* 1 e b sono, rispettivamente, la matrice rd(A) e la colonna rd(b) di elementi gli
arrotondati in F(8,m) dei corrispondenti elementi di A e b.

(2.45) Esempio.

Ricordando il Teorema (1.38) della Lezione 6, per ciascuna componente della matrice A =
rd(A) e della colonna b = rd(b) si ha:

é-ij = rd(aij) = (1+ Eij) i s by = rd(b;) = (1 + &) b;

con lejl < ue le;l < uper ogni i e j. Ne segue che, utilizzando ad esempio la norma uno

in R", per le misure assolute delle perturbazioni si ha:
[6Al: < ullAli . Ni(b) < uN,(b)
e quindi, per le misure relative:
&r S u e g < u

Se c;(A) u < 1 allora c,;(A) g, < 1 e, per il Teorema di condizionamento (Teorema (2.36) della

Lezione 18) si ha:
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Quando il calcolatore legge ¢ dati A e b, 1i cambia
dati siano in F(B,m)) e il sistema Ax = b & sostituito dal sistema Ax =

c,(Mu
1-c,(Mu

x

(salvo il caso in cui le componenti dei

b. Questa

sostituzione, nel caso migliore possibile in cui sia trascurabile 1’effetto delle
sostituzioni di EGP, SA ed SI con EGPy, SAy e SIy, pud generare uno scostamento della

soluzione x* di misura relativa A. Dunque, nel caso usuale in cui 1’effetto delle
sostituzioni di EGP, SA ed SI con EGPy, SAy e SIy non é trascurabile, non é ragionevole

aspettarsi uno scostamento tra x" e 1’approssimazione x ottenuta dal calcolatore minore di

A.

(2.46) Esempio.

Si consideri la seguente situazione ‘quasi ideale’:

e A=A,b=Db-1idati hanno componenti in F(S8,m));

* EGPy(A) = EGP(A) = (S,D,P) - la fattorizzazione EGP, & esatta, con D invertibile;

* SA(S,Pb) = ¢ =
e 8I.D,c) = SI(D,c) - il

Sotto queste ipotesi si ha: x”
la soluzione del sistema Dx =

risultato di SI, & esatto.

>

c. Introdotta la perturbazione dc =

la norma uno (vedi 1’esempio precedente):

N;(dc) < uN;(c)

e quindi

Per il Teorema di condizionamento si ha allora:

& < cMe < ci(Du

rd(c) - il risultato di SA, & ‘quasi ideale’;

SI(D,c) & la soluzione del sistema Dx = ¢, x = SI(D,c) &

c - ¢ si ha, utilizzando

e. <1

La limitazione della misura relativa dello scostamento dipende da c;(D) ovvero, posto:

c, (D)

c,; (D)
(A

= ¢, (8)

1

dal fattore di amplificazione del numero di condizionamento c,(D)/c,(A).

(2.47) Esempio.

10

Siano v € (0,1) e A = [V 1}. Si ha:

* lAlli=1+y<2

e At = (1) 11 da cui || A
* EGP(A) = (S,D,P) = ( [1}

. D! =

17y 1
L0~y

da cui ||D*|, =

[i =1+~ e
0 Y 1
3 ’I
yl} 0 —1ly ) e

max{ 1/y,1 + v} e

c;(A) = (1 + 7)2 < 4

DIl =1+ 1/y

c;(D) = (1 + 1/4) max{ 1/y,1 + v }
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Per il fattore di amplificazione del numero di condizionamento si ha allora:

c, (D)
lim =
y-0 CI(A)

+00

Dunque: scegliendo v sufficientemente piccolo € possibile ottenere un fattore di
amplificazione del numero di condizionamento grande quanto si wuole: il procedimento di
soluzione del sistema di equazioni che usa EGP trasforma il sistema Ax = b nel sistema
equivalente Dx = c ma mentre le proprietd di condizionamento di A sono buone (c;(A) < 4)
quelle di D, scelto < opportunamente piccolo, sono pessime (c,(D) enorme).

Mentre il procedimento di soluzione del sistema di equazioni che usa EGP & soddisfacente
quando si opera in R (si veda (2.16) della Lezione 17), il procedimento pud risultare non
soddisfacente quando si opera in F(S,m).

(2.48) Definizione (procedura EGPP).

Per ovviare al potenziale pericolo evidenziato nell’esempio precedente, si ricorre ad una
modifica della procedura EGP che porta alla definizione della procedura EGPP (Eliminazione
di Gauss con Pivoting Parziale). La differenza con EGP consiste solo nella scelta della

matrice di permutazione P,. Nella procedura EGP si ha:

se A (k,k) # 0 allora P, = I altrimenti
se esiste i > k tale che A, (i,k) # O allora P, = P,, altrimenti P, = I

Nella procedura EGPP si pone:

se per ogni i > k si ha A,(i,k) = 0 allora P, = I altrimenti

scelto i tale che |A(i,k)| = max { IA(j,k)| , j > k } si pone P, = P, ;

La scelta nella procedura EGP ha lo scopo di assicurarsi che il pivot sia diverso da zero,

nella procedura EGPP lo scopo é quello di avere come pivot l’elemento della colonna k—-esima
dt modulo massimo possibile tra tutti quelli con indice di riga j > k.

(2.49) Esempio.

Calcolo di EGPP(A) con:

(x) Ay = A;

(*) k = 1; |A1(2’1)| = max { |A1(jy1)| B j 2 1 } = Pl = P1,2;

2 1 -1 1 00 1 00
T, = P, A 1 0 1 , Hi=14 1 0] =1]-1/2 1 0
1 2 1 Ay, 01 —-1/2 0 1

I valori A,,)\; sono determinati come nella procedura EGP.

Infine:
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1 0 0]|2 1 -1 2 1 -1
BT, =|-1/2 1 0| |1 0 1] =1|0 —1/2 3/2| = A,
-1/2 0 1] |1 2 1 0 3/2 3/2

() k = 2; [A03,2)| = max { 1A4:,(j,2)] , j =2 2} = P, = Py3;

2 1 -1 1 0 O 1 0 O
T, =P A = |0 3/2 3/2) , H=]0 1 0/ =1]0 1 O
0 —1/2 3/2 0 A 1 0 1/3 1
I1 valore A; & determinato come nella procedura EGP.
Infine:
1 0 0]]2 1 -1 2 1 -1
H,T,= |0 1 0||0 3/2 3/2 = |0 3/2 3/2| = A;
0 1/3 1|0 -—1/2 3/2 0 O 2
1 0 O
(x*) D=A;; P=P,P;; S =11/2 1 0| (ricavata come in EGP).
1/2 -1/3 1

(2.50) Osservazione.

Per ogni A € R"™" invertibile, posto (S,D,P) = EGPP(A), si ha: c¢;(D)/c,;(A) < F(n). La
funzione F dipende solo dalla dimensione n della matrice e dalla norma scelta, in
particolare non dipende da A. Dunque, il fattore di crescita del numero di condizionamento
é limitato.

Tornando all’Esempio (2.47) si ha:

EGPP( [’1’ (1)} ) = (S,D,P) conD =1 = ¢,(D) = 1

(2.51) Osservazione (studio con qr).

Siano A € R"*" e b € R". Il procedimento per lo studio del sistema A x = b che usa la
procedura qr é:

(U,T) = qr(A);
se esiste k tale che t,, = 0 allora STOP;

~
altrimenti o
sl
c = U'b;
x* = SI(D,c)

Quando si utilizza un calcolatore, con insieme di numeri di macchina F(S,m), la procedura
si trasforma in:
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(T,T) = qry();

se esiste k tale che tw = 0 allora STOP; ?%

altrimenti e
P

c = 0" ®b; g

x = SI(T,o)

dove U* ® b & la colonna che si ottiene sostituendo in U*b le operazioni aritmetiche con le
corrispondenti funzioni predefinite in F(8,m).

(2.52) Esempio.

Analogamente a quanto fatto per il procedimento che usa EGP, si consideri la seguente
situazione ‘quasi ideale’:

* A=A, b="b-idati hanno componenti in F(B,m));
¢ qry(A) = gqr(A) = (U,T) - la fattorizzazione qry & esatta, con T invertibile;

* U'®b =c =rd(c) - il risultato di U'® b & ‘quasi ideale’;
* SI«(T,c) = SI(T,c) - il risultato di SI, & esatto.

Sotto queste ipotesi si ha: x" = SI(T,c) & la soluzione del sistema Tx = c, x = SI(T,c) &
la soluzione del sistema Tx = c¢. Introdotta la perturbazione dc =¢c-c si ha, utilizzando

la norma due (la norma ‘naturale’ da utilizzare in R" quando si utilizza la fattorizzazione

QR che fa entrare in gioco la nozione di ortogonalita, dunque il prodotto scalare in R", &
la norma due: quella indotta dal prodotto scalare):

N,(dc) < uN,(c) e quindi e. < u
Per il Teorema di condizionamento si ha ancora:
€x < C(T) e; < c(T) u

e la limitazione della misura relativa dello scostamento dipende dal fattore di
amplificazione del numero di condizionamento c,(T)/c,(A).

Perd in questo caso si ha:

* A=UT = |[A]o=||UT|, = max { Ny(UTv), No(v) =1} =" max { No(Tv), Np(v) =13} =
T2

* T'=A'"U= [T = ||A"U|, = max { No( A"U V), Np(v) =1} =* max { N,(A™ w),
No(UPw) =13} =max { Ny(Aw), No(w) =1 3 = || A7,

Ne segue che c,(T) = c,(A), ovvero il fattore di amplificazione del numero di
condizionamento & c,(T)/c,(A) = 1.

I1 procedimento di soluzione del sistema di equazioni che usa qr é soddisfacente anche
quando si opera in F(8,m).

1 Poiché U & ortogonale si ha: N,(UTv) = sqrt( v'T'U'UTv ) = sqrt( v"T'Tv ) = Nu(Tv).
2 Cambio di variabile: w = U v. Essendo U ortogonale si ha poi v = U'w e Ny(U'w) = Ny(w).
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(2.3) COSTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

(2.53) Definizione (costo aritmetico).

Un metodo per confrontare i due procedimenti descritti per ottenere un’approssimazione
della soluzione di un sistema di equazioni lineari (quello che usa EGPP e quello che usa
qr) & di considerare il tempo necessario per il calcolo dell’approssimazione.

Nel contesto della risoluzione dei sistemi di equazioni lineari, si introduce la seguente

nozione di costo del calcolo di p(x), C(p), dove ¢ & 1l’algoritmo ingenuo (si veda
Definizione (1.32), Lezione 6) per f:

C(¢) = il numero di operazioni aritmetiche necessario per calcolare f
(2.54) Osservazione (ragionevolezza della definizione di costo).

Perché C(y) sia indicativo del tempo necessario per il calcolo di ¢(x) & necessario che
siano soddisfatte le seguenti due condizioni:

(1) Durante il calcolo di ¢(x), il tempo impiegato in attivitad che non siano
1’esecuzione di operazioni aritmetiche (ovvero: nel calcolo di funzioni predefinite
corrispondenti a funzioni elementari o confronti) deve essere trascurabile (un
esempio di algoritmo in cui questa condizione mon é verificata & quello che calcola
la norma infinito di un vettore: in questo caso l’algoritmo esegue solo confronti
tra le componenti del vettore);

(2) I1 tempo di calcolo di ciascuna delle funzioni predefinite corrispondenti ad
operazioni aritmetiche deve essere indipendente dagli operandi.

La seconda condizione non é werificata, ad esempio, nel caso della moltiplicazione tra due
elementi di F(8,m): per calcolare & ® &, occorre moltiplicare le frazioni — e questo
avviene in un tempo indipendente dai fattori perché le frazioni hanno sempre lo stesso
numero di cifre — e sommare gli esponentti; € quest’ultima operazione che non pud essere
ritenuta indipendente dai fattori perché gli esponenti sono numeri interi qualsiasi che
hanno un numero di cifre che dipende da quali elementi di F(S,m) si considerano. In
particolare, perché la nozione di costo aritmetico sia indicativa del tempo necessario per
il calcolo occorre che l’insieme dei numeri di macchina del calcolatore nmon sia F(B,m).
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(2.55) 0Osservazione.
Analizziamo il costo del procedimento di soluzione del sistema Ax = b, con A € R**"

invertibile, che utilizza la procedura EGPP. Le procedure eseguite sono EGPP, SA ed SI. Si
ha:

2
C(EGPP) = gn3+... ,  C(SA) = C(SI) = n?

Si osservi che mentre nel calcolo di SA ed SI si eseguono solo operazioni aritmetiche, nel
calcolo di EGPP si eseguono anche confronti, ma il loro numero & trascurabile rispetto a
quello delle operazioni aritmetiche.’

(Esercizio: determinare il numero di confronti eseguito da EGPP.)

Complessivamente:

3

C(EGPP) + C(SA) + C(SI) = g-n +.o..

Nel procedimento che utilizza la procedura qr si eseguono le procedure qr, prodotto matrice
per colonna (indicato con: pmc) e SI. Si ha:

4
Clqr) = g-n3+... , C(pmc) =2n° + ... , C(8I) =n®

Si osservi che nella procedura qr (come in quella GS) si esegue anche il calcolo di radici
quadrate ma il loro numero (n) & trascurabile rispetto a quello delle operazioni
aritmetiche.

(Esercizio: determinare il numero di operazioni aritmetiche eseguito da pmc.)

Complessivamente:

3

Clqr) + Clpme) + C(ST) = %n ...

I1 termine dominante nel costo aritmetico della procedura che usa qr & dunque doppio
rispetto a quello della procedura che usa EGPP.

1 Si pud ragionevolmente ritenere che il tempo necessario per confrontare due numeri di
macchina sia simile a quello necessario per eseguire un’operazione aritmetica sugli
stessi numeri.
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(2.4) METODI ITERATIVI PER LA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI

(2.56) Definizione (metodo iterativo per la soluzione di un sistema di equazioni lineari).

Siano H € R"*" e ¢ € R". Il metodo iterativo defintito da H e ¢ & 1’applicazione che a
ciascun vettore g € R" associa la successione di vettori x(k) definita da:

x(0) = g R x(k) = Hx(k-1) + ¢ per k = 1,2,...
(2.57) Osservazione.

. I1 metodo iterativo definito da H e ¢ € il metodo iterativo definito dalla funzione
h: R" » R" tale che:
h(x) = Hx + ¢

La funzione h & continua percid (si veda 1l’Osservazione (1.54) nella Lezione 8) se la

successione x(k) generata dal metodo & convergente, allora il suo limite v € R" & un
punto unito di h, ovvero verifica la relazione:

v=Hv+c equivalente a (I-Mv=c
e quest’ultima relazione significa che:
v & soluzione del sistema di equazioni lineari (I - H) x = ¢

® Sia A € R"" invertibile. Il metodo iterativo definito da H e ¢ & utilizzabile per
approssimare la soluzione del sistema Ax = b se:

(1) i sistemi Ax =b e (I - H) x = c sono equivalentt (in particolare: I - H &
invertibile) e

(2) & (praticamente) possibile determinare g € R a partire dal quale la successione

generata dal metodo é convergente.

(2.58) Esempio.

(1) Siano:
1/2 0 0
A= s b =
0o -1 0
1/2 0 . .
® Posto: H=1 - A = o o c =b, i sistemi Ax =b e (I - H) x = ¢ sono
equivalenti;
¢ Sia g = 81 . La successione generata dal metodo definito da H e c & allora:
&,
x(0) = g s x(1) =Hx() + c=Hg s x(2) = Hx() + c = Hzg s

e quindi:



(1/2)g,
2kg2

(1/2)° o
o 2

x(k) = H'g =

La successione & convergente se e solo se g, = 0. In tal caso si ha:

limx (k) =0

k00

e la successione converge all’unica soluzione del sistema Ax = b.

(2) Siano:
2 1 0
= , b =
1 2 0
0 . .
¢ Posto: J = si riscrive A = 2 I + J. Allora:
Ax =Db & equivalente a x=- (1/2)Jx + (1/2) b

ovvero, posto H=-(1/2) J e c = (1/2) b:
Ax =Db & equivalentea (I -H)x =c

® Gli autovalori della matrice H sono: A, = -1/2 e A, = 1/2, quindi H &
diagonalizzabile.? Si ha:

H= —t/2 0 s™ con S = 1 1
0 1/2 1 -1
® Posto g = & , la successione generata dal metodo definito da H e c é:
&
(=1/2)* o
x(k) = H'g =8 S'g
0 (1/2)F
ovvero, posto y = S g:
—1/2)"
xo = | 2 ¥
(1/2)%y,

In questo caso si ha:

per ogni g € R’ : limx (k) =0

k-0
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ovvero: per ogni g € R® la successione converge all’unica soluzione del sistema A x =

b.

2 Si ricordi che (1) una matrice M € R"*" & diagonalizzabile se esistono una matrice

diagonale A e una matrice invertibile S tali che: MS = S A, ovvero M = S A s gli

elementi A;,...,\, sulla diagonale di A sono gli autovalori di M, la k-esima colonna di S

& un autovettore associato all’autovalore A,; (2) se una matrice ha autovalori distinti

allora é diagonalizzabile.
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(3) Siano A =-I e b = 0.

® PostoH=I-A e c =D, i sistemi Ax =b e (I - H) x = c sono equivalenti.

®* La successione generata dal metodo iterativo definito da H e c a partire da g € R" é:
x(k) = H'g=2¢g

La successione & convergente se e solo se g = 0 e, in tal caso, converge all’unica
soluzione del sistema Ax = b.
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(2.59) Esempio (numeri di macchina di Scilab).
In Scilab 1’insieme dei numeri di macchina é:
M = F,(2,53,-1021,1024)

ovvero l’insieme dei numeri in virgola mobile, base due, precisione 53, esponente limitato
(tra -1021 e 1024) e con elementi denormalizzati.

Gli elementi di M sono:

* zero;

® gli elementi normalizzati:

(-1)® 2° 0.c;...cCss
con s € {0,1}, -1021 < b < 1024, ogni ¢, cifra in base due e c¢; # O;

¢ gli elementi denormalizzatsi:

(-1)° 27 0.c,...ces

con s € {0,1}, ogni c, cifra in base due e c, = O.
L’insieme M ha un numero finito di elementi. Inoltre:

* max M = &, = 2"%0.1...1 = 219 (1 - 27%)

* min{ £ €M, £€>073=§u, =2"0.001 = 272 = 9710

® il successore di zero & definito e: 0(0) = &

* min{ £ €M, £ >0 e £ normalizzato } = 279 0.10--0 = 271% 27t = 2710%

® M contiene elementi simbolici: Nan (utilizzato quando al risultato di una funzione
predefinita non & assegnabile un valore numerico ‘sensato’), Inf (quando una
funzione predefinita restituisce un valore numerico positivo ‘troppo grande’), -Inf
(quando una funzione predefinita restituisce un valore numerico negativo ‘troppo
grande’); in Scilab le costanti %nan e %inf hanno valore, rispettivamente, Nan e Inf

® detta rd:R + M 1l’usuale funzione arrotondamento in M, la funzione rd":R =+ M che

Scilab utilizza per arrotondare i numeri reali € definita cosi:
se |rd(x)| < &.r allora rd'(x) = rd(x)

rd(x) > & allora rd"(x) = Inf

[

se rd(x) < -£,., allora rd"(x) = -Inf

]
0]

La funzione predefinita number_properties di Scilab restituisce informazioni sull’insieme
M. Precisamente:
number _properties(<stringa>)

restituisce:

® 1la base dell’insieme M quando <stringa> = 'radix'
®* la precisione dell’insieme M quando <stringa> = 'digits'
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¢ 1’esponente minimo dell’insieme M quando <stringa> = 'minexp'

® 1’esponente massimo dell’insieme M quando <stringa> = 'maxexp'

® la presenza di elementi denormalizzati quando <stringa> = 'denorm'

¢ il massimo elemento di M quando <stringa> = 'huge'

® il minimo elemento posttivo di M quando <stringa> = 'tiniest'

¢ il minimo elemento positivo mormalizzato di M quando <stringa> = 'tiny'
®* la precisione di macchina in M quando <stringa> = 'eps'

La funzione predefinita log2 di Scilab restituisce la frazione e 1l’esponente di un elemento
di M. Precisamente, se £ = (-1)° 2° g, 1’assegnamento:

[f,e]l = log2(&)
assegna ad f il valore (-1)°g e ad e il valore b.

La funzione predefinita nearfloat di Scilab restituisce il predecessore o il successore di
un elemento di M. Precisamente:

nearfloat (<stringa>,§)

restituisce:
®* il successore di ¢ quando <stringa> = 'succ'
®* il predecessore di ¢ quando <stringa> = 'pred'

(2.60) Esercizio (per casa).

Eseguire e discutere (utilizzando opportune rappresentazioni grafiche) i seguenti dialoghi
in Scilab:

xi_min = number_properties('tiniest')
xi_min == 27(-1074)

[f,e] = log2(xi_min)

y = xi_min / 2

y == 0

z = 27(-1075) * (3 / 2)

z ==0

z = xi_min * (3 / 4)

z == xi_min

xi_max = number_properties('huge')
[f,e] = log2(xi_max)

f ==1-27(-53)

xi_max + 27971
nearfloat('succ',xi_max)

xi_max + 27970

xi_max + 27969 == xi_max

V V V V V V V V V V V V V V V vV

(2.61) Esercizio (per casa).

La funzione predefinita bitstring di Scilab restituisce la stringa di cifre in base due che
rappresenta la codifica usuale di un numero di macchina nel calcolatore. Consultare la
pagina di Wikipedia: Double-precision floating-point format per ‘decifrare’ il risultato

1 La distanza tra xi_max e il suo successore in F(2,53) & 2% = 2,
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del seguente dialogo in Scilab:
> bitstring(1)

> bitstring(xi_min)

> bitstring(0)

> bitstring(%inf)

(2.62) 0Osservazione.
In generale, assegnata H € R"*" tale che I - H invertibile e posto:

C =9 g € R" tali che x(k) & convergentel}

sussiste una ed una sola delle seguenti eventualita:
(1) C ha un solo elemento (la soluzione del sistema (I - H) x = ¢)
(2) C & un sottospazio vettoriale di R" di dimensione < n (determinato dagli autovettori
di H)
(3)C =R

Se sussiste uno dei casi (1) o (2), & praticamente impossibile determinare g tale che la

successione x(k) risulti convergente: il metodo non é utilizzabile per approssimare la

soluzione di Ax = b.

Se sussiste il caso (3), qualunque g genera una successione convergente alla soluzione del

sistema Ax = b: il metodo é utilizzabile per approssimare la soluzione di Ax = b.

(2.63) Definizione (metodo convergente).

Siano H € R"*" e ¢ € R". Il metodo iterativo definito da H e c é convergente se:

(1) per ogni g € R", la successione x(k) generata dal metodo a partire da g é
convergente;

(2) tutte le successioni generate dal metodo hanno lo stesso limite.
(2.64) Osservazione.
Nel caso (usuale) in cui il metodo iterativo sia utilizzato per approssimare la soluzione
del sistema Ax = b con A invertibile, i sistemi Ax = b e (I - H) x = ¢ sono equivalenti, e
quindi il metodo definito da H e ¢ ha un solo punto unito. In questo caso (si veda
1’Osservazione (2.57) della Lezione 21) si ha che (1) = (2), ovvero: metodo convergente
significa che tutte le successioni generate dal metodo sono convergenti.
(2.65) Definizione (spettro e raggio spettrale).

Sia A € R"*". Si chiama spettro di¢ A 1’insieme degli autovalori di A:

o(A) = { A € C tali che M\ & autovalore di A }
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Si chiama raggio spettrale di A il numero:
p(A) = max { |A| tali che A & autovalore di A }?
(2.66) Teorema (caratterizzazione dei metodi convergenti).

Siano H € R"*" e ¢ € R". Il metodo iterativo definito da H e c & convergente se e solo se
p(H) < 1.

(2.67) Esempi.

1/2 0
0o -1

(1) Siano H = ,c=0eg € R’ La successione generata dal metodo iterativo

definito da H e ¢ a partire da g é:

(1/2) o

x(k) = H'g = o (—1)F

La successione & convergente (all’unico punto unito del metodo: 0) se e solo se g, = O

Dunque il metodo non é convergente. Infatti: o(H) = { 1/2, -1 } e p(H) = 1.

1/2 0
(2) Siano H = o 1l c =0e g € R. La successione generata dal metodo iterativo
definito da H e ¢ a partire da g é:
1/2) 0 1/2)"
X(k) = Hk = ( ) = ( ) gl
0 1 g,

La successione é convergente per ogni g e:

(1/2)"g,

lim =

k>0 g2

0
29

I1 valore del limite dipende da g, dunque il metodo nmon é convergente. Infatti: o(H) =
{1/2, 1} e p() = 1.

2 Si rappresentino gli autovalori di A, cioé ¢(A), sul piano di Gauss. Scelto un numero
reale positivo r sufficientemente grande, 1l’insieme I(0,r) ={z € C: |z| <r } - il

~X
cerchio di centro l’origine e raggio r - include o(A). Il raggio spettrale di A & il
minimo valore di r tale che I(0,r) DO o(A).



Lezione 23 (ore 45,46,47) - 18 novembre 2025, 15:30 - 18:30 F3

(2.68) Definizione (metodo di Jacobi).

Sia A € R"*" invertibile con elementi diagonali A(k,k) tutti diversi da zero. Posto:!
D = diag(4) , M=A-D

la matrice D risulta invertibile e: Ax = b & equivalente a x = -D'Mx + D' b.

I1 metodo di Jacobt (applicato al sistema Ax = b) & il metodo iterativo definito da:

Hy=-D'M e ¢;= D'b.

(2.69) Definizione (matrice a predominanza diagonale forte).

Sia A € R**". La matrice A é a predominanza diagonale forte per righe se

per ogni k: [|A(k,k)| > §:|A(k,iﬂ

i#k
(2.70) Teorema (predominanza diagonale forte = invertibilita).
Sia A € R"*". Se A & a predominanza diagonale forte per righe allora A & invertibile.

(Dimostrazione: Per assurdo, se A fosse a predominanza diagonale forte per righe e non
invertibile allora esisterebbe una colonna y # 0 tale che Ay = 0. Detta y; la componente di
y di massimo modulo (certamente diversa da zero), si avrebbe allora:

AG, Dy + oo + AGLD Yy + ... + A(G,) ya = 0 ovvero AL,y = - 2 A(5,1)y,
i#j

da cui:

[AC5,3) ys1 =

> A(j,i)yi‘ = 1AGLD Iyl < XA, 1)l

i#j i#j

Poiché per definizione y; # 0 e per ogni i # j & ly;l / ly;l < 1 si avrebbe infine:

A L.
1AG,D 1< 2 (a3, 1) S < D IA(5, 1))

i#j j i#]

assurdo.)

(2.71) Esempio.

Siano:?
3 1 1
1 3 1 1
A = R b =
1 3 1 1
1 3 1
1 Se A € R"*", si indica con diag(A) la matrice [A(1,1);...;A(n,n)]. La notazione &

mutuata da Scilab.
2 Se nella scrittura di una matrice un elemento nomn é indicato, il suo valore & zero.
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La matrice A risulta a predominanza diagonale forte per righe, e quindi invertibile,
e con elementi diagonali tutti diversi da zero. Il metodo di Jacobi & definito e si
ha:

0 1 1
1 0 1 11
Hy = —— s C; = —
3|1 0 1 3|1
1 0 1

Gli autovalori di H; (A, = A\, = 0, A3 = 1/3, A\, = -1/3) hanno tutti modulo

minore di uno. Per il Teorema di caratterizzazione (2.66) della Lezione 22 il metodo
risulta convergente. Per ogni g in R* la successione generata dal metodo a partire da
g & convergente alla soluzione x* del sistema Ax = b.

(2.72) Teorema (condizione sufficiente di convergenza per il metodo di Jacobi).

Siano A € R"™" a predominanza diagonale forte per righe e b € R". Allora il metodo di
Jacobi applicato al sistema Ax = b & convergente.

I1 risultato €& una semplice conseguenza del teorema e dell’osservazione seguenti.
(2.73) Teorema (norma e raggio spettrale).
Siano A € R"*" e N una norma in R". Allora: p(A) < | A |y.

Dimostrazione. Per definizione: || A||y= max{ N(Av), N(v) =1 }. Siano poi A € C un

autovalore di A e w € R" un autovettore associato. Allora, posto w' = w / N(w) si ha:
N (A N (A N
N =1 e N@Aw) = N(a—1y = NAW _NAw _ ., NG,
N (w) N (w) N (w) N (w)

quindi |Al € { N(Av), N(v) =1 }. Allora:
p(A) = max{ [Al t.c A€o(A) } < max{ N(Av), N(v) =13} = |A|x
(2.74) Osservazione.

Siano A € R"*" e b € R". Se A é a predominanza diagonale forte per righe allora per la
matrice H; del metodo di Jacobi applicato al sistema Ax = b si ha |[H|« < 1.

(Esercizio: dimostrare che 1l’asserto & conseguenza immediata della definizione di matrice a

predominanza diagonale forte per righe.)
(2.75) Scilab (esempio precedente).

Si consideri 1’Esempio (2.71). Per costruire la matrice A in Scilab, si utilizzano i

seguenti assegnamenti:®

3 In Scilab: per ogni numero intero n, eye(n,n) & la matrice identica di ordine n; se A &

una matrice e m,k,l sono numeri interi allora: A(m:k,1) = [A(m,1);...;A(k,D].
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-=> A = 3 x eye(4,4)

A = [4x4 double]

3. 0. 0. 0.
0. 3. 0. 0.
0. 0. 3. 0.
0. 0. 0. 3.
-—> A(2:4,1) =1
A = [4x4 double]
3 0. 0. 0.
1 3. 0. 0.
1 0. 3. 0.
1 0. 0. 3.
--> A(1:3,4) =1
A = [4x4 double]
3 0. 0. 1
1 3. 0. 1
1 0. 3. 1
1 0. 0. 3

--> b = [1;1;1;1]

b = [4x1 double]

T

Per costruire la matrice H; e la colonna c;:
--> D = diag(diag(A))

D = [4x4 double]

3. 0. 0. 0
0. 3. 0. 0
0. 0. 3. 0
0. 0. 0. 3
4 In Scilab, se A & una matrice n X n allora diag(A) = [A(1,1);...;A(n,n)]; se v =
[vy;...;va] € R® allora diag(v) & la matrice M € R"*" diagonale tale che M(1,1) = v,...,

M(n,n) = v,.



Lezione 23 - 4

-=>M=A-D

M = [4x4 double]

0. 0. 0. 1
1. 0. 0. 1
1. 0. 0. 1
1. 0. 0. 0
--> HJ = - diag(1./diag(A)) * M

HJ = [4x4 double]

0. 0. 0. -0.3333333
-0.3333333 0. 0. -0.3333333
-0.3333333 0. 0. -0.3333333
-0.3333333 0. 0 0.

--> ¢J = diag(1./diag(A)) * b
cJ = [4x1 double]

0.3333333
0.3333333
0.3333333
0.3333333

Un’approssimazione della soluzione del sistema A x = b, calcolata utilizzando la funzione

predefinita backslash (\)° &:
—_—> y = A\b
y = [4x1 double]

0.25

0.1666667

0.1666667

0.2500000
Per ottenere un’approssimazione della soluzione con il metodo di Jacobi, si calcolano dieci
elementi della successione generata dal metodo a partire dal vettore 0.° Ad ogni iterazione
1’istruzione disp(norm(x - y,%inf)) mostra || x - y |~ ovvero la distanza tra 1l’ultimo
elemento calcolato, x, della successione e y.

--> x = zeros(4,1); for k = 1:10, x = HJ * x + cJ; disp(norm(x - y,%inf)); end

0.1666667

5 L’assegnamento y = A\b & equivalente alla sequenza: (S,D,P) = EGPP,(A); w = SA,(S,Pb);
y = SI,(D,w).
6 Se m,n sono numeri interi, zeros(m,n) & la matrice di ordine m X n di elementi tutti

uguali a zero.
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0.0555556
0.0185185
0.0061728
0.0020576
0.0006859
0.0002286
0.0000762
0.0000254
0.0000085

Si osservi che, come ci si doveva aspettare dalla convergenza della successione, la
distanza ||x - y ||« & decrescente.

(2.76) Definizione (metodo di Gauss-Seidel).
Sia A € R**" invertibile con elementi diagonali A(k,k) tutti diversi da zero. Posto:’
T = tril(4) , M=A-T
la matrice T risulta invertibile e: Ax = b & equivalente a x = -T'Mx + T'b.
I1 metodo di Gauss-Seidel (applicato al sistema Ax = b) & il metodo iterativo definito da:
Hs = -T'M e ce = T'b.
(2.77) Esempio.

Siano A e b come nell’Esempio (2.71).

¢® La matrice A risulta a predominanza diagonale forte per righe, e quindi invertibile,
e con elementi diagonali tutti diversi da zero. Il metodo di Gauss-Seidel & definito

e si ha:
—-1/3 1/3
-2 2
Hes = /o € R*** s Ces = /o
—2/9 2/9
1/9 2/9
® Gli autovalori di Hegg (A\; = Ay, = A3 = 0, Ay = 1/9) hanno tutti modulo minore di uno.

Per il Teorema di caratterizzazione (2.66) della Lezione 22 il metodo risulta
convergente. Per ogni g in R’ la successione generata dal metodo a partire da g &
convergente alla soluzione x* del sistema Ax = b.

7 Se A € R"*", si indica con tril(A) la parte strettamente triangolare inferiore di A,
ovvero la matrice B (triangolare inferiore) tale che: i < j = B(i,j) = A(i,j) e i > j

= B(i,j) = 0. La notazione & mutuata da Scilab.
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(2.78) Teorema (condizione sufficiente di convergenza per il metodo di Gauss-Seidel).
Siano A € R"*" e b € R". Se:

(1) A é a predominanza diagonale forte per righe
oppure:

(2) A & simmetrica definita positiva

allora il metodo di Gauss-Seidel applicato al sistema Ax = b & convergente.

(2.4) COSTO DELLA SOLUZIONE DI UN SISTEMA DI EQUAZIONI LINEARI CON UN METODO ITERATIVO

(2.79) Osservazione.

Siano A € R**", b € R" e x', x" le approssimazioni della soluzione x" del sistema A x = b
ottenute, rispettivamente, con un metodo diretto e con un metodo iterativo (dotato, come
vedremo, di un opportuno criterio d’arresto). Vogliamo confrontare x' ed x" dal punto di

vista del costo aritmetico.

Supponiamo x' calcolata con il procedimento che utilizza EGPP. Il costo asintotico del
calcolo & allora: (2/3) n’.

I1 costo del calcolo di x" é:
(costo per iterazione) * (numero di iterazioni)

Dobbiamo quindi determinare il costo di una singola iterazione.

Consideriamo, ad esempio, il metodo di Gauss-Seidel. Per calcolare la colonna x(k+1) si
hanno (almeno) due alternative:

(1) calcolare - T'M x(k) + T 'b;
(2) calcolare la soluzione del sistema Tx = -Mx(k) + b.

Per il costo della prima alternativa si ha:

(1.a) 21n® - 3n operazioni per calcolare - T M x(k)
(1.b) n operazioni per calcolare la somma - T'Mx(k) + T'b

in totale: 2 n’ - 2 n operazioni.
Per il costo della seconda alternativa si ha:

(2.2) n®* - 2 n + 1 operazioni per calcolare - M x(k)
(2.b) n operazioni per calcolare la somma - Mx(k) + b
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(2.c) n® operazioni per calcolare la soluzione del sistema

in totale: 2 n* - n + 1 operazioni.

In entrambi i casi il costo asintotico & 2 n’. Dunque: se x" & stata calcolata con k
iterazioni dal metodo di Gauss-Seidel, il costo asintotico del calcolo & 2 kn’. Il metodo

di Gauss-Seidel risulta pild economico del metodo diretto che usa EGPP se k < n/3.
(Esercizio: verificare i costi per entrambe le alternative.)

Occorre studiare la rapiditd di convergenza di un metodo iterativo.

(2.80) Esempio.

Siano H = diag(s;, s,) con |s,| < |s;] <1 e c = 0. Per il Teorema di caratterizzazione dei
metodi convergenti (vedi Teorema (2.66) della Lezione 22), il metodo iterativo definito da

H e zero & convergente: per ogni g in R’ la successione x(k) generata converge a zero.
Quanto rapidamente?

Sia:
g = 81| 20.
g€,
Allora:
s'g
x(k) = H'g = diag(s,", s8,) g = i !
SQ g2

e, utilizzando la norma uno:

[ xX) [l; = Isi"gil + |s:" gl

* Seg # O0:.
||X(k) ||1 = |S1|k |g1| (1 + Isz/s1|k Igg/g1|)
da cui:
Ix (o) I,
— L L gl £o0
Is, |
e:

| x(k) ||, tende a zero con la stessa rapiditd di |s,|®
® Se g = 0, invece:

llx (R I,
e + gl #0

I's,

| x(k) ||, tende a zero con la stessa rapiditd di |s,|®

dunque, essendo |s,| < Is;|, pid rapidamente di |s,|*.



Lezione 23 - 8

(2.81) Teorema (sulla rapiditd di convergenza).

Quanto accade nell'Esempio (2.80) si ritrova in generale.

Si consideri il metodo iterativo convergente definito da H € R**" e ¢ € R". Detta x" la
soluzione del sistema (I - H) x = c e detta x(k) la successione generata dal metodo a
partire da g € R*, allora, indicato con p(H) il raggio spettrale di H:°

| x(x) - x*|| converge a zero almeno con la stessa rapiditd di p(H)*

Inoltre, se il vettore iniziale g €& scelto in modo aleatorio, la probabilitd che la
successione converga a zero piu rapidamente di p(H)* & nulla.

(2.82) Esempio.
In base a quanto ottenuto negli esempi (2.71) e (2.77) in cui p(H;) = 1/3 e p(Hx) = 1/9:

scelto g € R® in modo aleatorio, la successione generata dal metodo di Gauss-Seidel
converge a x' piu rapidamente di quella generata dal metodo di Jacobi.

8 Vedere la Definizione (2.65) della Lezione 22.
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(2.83) Osservazione (criteri d'arresto).

Siano A € R"™" invertibile e b € R non zero. Si utilizza il metodo iterativo convergente
definito da H € R°*" e ¢ € R" per approssimare la soluzione x" del sistema Ax = b. Scelto
g € R", il metodo iterativo genera la successione x(k), convergente ad x*. Descriviamo due

possibili criteri d'arresto.
(a) Assegnato E > 0 e posto r(k) = b - Ax(k) (vettore residuo associato ad x(k)):

se [[r(k) || / ||p|| < E allora STOP

® 1I1 criterio & calcolabile;
® Il criterio & efficace (infatti: se x(k) = x" allora x(k) - x* =+ 0 e quindi

rk) =A(Cx -x(k) )~ 0);
® Quando il criterio & verificato si ha, interpretando x(k) come soluzione del sistema

perturbato Ax = b - r(k) ed utilizzando i risultati della teoria del

condizionamento:

I %G = x|/ [x[ < @ [|xG || / [|b] < cA) E

I1 criterio risulta dunque di tipo relativo. Si osservi che se il numero di
condizionamento di A € molto grande, 1’approssimazione restituita pud non essere

accurata quanto richiesto dall’utilizzatore.

(b) Assegnato E > O:
se || x(k) - x(k-1)|| < E allora STOP

®¢ TI1 criterio é calcolabile;
® I1 criterio & efficace (infatti: se x(k) = x" allora x(k-1) - x* =+ 0 e quindi

x(k) - x(k-1) =+ 0);
®* (Quando il criterio & verificato: se |[H| < 1 allora, posto F(H) = ||[H| / (1 - ||H|D

si ha:!
| x&) - x| < FAH) || x(k) - x(k-1)| < F(H) E

I1 criterio risulta dunque di tipo assoluto. Si osservi che se ||H| vale poco meno di
uno allora F(H) é molto grande e 1’approssimazione restituita pud non essere

accurata quanto richiesto dall’utilizzatore.
(2.84) Esercizio (per casa).
Scrivere una function Scilab, di intestazione
x = GaussSeidel(A,b,E)

che, dopo aver verificato che gli elementi sulla diagonale di A sono tutti diversi da zero,
applica il metodo di Gauss-Seidel al sistema Ax = b utilizzando come criterio d’arresto

1 Dimostrazione omessa.
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quello esposto in (b) dell’Osservazione (2.83).

(3) INTERPOLAZIONE E MINIMI QUADRATI

(3.01) Problema.
Siano assegnate k+1 coppie di numeri reali (dette dat<):
(XO’YO) P ] (Xk,yk)

con Xg,...,Xx @d7stinti, e un sottospazio vettoriale F dello spazio vettoriale su R delle
funzioni continue da I C R in R tale che:

dimF =m

¢ Il problema dell’interpolazione consiste nel determinare gli elementi g € F tali

che:
g(x0) =30, .., 8(x) = Vi

Ciascuno degli elementi g che verifica le condizioni si chiama un elemento di F che

interpola % dati.

La condizione che Xp,...,X; siano distinti & necessaria affinché il problema
dell’interpolazione possa avere almeno una soluzione.

¢ Siam < k+1. I1 problema dei minimi quadrati consiste nel determinare gli elementi
g € F punti di minimo assoluto della funzione SQ: F =+ R definita da:

SQUE) = (£(x0) - y)* + ... + (£(x) - yo°

Ciascuno degli elementi g che verifica la condizione si chiama un elemento di F che
meglio approssima i datt nel senso det minimi quadratt.

Si osservi che in questo problema non si richtiede la condizione che x,,...,X; siano

distinti.
(3.02) Osservazione (interpretazione geometrica dei due problemi) .
Si rappresentino in un piano cartesiano i k+1 punti:’
Py = (%0,¥0), .. »Px = (X, ¥0)

I1 problema dell’interpolazione consiste nel determinare glti elementi g € F 4l cut grafico
contiene tutti ¢ k+l punti (vedere la figura seguente).

2 Assegnato un piano cartesiano, la scrittura P = (x,y) significa che la coppia di numeri
reali (x,y) costituisce le coordinate del punto P del piano.
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Po ;

B
—. s + X
Xo i X1 e Xk

Per ogni f € F, siano:

QB = Ko, £(x0)), ... ,Q = (X, T(x0))

I1 valore SQ(f) & la somma deti quadrati delle lunghezze dei segmenti PoQy, ... ,P.Q. Questo
valore pud essere pensato come ‘distanza’ del grafico di f dai dati (vedere la figura
seguente) .
y
PO 'Q1 ‘Pk . .
. : s ' grafico di f(x)
_~;/////k//7”— \\\\\\6\\\‘y5
' QO |.P1 Qky
- s — x

(3.03) Esempio (riformulazione del problema dell’interpolaziomne).
Si considerino i dati (k = 2): (X0,¥0), (X:,¥1),(X2,¥2), con X,,%x;,X, distinti, e lo spazio
vettoriale F = span{ f,(x),f,(x) } = { a, £f;(x) + a, f,(x) con a;, a, € R }. Le condizioni di
interpolazione:

g(xe) =yo , g8(x1) =y, g(x) =y,
si riscrivono (utilizzando 1l’espressione di g(x) in termini dei generatori f,(x),f,(x)):

a4 fl(XO) + ay fg(Xo) = yo , Ajp f1(xl) + as fg(xl) = y1 , Qg fl(XQ) + as fz(XQ) = y2

Dunque:
g(x) = a; £;(x) + a, f,(x) interpola i dati

) fix) )] [,
ai é soluzione del sistema f1(x1) fz(x1) z=|y,
’ f1(X2) f2(X2) Y,

I1 sistema ha tante equazioni quanti sono 7 dati da interpolare, tante incognite quantt

sono © generatort: di F assegnati.

(3.04) Osservazione (interpolazione polinomiale).

Si considerino i dati: (%,¥o),...,(Xx,¥y), con Xp,...,%x, distinti, e lo spazio vettoriale F =
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P,(R).%> Si osservi che in questo caso la dimensione di F & uguale al numero di dati. Il
problema di determinare gli elementi di P,(R) che interpolano i dati si chiama problema
dell’interpolazione polinomiale. Per studiare il problema si introduce una base in P,(R). La
scelta della base influisce sulla forma del sistema da risolvere e sull’espressione degli
eventuali elementi di F determinati. Vediamo tre possibili scelte.

(1) Si consideri la base:

detta base di Vandermonde di P,(R). Il sistema che traduce le condizioni di
interpolazione é:

1 x, X, Y,
=
k
1 X, ... X, Y
la cui matrice si chiama matrice di Vandermonde. Se c* = (cy,...,cy)" & una soluzione
del sistema, il polinomio:
Pe(x) = o + C1 X + - + g X

interpola i dati e 1l’espressione ottenuta si chiama forma di Vandermonde del

polinomio.
(2) Si consideri la base:
1,x - %), - x)&x = x1),...,& = %) (X = Xpet)

detta base di Newton di P,(R). Si verifica facilmente che il sistema che traduce le

condizioni di interpolazione, ad esempio nel caso k = 3, é:

1 0 0 0 Yo
1 x,—x, 0 0 ¥y,
c =
1 x,—x, (XQ—-XO)(X2—-X1) 0 Y,
1 x,—%, (XB—-XO)(XS—-XI) (XS—-XO)(XS——XI)(XS—-XQ) Vs

La matrice del sistema & triangolare inferiore e invertibile (si ricordi che i numeri
Xos...,X; sono distinti). La base di Newton & costruita appostitamente affinché la
matrice del sistema risulti triangolare inferiore. Se c¢* = (co,...,c)" & una
soluzione del sistema, il polinomio:

Pe(x) = co + ¢y (X = %) + =+ + ¢ (X = X) (X = Xyey)

interpola i dati e 1’espressione ottenuta si chiama forma di Newton del polinomio.

(3) Si considerino i k+1 elementi di P,(R) definiti da:

3 Si indica con P,(R) lo spazio vettoriale su R dei polinomi a coefficienti reali di grado

al piu k.
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Questi elementi sono costruiti in modo tale che per i = 0,...,k si abbia: I;(x;) =1
e 1;(x;) = 0 per j # i. Inoltre, sono elementi linearmente indipendentsi di P,(R)
(infatti: se A(x) = a, lo(x) + -+ + 3, l,(x) = 0 per ogni x € R allora per i = 0,...,k

si ha: A(x;) = a; = 0) e quindi, poiché dim P,(R) = k+1, sono una base di P,(R), detta
base di Lagrange di P,(R).

Si verifica facilmente che il sistema che traduce le condizioni di interpolazione é:

Yo
c=|:
Vi
infatti la matrice del sistema & la matrice tdentitd. La base di Lagrange &
costruita appositamente affinché accada questo. Infine, il polinomio:

pk(x) = Yo Z‘O(X) LR o lk(x)
interpola i dati e 1’espressione ottenuta si chiama forma di Lagrange del polinomio.
(8.05) Teorema (esistenza ed unicitd del polinomio interpolante)

Assegnati i dati: (X0,¥0),.-., (X, ¥i), CON X, ...,X, distinti, esiste un solo elemento p(x) €
P.(R) che 1li interpola. Il polinomio p(x) si chiama %1 polinomio interpolante.

(Dimostrazione. Per quanto mostrato nel punto (3) dell’osservazione precedente, esiste una
sola combinazione lineare degli elementi della base di Lagrange che interpola i dati.
Dunque esiste un solo elemento di P,(R) che interpola i dati.)

(3.06) Osservazione.

Per risolvere un problema di interpolazione polinomiale si sceglie una base di P,(R), si
determina la soluzione del sistema che traduce le condizioni di interpolazione e si
individua la combinazione lineare degli elementi della base scelta che interpola i dati. A
seconda della base scelta si ottiene una forma diversa dell’unico polinomio interpolante.

(3.07) Esercizio (per casa).

Si risolvano i seguenti problemi, nessuno dei quali é di interpolazione polinomiale
(perché?).

(1) Assegnati i dati (-1,1), (0,0), (1,0), determinare gli elementi g € P,(R) che
interpolano i dati.

(2) Assegnati i dati (-1,0), (0,0), (1,0), determinare gli elementi g € P;(R) che
interpolano i dati.

(3) Assegnato il dato (0,0), determinare gli elementi g € P,;(R) che interpolano i dati.
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(3.08) Definizione (funzioni continue e lineari a tratti).

Assegnati numeri reali ordinati x, < x; < -+ < X, e posto, per j =1,...,k: I; = [%x;4,%;], una
funzione f: [%X0,%X] - R si dice continua e lineare a tratti su Xg,...,%Xx Se:
® f & continua;
® f & lineari a tratti su Xx,...,%X, ovvero: detta p;(x) la restrizione di f a I; si ha:
p; € P,(R).
L’insieme delle funzioni continue e lineari a tratti su Xg,...,X, s8i indica con

C-LAT (Xg, ... ,%X) -

(3.09) Esempio.

| B — X = — X 1 i - x
(1 (2) (3

La figura (1) rappresenta il grafico di una funzione continua e lineare a tratti su 0,1,2.
La figura (2) rappresenta il grafico di una funzione lineare a tratti su 0,1,2 ma non
continua. La figura (3) rappresenta il grafico di una funzione continua e lineari a tratti

ma non su 0,1,2.
(3.09) Osservazione.®

(1) L’insieme C-LAT(xy,...,%X;) & un sottospazio vettoriale dello spazio delle funzioni
continue su [x,,%x.], di dimensione k+1. I k+1 elementi s,(x),...,s.(x) di
C-LAT (X4, ...,%,) definiti da:

si(x;) =1sei=3 , s;(x5) =0sei#j

sono la ‘base canonica’ di C-LAT(xq,...,%Xy) .

Ad esempio, i grafici degli elementi della base canonica di C-LAT(0,1,2,3) sono:

So S1 S2 S3
. v _|:: i
TS £ } X
0 1 2 3
(2) Assegnati numeri reali y,,...,yx, la combinazione lineare y, so(x) + - + y, s,(x) &
1’unico elemento di C-LAT(xo,...,%x;) che interpola i dati (X,,¥0),.-., (Xe, Vi) -

1 La dimostrazione degli asserti di questa Osservazione & omessa.
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(3.10) Applicazioni.

D)

(2)

Grafici in Scilab.
Sia f: [a,b] + R una funzione continua. La sequenza di istruzioni:

> x = linspace(a,b,n)’;
> plot(x,f(x));

genera, in una finestra grafica, il grafico della spezzata di vertici i punti di
coordinate (x(1),f(x(1)),...,(x(n),f(x(n)). Questa spezzata & il grafico dell’unico
elemento o,(x) € C-LAT(x(1),...,x(n)) che interpola i dati (x(1),f(x(1)),...,
(x(n),f(x(m)). Il grafico di o0,(x) & utilizzato come approssimazione di quello della

funzione f(x). Vedremo tra poco quanto sia accurata 1’approssimazione.
Formula dei trapezi.

Sia f: [a,b] =» R una funzione continua. Si vuole conoscere il valore (certamente
esistente per la continuita di f):

Un procedimento che fornisce un’approssimazione di I & il seguente:
d scelto k, si suddivide 1’intervallo [a,b] in k sottointervalli di uguale

ampiezza:
b—a
k
individuati dai k+1 punti X, = a,Xi,...,X-1,%X = b (detti nodi):
®* si considera 1’unico elemento o,(x) € C-LAT(Xo,...,%,) che interpola i dati

(Xo,f(xo)) R :(Xk’f(xk));
* si approssima I con:

I1 valore J, si calcola facilmente. Introdotta la base canonica s,(x),...,s.(x) di
C-LAT (x4, ...,Xy) si ha:

Quest’ultima espressione si chiama formula dei trapezi. Vedremo tra poco quanto sia
accurata 1l’approssimazione.
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(3.11) Teorema (errore nell’interpolazione polinomiale).

Assegnati numeri reali x, < x; < - < %, e posto I = [x,,%.], siano f: I + R con derivata di
ordine k+1 continua e p, € P,(R) il polinomio che interpola i dati (x,,f(x¢)),..., (X, f(x)).
Allora, per ogni x € I esiste 6 € I tale che:

f(k+1) (6)
f _ = - _ —_
(x) - p, (x) Y (x=xg) = (x-x%)
Inoltre, posto:
M, = maxxellf(j)(x)l

si ottiene facilmente la limitazione:

k+1

Mk+1 .
max__ |f(x)-p (x)] < ___Es_r(mlSI)

(k+

Dimostrazione: omessa.
(3.12) Osservazione (approssimazione con elementi di C-LAT).

Siano f: [a,b] + R con derivata seconda continua e, per j = 0,...,k:

I punti Xo,...,%, dividono 1l’intervallo [a,b] in k intervalli di uguale ampiezza.

Si consideri 1l’intervallo [x,,x;]. Detto p; € P;(R) il polinomio che interpola i dati
(%0,f(x0)), (x;,£(x4)), utilizzando la limitazione mostrata nel teorema precedente, si ha:

2

M2 b-a
max lf(X)_p(X”S?(T)

x € [x,,%,]

Ripetendo il ragionamento si ottiene la stessa limitazione per ciascuno dei k
sottointervalli di [a,b]. Percid, detto o,(x) 1l’elemento di C-LAT(xo,...,x%,) che interpola i
dati (%o, f(xo)), ..., (X, f(x)), si ha:

2

M2 b-a
max 1£(0) -0, (01 < <T)

x € [a,b] ?

(3.13) Osservazione (accuratezza delle approssimazioni nelle applicazioni).

(1) Scelta come misura (assoluta) dell’errore commesso approssimando il grafico di f(x) con
quello di o,(x) la quantita:

e (f)=max _. ., If(x) -0 (x)I

€
il risultato dell’osservazione precedente mostra che: se f ha derivata seconda continua
allora:

lime (£) =0

n-o
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e 1’approssimazione pud essere resa accurata quanto si vuole scegliendo n
opportunamente grande.

(2) Scelta come misura (assoluta) dell’errore commesso approssimando I con J, la quantita
[Je = Il, il risultato dell’osservazione precedente mostra che: se f ha derivata seconda
continua allora:

b
M2 b-a : Mz (b—a)3
S
2\ k 2 k2

b b
13, -Il= ‘f(aku)—f(x))dx < [lo (0)-f(x)ldx <

a

Anche in questo caso si ha dunque:
lim |J -1l =0

k-0

e 1’approssimazione pud essere resa accurata quanto si vuole scegliendo k
opportunamente grande.

(3.14) Esempio (riformulazione del problema dei minimi quadrati).

Si considerino i dati (k = 2): (Xo,¥o), (X1,¥1),(X2,¥2) e lo spazio vettoriale F =
span{ f,(x),f,(x) } = { a; £;(x) + a, f,(x) con a;, a, € R }. Lo scarto quadratico SQ(f)
si riscrive, utilizzando 1’espressione di f(x) in termini dei generatori f,(x),f,(x):

SQ(f) = (a1 fl(XO) + as fg(Xo) - y0)2 + (a1 fl(xl) + ay fg(X1) - Y1)2 + (al fl(XQ) + =) fQ(XQ) - y2)2

Osservando che se v = (vi,...,v,)" € R* si ha (N,(v))*> = vi> + -« + v,°, 1’ultima somma pud
essere riscritta come:?

2 2
a1f1(xo) * agfz(xo) Yo f1(Xo) fz(xo) Yo
— a,
a1f1(x1) + a2f2(x1) - Y - f1(X1) fz(x1) Y,
a,
a1f1(X2) + azfz(xz) Y, f1(X2) f2(X2) Yo
e quindi, posto:
f, Xo) fz(xo) a Yo
A= f1(}(1) fZ(Xl) ’ x=| € b= A
a,
f, Xz) fz(xz) P

si ha infine:
SQ(f) = |[Ax - b P

(3.15) Osservazione.

I1 sistema Ax = b ottenuto nell'esempio precedente & %l sistema che traduce le condizioni
di interpolazione £(x,) =y, , £(x1) =y, , £(x2) = y,.

2 Per alleggerire la notazione, per ogni v € R", in questa parte indicheremo con Hv||1a
norma due di v.
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(3.16) Definizione (soluzione nel senso dei minimi quadrati di un sistema).

Siano A € R"*° conr > c, e b € R'. Un elemento x* € R° si chiama soluzione del sistema
Ax = b nel senso dei minimi quadrati se x° & punto di minimo assoluto della funzione
SQ: R° # R definita da:

SQ(x) = ||Ax - b

Si osservi che: se y € R° & una soluzione di Ax = b allora y & anche una soluzione di
A x = b nel senso dei minimi quadrati (come mai?) ma, salvo casi particolari, una soluzione
di Ax = b nel senso dei minimi quadrati nmon é una soluzione di Ax = b.

Vediamo come st determinano le soluzioni di Ax = b nel senso dei minimi quadrati.

(3.17) Osservazione (scomposizione ortogonale di un vettore).

Siano A = (a;,...,a) € R"*° conr > c, e b € R*. Detta b, la proiezione ortogonale' di b su
span{ a;,...,a. } = C(A)®, e posto b, = b - b, si ottiene la scomposizione ortogonale:
b=Db, + b,

Si osservi che:
(1) Poiché b, € C(A), esiste y € R° tale che b, = Ay;

(2) Per definizione di proiezione ortogonale, la colonna b, = b - b. & ortogonale a tutti
gli elementi di C(A).

(3.18) 0Osservazione.
Per determinare le soluzioni di Ax = b nel senso dei minimi quadrati si osservi che,
utilizzando la scomposizione ortogonale di b introdotta nell’osservazione precedente, per
ogni x € R° si ha:

8Q(x) = [[Ax = b[*=[[Ax = b+ b ["=[Ax - Ay + b [ = [AG -y +b |
Poiché A (x - y) € C(A) e b, & ortogonale a tutti gli elementi di C(A), per il Teorema di
Pitagora® si ha:

A G-y +buff=[AG=-yI[+][b

Allora:
®* Per ogni x € R® si ha: SQ(x) = [[A(x -y I|*+ || b |*> = || b

1 La proiezione ortogonale di v € R" su un sottospazio W C R® & 1’unico elemento v, € W
tale che la differenza v - v, & ortogonale a tutti gli elementi di W.

2 C(A) si chiama anche spazio delle colonne di A e coincide con 1’immagine
dell’applicazione lineare da R° in R* definita da x -+ A x.

3 Siano a,b elementi di R", e sia <a,b> = b'a il prodotto scalare di a e b. Se a e b sono
ortogonali (ovvero, se <a,b> = 0) allora si ha:

a + b]|> = <a + b,a + b> = <a,a> + 2<a,b> + <b,b> = <a,a> + <b,b> = [|a|® + || b]|?
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e S = PeA-PIP=0%«Ak

y) = 0, ovvero x - y € ker A.*

Dunque, 1l’insieme Sy (A,b) delle soluzioni di Ax = b nel senso dei minimi quadrati & dato
da:

Sig(A,b) = y + ker A
(3.19) Osservazione (equazioni normali).

Per determinare tutte le colonne y € R° tali che b, = Ay si osservi che, per definizione di
proiezione ortogonale su C(A):

y € R* & tale che Ay = b, & b - b, =b - Ay & ortogonale a tutti gli elementi di C(A)

Ma: perché una colonna v € R’ sia ortogonale a tutti gli elementi di C(A) & necessario e
sufficiente che v sia ortogonale alle colonne di A (dimostrarlo!). Dunque: v ortogonale a
tutti gli elementi di C(A) & <v,a,> = a,"v =0,...,<v,a> = a, v =0 < A°v = 0. Allora:

y €ER° & taleche Ay=b, & A'(b-Ay) =0 & AAy=ADb

11 sistema A*Ax = A*b si chiama sistema delle equazioni normali associato al sistema A x =
b.

Si osservi che: ker A = ker A*A (infatti: x € ket A = Ax =0 = A*"(Ax) =0 = A*Ax =0 =
X € ker A*A; viceversa: x € ker AA = A"Ax =0 = x"(A"Ax) =0 = X*AYAUXx) =0 = (Ax)"
(Ax) =0 = |[Ax|*=0= Ax =0 = x € ker A). Allora:

Si(A,b) = y + ker A = y + ker A*A = { soluzioni del sistema delle equazioni normali}

Inoltre:

* La matrice A"A € R°*° & simmetrica e semidefinita positiva (infatti, per ogni
colonna x # 0 di R° si ha: x* (A*A) x = (x*AD(Ax) = (Ax)*(Ax) = [|[Ax|? > 0) ed &
definita positiva se e solo se le colonne di A sono linearmente indipendent?
(dimostrarlo!).

* Le colonne di A sono linearmente indipendenti < ker A = ker A*A = {0} < il sistema

delle equazioni normali ha wuna sola soluzione < la matrice A" A é invertibile.

®* Le colonne di A sono linearmente dipendenti < dim ker A = dim ker A*A > 0 & il
sistema delle equazioni normali ha infinite soluzioni < la matrice A A non é
tnvertibile.

4 Se A € R™”*°, si indica con ker A il sottospazio vettoriale di R° delle soluzioni del
sistema omogeneo Az = 0.
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(3.20) Esempi.

(1) Determinare le soluzioni nel senso dei minimi quadrati del sistema A x = b:

1
11x =10
1 0

e la proiezione ortogonale di b su C(A).

Soluzione: Il sistema delle equazioni normali é: 3x = 1 e quindi 1’unica soluzione nel
senso dei minimi quadrati &: x* = 1/3. La proiezione ortogonale di b su C(A4) &:

1
b. = 1/3|1
1

(2) Determinare le soluzioni nel senso dei minimi quadrati del sistema A x = b:

e la proiezione ortogonale di b su C(A).

Soluzione: Il sistema delle equazioni normali é:

3 6 1
X =
6 12 2
e:
t 2
ker A" A = span{ 1} }
Posto:
_ 1/3
v 0
si ottiene:
Si(A,b) = + span{ } } =1 1’3;” ,AERY

In questo caso, l’insieme Sy (A,b) ha infiniti elementi perché le colonne di A sono
linearmente dipendents.

La proiezione ortogonale di b su C(A) é:
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La proiezione & la stessa dell’esempio precedente perché b = b e C(A) = C(A).
(3.21) Esempio (minimi quadrati pesati).

Si considerino il sistema Ax = b:

1 -1 0
1 olx = |1
1 1 1

ed il sistema Ax = b, ottenuto moltiplicando per due la prima e la terza equazione del
sistema Ax = b:

2 -2 0
1 ojx = |1
2 2 2

I due sistemi sono equivalenti ma: Sy(A,b) # Sy(A,b). Infatti:

5/9
1/2

2/3

SMQ(A,b) = s SMQ(A,E) =

Questo non deve sorprendere, infatti per i due sistemi si ha SQ(x) # SQ(x):
SQ(x) = (% - x)° + (x; - D2+ (%, + %, - 1)°
SQ(x) =4 (x; - x)% + (x; - D+ 4(x;, + x, - 1)°
La funzione SQ si ottiene pesando gli addendi della funzione SQ con ‘pesi’ positivi.
(3.22) Esempio.

Si considerino i dati (-1,0), (0,1), (1,1). Determinare gli elementi di F = span{ 1,x } che
meglio approssimano i dati nel senso dei minimi quadrati.

Si osservi che, scelto un piano cartesiano, ciascuno degli elementi di F ha per grafico una
retta non verticale. Il problema si pud quindi riformulare in: Determinare le rette che
meglio approssimano i dati nel senso dei minimi quadrati.

Per quanto mostrato nell’Esempio (3.14) e nell’Osservazione (3.15) della Lezione 25, il
problema si risolve determinando le soluzioni nel senso dei minimi quadrati del sistema
(che traduce le condizioni di interpolazione):

1 -1 0
1 ojx = |1
1 1 1

I1 sistema delle equazioni normali ha una sola soluzione (infatti le colonne...):
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2/3
1/2

*

e 1’unica retta che meglio approssima i dati nel senso dei minimi quadrati & il grafico
dell’unico elemento di F = span{ 1,x } che meglio approssima i dati nel senso dei minimi

quadrati:

2 1
=—+ =
px)=2+2x

(3.23) Esempio.

Si considerino i dati (1,0), (1/2,1), (1/3,2). Determinare gli elementi di
F = span{ 1,1/x } che meglio approssimano i dati nel senso dei minimi quadrati.

Procedendo come nell’esempio precedente, il problema si risolve determinando le soluzioni
nel senso dei minimi quadrati del sistema (che traduce le condizioni di interpolaziomne):

e
w N =
ks
Il
N = O

I1 sistema delle equazioni normali ha una sola soluzione:

e 1’unico elemento di F che meglio approssima i dati nel senso dei minimi quadrati é:

f(x)= -1+
X

(3.24) Osservazione.

Siano A € R"*“ conr > c, b € R" e Sy(A,b) 1’insieme delle soluzioni di Ax = b nel senso

dei minimi quadrati. Si ha:!
esiste una sola colonna y, € Su(A,b) di norma minima’

(3.25) Esempio.

Sia Ax = b il sistema:

1 1 1
X =
ll 1} 0
Risulta:
Si(A,b) = lm + span{ {_1] }
0 1

e, disegnando l’insieme S (A,b) su un piano cartesiano, si verifica facilmente che

1 Dimostrazione dell’asserto omessa.
2 Pitu formalmente: la funzione||x” ha un solo punto di minimo assoluto su Sy(A,b).
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1l’elemento di norma minima (ovvero quello pil vicino all’origine) é&:

1/4
1/4

*

(3.26) Osservazione (matrice pseudoinversa).

Sia A € R"*"“ conr > c. Per ogni b € R, sia S,(A,b) 1’insieme delle soluzioni di Ax =D
nel senso dei minimi quadrati.

La funzione F: R" + R° definita da:
F(b) = 1’elemento di Sy(A,b) di norma minima

& un’applicazione lineare da R* in R°.® Quindi esiste una matrice di dimensione c x r, che si
indica con A", tale che:

F(b) = A'D
La matrice A" si chiama matrice pseudoinversa di A.
Se le colonne di A sono linearmente indipendentsi allora (si veda 1’Osservazione (3.19)
della Lezione 26) Sy(A,b) ha un solo elemento, che & quello di norma minima, e dalle
equazioni normali si ottiene, essendo A*A invertibile:

F(b) = (A*A)'A°D

In questo caso si ha allora:
A+ = (At A)—l At

Si osservi che se A € R**™ & una matrice invertibile, allora risulta A" = A™. Questo spiega
perché A" si chiami matrice pseudoinversa.

(3.27) Esempio.

Determinare la matrice pseudoinversa di:

=

[}
[
[ S

Per definizione A" € R**® & 1’unica matrice tale che: per ogni b € R, A'b = 1’elemento di
Sm(A,b) di norma minima. Le tre colonne di A" sono allora, dette e;, e,, e; le colonne della
base canonica di R®:

F(e;) , F(ey) , F(ey)

Si ha:

1/3

Sw(A,ey) = + span{

_1] )
1

e quindi, ragionando come nell’Esempio (3.25):

3 Dimostrazione omessa.



Lezione 27 - 5

1/6
F(e,) =
1/6
Allo stesso modo si determinano:
1/6
F(ey) = F(e3) =
_1/6
Infine:
. 1/6 1/6 1/6
1/6 1/6 1/6

(3.28) Definizione (fattorizzazione QR caso non quadrato).

Sia A € R"*° con r > c. Una fattorizzazione R di A & una coppia U,T tale che:
e U € R"*° & una matrice a colonne ortonormali

* T € R°“° & una matrice triangolare superiore
e UT=A

(3.29) Esempio (di calcolo di una fattorizzazione QR nel caso non quadrato, con GS).
Sia:

c R3><2

=

I
=R e
= = O

Per cercare una fattorizzazione QR di A possiamo utilizzare una ovvia variante della
procedura GS. Dette a; e a, le colonne di A:

Passo uno.
Cerchiamo 2 = [w;,w,] € R*** a colonne ortogonali e ©® € R**® triangolare superiore con 6y =
1 tali che 260 = A. Se matrici siffatte esistono, riscrivendo 1l’ultima uguaglianza per

colonne si ha:

1 0
w, = a = |1 > wi b, +w =2, =|1
1 1
La prima uguaglianza determina w;. Dalla seconda segue che:

1
(Wi 012) ¢ W + wy e wy =a, ew = |1 e [1| =2
1

[Er

Poiché w; e w, sono ortogonali, si ha w, ¢ w; = 0. Allora, essendo w; # 0, si ha

necessariamente:
91,2 = (ap ¢ wy) / (wy o wy) = 2/3
e quindi:
—-2/3
W, = a, - w0y, = 1/3
1/3

Dunque:
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1208 1 2/3
=11 1/3 e O =
0o 1
1 1/3

Passo due.

La fattorizzazione di A trovata al passo precedente non é una fattorizzazione QR perché le
colonne di {2 non hanno norma unitaria. Questo secondo passo determina, se possibile, una
fattorizzazione QR normalizzando le colonne di {2

Sia: A = diag(]| wy||,]| w.|]) = diag(sqrt(3),sqrt(2/3)). Si verifica facilmente che la coppia

1/{3 —+2/3
U=0A"=|1/y3 1/J6| », T=46-=

143 1/e

V3 2/V3
0o +2/3

é una fattorizzazione QR di A. Si osservi che per la matrice T, triangolare superiore, si
ha:
T = [l > 0

(3.30) Osservazione (fattorizzazione QR e minimi quadrati).

Trxc

Sia U,T una fattorizzazione QR della matrice A € R con r > c. Si ha:

AA = UD*WT) =(T'"U) UT) =T (WUULT
Poiché la matrice U € R"*° ha colonne ortonormali, allora si ha U'U = I € R°*°. Allora:

A"A =TT
Inoltre:
A'b= UD*b =T UD

Se la matrice T & invertibile, ovvero se le colonne di A sono linearmente indipendenti,
allora anche T* & invertibile e i sistemi

AAx=Ab e Tx=TUb

sono equivalenti. I due sistemi, perd, non hanno le stesse proprietd di condizionamento.
Infatti si ha:*
c:(A°A) = (co(T))?

ovvero: il sistema A*Ax = A*Db ha proprietd di condizionamento peggiori di quelle del
sistema Tx = U'b. Per determinare le soluzioni di Ax = b nel senso dei minimi quadrati
utilizzando un calcolatore si determina una fattorizzazione QR di A e si risolve il sistema
Tx = U"b.

4 Dimostrazione omessa.
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(3.31) Scilab.

La funzione predefinita pinv di Scilab restituisce la matrice pseudoinversa di una matrice.
Ad esempio (si veda 1’Esempio (3.27) della Lezione 27):

-—> A =1[1,1;1,1;1,1]

A = [3x2 double]

-=> pinv(A)
ans = [2x3 double]

0.1666667 0.1666667 0.1666667
0.1666667 0.1666667 0.1666667

La funzione predefinita backslash (\) & utilizzata per risolvere un sistema di equazioni
lineari. Precisamente, se A € R"*° & una matrice e b € R* & una colonna, dopo
1’assegnamento:

x = A\b

si ha:’
1
* ser=c¢c e ¢l < —
10u
allora:
x & un’approssimazione della soluzione del sistema Ax = b calcolata con un
procedimento equivalente all’applicazione delle procedure EGPP, SA, SI;
1
* ser=c e c¢(A) > — oppure r >c
10u
allora:
X & un’approssimazione di un elemento di Sy (A,b) - di solito non quello di norma
minima - calcolato con un procedimento che utilizza una fattorizzazione QR di A.

Ad esempio (vedere 1’Eesempio (3.25) della Lezione 27):
-—> A = [1,1;1,1]

A = [2x2 double]

1 Sia N una norma in R". In Sctlab, quando A € R"™" & una matrice mon invertibile, si pone:
CN(A) = +00,



Lezione 28 - 2

-—> b = [1;0]

b = [2x1 double]

--> x = A\b
x = [2x1 double]

0.5000000
0.

-=> y = pinv(A) * Db

[2x1 doublel

<
]

o

.2500000
0.2500000

Le funzione predefinita gr restituisce un’approssimazione di una fattorizzazione QR di una

rxc

matrice, anche non quadrata. Precisamente, se A € R con r > ¢, dopo 1’assegnamento:

[Q,R] = qr(d)

la matrice Q € R"*" & un’approssimazione della matrice ortogonale calcolata con il metodo

di Householder (Osservazione (2.21) della Lezione 17) applicato ad A e R € R"*° & una
matrice con elementi nulli sotto la diagonale principale. Ad esempio:

--> A = [1,0;1,1;1,1]

A = [3x2 double]

--> [Q,R] = qr(d)
Q = [3x3 double]
-0.5773503 0.8164966 -8.756D-17
-0.5773503 -0.4082483 -0.7071068
-0.5773503 -0.4082483 0.7071068
R = [3x2 double]
-1.7320508 -1.1547005

0. -0.8164966
0. 0.
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Per ottenere un’approssimazione di una fattorizzazione QR di A come definita nella
Definizione (3.28) della Lezione 27 si pud utilizzare la funzione qr come segue:

-=> [U,T] = qr(A,'e")

U = [3x2 double]
-0.5773503 0.8164966
-0.5773503 -0.4082483
-0.5773503 -0.4082483

T = [2x2 double]

-1.7320508 -1.1547005
0. -0.8164966

I fattori U,T sono ottenuti dai fattori Q,R eliminando, rispettivamente, la terza colonna

di Q e la terza riga di R. Infatti, se si esegue il prodotto QR per colonne, si osserva
che, dette q;,9,,9; le colonne di Q e r;; gli elementi di R, si ha:

QR = (r11Q1 + OQ2 + Oqs s TioQy + IppQy + OQ3) =UT

(4) METODI NUMERICI PER EQUAZIONI DIFFERENZIALI ORDINARIE

(4.01) Esempio (oscillatore armonico smorzato).
I moti di un oscillatore armonico smorzato sono descritti dall'equazione differenziale:
(%) x"(t) +ax'(t) + bx(t) =0

in cui 1'incognita & la funzione a valori reali x(t). Questa & un'equazione differenziale
del secondo ordine (lineare, a coefficienti costanti, omogenea). Una soluzione
dell'equazione & una funzione y(t) a valori reali con derivata seconda che soddisfa
1l'uguaglianza y"(t) + ay'(t) + by(t) = 0 per ogni t in R. L'equazione differenziale
determina tutti i possibili moti dell'oscillatore (1'equazione (*) ha infinite soluzioni).
Ciascuno dei moti € individuato dalle condizioni inizial<:

(CI) x(ty) = Xo s x'(ty) = v,

Si chiama Problema di Cauchy quello di determinare le soluzioni dell'equazione
differenziale che soddisfano le condizioni iniziali.

L'equazione differenziale del secondo ordine (*) & equivalente ad un sistema di due
equaziont del primo ordine. L’equivalenza significa, in questo caso, che: se y(t) é

soluzione dell'equazione (*) allora, posto:

u (t) = y(t) ) w(t) = y'(t)
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si ha:

u,' (8) = u,(t) , u' (t) = - au(t) - bu(t)
dunque la colonna (u;(t), u,(t))* & soluzione del sistema
(%) x ' (B) = x,(%) , %' () = - ax(t) - bx ()

Viceversa: se (y,;(t), y,(t))® & una soluzione del sistema (**), allora, posto y(t) = y,(t) si
ha: y'(t) = y,' (£) = yo(t) e y"(t) = y,"(t) = yo' (£) = - ay,(t) - by, (t) ovvero:

y"(t) +ay'(t) +by) =0
cioé y(t) & soluzione dell'equazione (*). Inoltre, y(t) & soluzione del Problema di Cauchy:
x"(t) +ax'(t) +bx(t) =0 ;  x(t) =% , x'(t) = v
se e solo se (y(t), y'(£))* & soluzione del Problema di Cauchy:
%' (1) = %) , x'(t) = - ax () - bx(t) i % (te) = % , X(ty) = v
(4.02) Osservazione.

Le procedure che descriveremo sono pensate per approssimare la soluzione del Problema di
Cauchy:

€©)) x'(t) = FC t,x(t) ) ) x(to) = %o

per t in un intervallo limitato [to,t:]. L'incognita del problema & la funzione x(t) a
valori in R"; i datt sono: la funzione F definita in R x R" a valori in R", glt¢ istants t, e
t; > to e la colonna x, in R".

L'asserto precedente presuppone che per il problema (§) si abbia esistenza ed unicitd della
soluzione. Vedremo poi che anche per descrivere le procedure sard necessario fare
un’ipotesi ulteriore.

(4.03) Ipotesi (di esistenza ed unicita).

Per ogni t in R e x in R" esiste una sola soluzione dell’equazione differenziale:

x'(t) = F( t,x(t) )

che verifica la condizione iniziale:
x(®) = x

Indicheremo tale soluzione con y(t; x,t).
(4.04) Definizione (metodo numerico).
Un metodo numerico per l'approssimazione della soluzione del Problema di Cauchy (§) su

[to,t:] & una procedura che costruisce, in base al valore di un parametro E controllato
dall'utilizzatore, numeri reali t(0) = tq,...,t(N) in [t,,t:], colonne x(0) = x4,...,x(N) in
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R" e, per k = 0,...,N, suggerisce di utilizzare x(k) come approssimazione di y(t(k); Xo,to).

I numeri t(0),...,t(N) si chiamano <stanti di integrazione e, per k = 0,...,N-1, il numero
h(k) = t(k+1) - t(k) si chiama passo di integrazione all'istante t(k).

Una realizzazione in Scilab di un metodo numerico ha la struttura seguente:
function [T,X] = MetodoNumerico(x,,te,t:,F,E)

k = 0; t(0) = to; x(0) = xo;
while t(k) < tg,
SCEGLI h(k) in base al valore di E;
CALCOLA x(k+1);
t(k+1) = t(k) + h(k);
k = kt+1;
end;

endfunction
Le variabili di uscita sono, rispettivamente, la riga T e la matrice X tali che:
T = (£(0),...,t(N)) > X = (x(0),...,x(N))

Un metodo numerico é& specificato dalle procedure di scelta di h(k) e calcolo di x(k+1).
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(4.05) Definizione (errore totale).

Siano t(k) un istante di integrazione e x(k) la corrispondente approssimazione generati da
un metodo numerico per 1l'approssimazione della soluzione del problema

) x'(t) = FC t,x(¢) ) , x(to) = %o > t € [to,tel

La colonna:
et(k) = x(k) - y(t(k); %o,t,) € R

si chiama errore totale all'istante t(k). La norma di et(k), che si indica con ET(k), & una
misura di quanto %l metodo sbaglia, all'istante t(k), nel seguire la soluzione del problema
(8.
(4.06) Definizione (metodo convergente per E = 0).
Un metodo numerico per 1'approssimazione della soluzione del problema (§) & convergente per
E + 0 se: per ognt A > O esiste E, tale che se E < E, allora per gli istanti t(0) =
tg,...,t(N) e le colonne x(0) = Xo,...,x(N) determinati dal metodo si ha:
t(N) = t; e max { ET(0), ... ,ET(N) } < A
(4.07) Definizione (errore locale).
Siano t(k-1) e t(k) due istanti di integrazione consecutivi e x(k-1), x(k) le
corrispondenti approssimazioni generati da un metodo numerico per 1l'approssimazione della
soluzione del problema (§). La colonna:
el(k) = x(k) - y(t(k); x(k-1),t(k-1)) € R"
si chiama errore locale all'istante t(k). La norma di el(k), che si indica con EL(k), & una
misura di quanto il metodo sbaglia, all'istante t(k), nel seguire la soluzione
dell'equazione differenziale x'(t) = F( t,x(t) ) che all'istante t(k-1) passa per x(k-1).
(4.08) 0Osservazione (relazione tra errore locale e totale).
Si ha:
et(k) = x(k) - y(tX); xo,t0) = ( x(k) - y(t(k); x(k-1),t(k-1)) ) +
+ (yGeR; x(k-1),t(k-1)) - y(t(k); Xo,t0) )
da cui:
et(k) = el(k) + ( y(t(k); x(k-1),t(k-1)) - y(t(k); %o,te) )

Introducendo la notazione:

Ay(t"; s, t') = y(t"; y(&'; Xo,to) + 8, t') - y"; y(t'; Xo,t0), t')
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si riscrive, infine:
et(k) = el(k) + Ay(t(k); et(k-1), t(k-1))

La quantita Ay(t"; s, t') descrive come l'equazione differenziale tramanda all'istante t"
lo scostamento, s, all'istante t', dalla soluzione y(t; X,,t,) del problema (§).

(4.A) METODO TS(1) - EULERO ESPLICITO

(4.09) Ipotesi (regolarita delle soluzioni).

Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano
derivata seconda continua.

La richiesta é certamente soddisfatta se tutte le derivate parziali prime della funzione
F( t,x ) esistono e sono funzioni continue di t ed x.

(Infatti: se y(t) & soluzione dell'equazione differenziale si ha:

y") = (@& = CFCt,y) ))' = 8tF( t,y(t) ) + OXF( t,y(t) ) - y' ()
che risulta continua perché lo sono atF( t,x) , 0 F(Ct,x) , y) ey (v).)
X

(4.10) Definizione (metodo TS(1) - Eulero esplicito).
I1 metodo TS(1) (o metodo di Eulero esplicito) & definito dalle procedure seguenti.

* SCELTA di h(k). Dati E> 0O e A > 0, per ogni k si pone:

dk) =max { A , || y"Gt&); 2k ,t&)) || }
e poi:
h(O) = min { |, %, - £ }
d(x)

e CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:
x(k+1) = x(k) + F( t(k),x(k) ) h(k)
I1 nome del metodo & conseguenza del fatto che la funzione x(k) + F( t(k),x(k) ) h si
ottiene tromcando al termine di ordine uno la serie di Taylor di y(t(k) + h; x(k),t(k)) in
h =0.

(4.11) Osservazione (sulla scelta di h(k)).

Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, sia s la
funzione da R in R" definita da:
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s(h) = x(k) + F(C t(k),x(k) ) h - y(t(k) + h)
Detto G il grafico di y(t), il valore s(h) rappresenta lo scostamento tra G e la retta
tangente a G in (t(k),x(k)), misurato all'istante t(k) + h. Per h > 0 la quantitd s(h) é

l'errore locale all'istante t(k) + h.

Poiché y(t) ha derivata seconda continua, anche s(h) ha derivata seconda continua. Per la
Formula di Taylor in h = O con resto di Lagrange, esiste una funzione z da R in R" tale che:

s(h) = s(0) + s'(0) h + ig s"(0) h2 + z(h) h2 e z(h) » 0 per h » 0

e quindi, essendo s(0) = x(k) - y(t(k)) =0, s'(0) = FC t(k),x(k) ) - y'(t(k)) =0 e
s"(0) = - y"(t(k)):

1 2 2
s(h) = - o y"(t(&k)) b + z(h) h con z(h) + 0 per h = 0
Se y"(t(k)) non & zero allora:
. 1 2 . .
® Per h piccolo: - P y"(t(k)) h é una buona stima di s(h)

(nel senso che l'errore relativo tende a zero per h =+ 0)

e Si ha:

2E
[ y" (e |1

1 2
I - Py y"t&) h |l =E < h = J
La scelta di h(k) garantisce che, in ogni caso e per ogni A > 0, si ha:
1 2
(I o y"(t(X) h(k) |l < E

I1 parametro A ha lo scopo di evitare che possa essere d(k) = 0 e garantisce, inoltre,
che:

2E
per ogni k: d(k) > A e quindi h(k) < |5



Lezione 30 (ore 60,61) - 3 dicembre 2025, 11:30 - 13:30 A13

(4.12) Teorema (convergenza del metodo TS(1)).

Siano t, un numero reale, F una funzione definita in R x R" a valori in R" e x, in R" e si
consideri il Problema di Cauchy:

€)) x'(t) = FC t,x(t) ) , x(to) = % , t € [to,t:]
Se tutte le derivate parziali prime di F(t,x) sono funzioni continue di t ed x e il
Problema (§) ha una sola soluzione, allora per ogni A > 0 il metodo TS(1) applicato al
Problema (§) & convergente per E + 0 e:

* N tende a infinito come 1 / JE ;

e Per ogni k: ET(k) tende a zero come JE

(4.13) Realizzazione in Scilab (TS_1_pv).

function [T, X, PASSO] = TS_1_pv(x0, tO, tf, F, G2, E, LAMBDA, HMIN)
//

// Integra numericamente, sull'intervallo [tO,tf], il Problema

// di Cauchy in R(n):

//

// x' = F(t,x)

// x(t0) = x0

//

// con il metodo TS(1) - Eulero esplicito - a passo variabile.
//

// x0: condizione iniziale (colonna di n elementi)

// t0O: istante iniziale (numero reale)

// tf: istante finale (numero reale)

// F: function che definisce 1'equazione differenziale; F(t,x) deve

// essere una colonna di n numeri reali

// G2: function che restituisce la derivata seconda in t della soluzione
// dell'equazione differenziale che all'istante t assume valore x;
// G2(t,x) deve essere una colonna di n numeri reali

// E: valore massimo della stima dell'errore locale (numero reale)

// LAMBDA: numero reale che stabilisce il valore massimo del passo

// (OPZIONALE - valore predefinito: 1d-5)

// HMIN: valore minimo consentito del passo

// (OPZIONALE - valore predefinito: (tf - t0) / 1d6)

//

// T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione

// X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni
// PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione
//

// Valore degli argomenti opzionali

//

if ~exists('LAMBDA','1') then LAMBDA = 1d-5; end;
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if ~exists('HMIN','1l') then HMIN = (tf - t0) / 1d6; end;

//
// Inizializzazione delle variabili di uscita
//
T(1,1) = t0;
X(:,1) = x0;
PASSO = [];
//
// ciclo principale
//
while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf
//
// scelta del passo
//

Nd2x = norm(G2(T(1,$),X(:,$)));
d = max(LAMBDA, Nd2x);
PASSO(1,%+1) = min(sqrt(2+*E/d), t£f - T(1,$));

//

// calcolo approssimazione e nuovo istante di integrazione
//

X(:,8+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,%$);
T(1,$+1) = T(1,$) + PASSO(1,$);

//

// arresta la costruzione se il passo calcolato risulta troppo
// piccolo e non ha raggiunto tf

//
if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;
//

end;

//

// Verifica se 1l'integrazione ha raggiunto tf

//

if T(1,$) < tf then

printf ("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
end;
//

endfunction

(4.14) Esempio (svolto in classe il 4 dicembre).

Si consideri un pendolo realizzato da un punto pesante di massa m collegato da un filo
inestensibile di lunghezza L ad un punto fisso. Supposto piano il moto del punto ed

adottato l'angolo x tra la verticale discendente ed il filo, misurato in senso antiorario,
come coordinata lagrangiana, 1'equazione del moto risulta:

(ED) x"(t) = —%senx(t)

Per approssimare nell'intervallo [t,,t:] = [0,3] s la soluzione del Problema di Cauchy che si
ottiene considerando le condizioni iniziali:

(CI) x(0) = x, =7/4 rad , x'(0) =0
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si utilizza, in Scilab, la procedura TS_1_pv. L'uso della procedura richiede:
* La determinazione di un sistema di due equazionti differenziali di ordime uno

equivalente all'equazione (ED). Introdotte le variabili u,;(t) = x(t), u,(t) = x'(t)
si ottiene:

(ED") u, ' (t) =u,(t) R u, ' (t) =—-%—senu1(t)

che si completa con le condizioni iniziali:
(ci"H u;(0) = x, , u,(0) =0

* La scrittura della function che definisce tl sistema (ED'):
function y = F(t,u)

y=1 u(2) ;
- (g/L) * sin( u(1) ) 1;

endfunction
. La determinazione della funzione che, dati t ed u, restituisce il wvalore della

derivata seconda, calcolata in t, della soluzione del sistema (ED') che passa per u
all'istante t:

uz‘(t) _ —(g/L)sen(ul(t»
—(g/L)ul'(t)cos(ui(t)) —(g/L)uQ(t)Cos(ul(tD

ull (t) =

e la scrittura della relativa function:
function y = G2(t,u)

y =1 - (g/L) * sin( u(1) );
- (g/L) * u(2) * cos( u(1) ) 1;

endfunction

* L'assegnamento dell'istante finale t; (s):

* L'assegnamento della colonna delle condizioni iniziali (CI'):
u0 = [x0;0];

e L'assegnamento del wvalore at parametri:

g =9.82; // m/s"2
L=1; //m
m=1; // kg
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* La scelta del valore massimo consentito per la stima dell'errore locale, E.
Per ottenere un valore di E adeguato, occorre un criterio per giudicare 1l’accuratezza
dell’approssimazione ottenuta dalla procedura. Per il sistema fisico in esame

possiamo procedere come segue.

(A) Considerato che durante il moto 1’energia meccanica:
1 2 2
EN (x(t)) =mgL(1—cosx1(t))+-5mL (x,(£))

assume valore costante e pari al valore EN(t,) assunto all’istante t,, come
misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la
vartazione relativa dell’energia durante 2l moto approssimato:

max EN(u(t )) — min EN(u(t ))
k k

Var_EN =
EN(u(tO))

(B) Considerato che il moto del pendolo é periodico e che si ha:
min x,(t) = - max x,(t) = max x,(t) + minx;(t) =0

come misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la
vartazione relativa dell’ampiezza dell’oscillazione durante il moto approssimato:

max u, (t ) + minu, (t )
k 17k

Var_A =
ul(to)

Questa scelta & ragionevole se l'intervallo [t,,t;] include almeno una

oscillazione della funzione u,(t,).

(C) Si ottiene la tabella che segue:

E N Var_EN (%) Var A (%)
107 267 35.89 6.3

107° 2587 3.25 5.99 10
1077 25779 0.32 5.97 1072

Quale sia un valore di E adeguato dipende da quello che 1l’utilizzatore vuole
ottenere. La tabelle suggerisce che al diminuire di E 1l’accuratezza

dell’approssimazione aumenta.
(4.15) Osservazione (variazione di N e ET con E).
Siano N e M, rispettivamente, il numero di istanti di integrazione e il massimo valore di
ET(k) ottenuto utilizzando la procedura TS_1_pv con E = E e N' e M' i corrispondenti valori

ottenuti con E = o E. Per quanto detto nel Teorema (4.12) ci si aspetta che:

N'/N =~ 1/a'? e M'/M ~ a'?
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Nella tabella finale dell’esempio precedente si ha o = 107, dunque ci si aspetta:
N'/N =~ 10 e M'/M =~ 1/10

La relazione riguardante 1l’aumento del numero di istanti di integrazione & evidentemente
verificata:

2587/267 = 9.69 e 25779/2587 = 9.96

Non avendo possibilitad di accedere all’errore totale, ci limitiamo a constatare che per la
variazione relativa dell’energia si ha:

Var_EN'/Var_EN = 3.25/35.89 ~ 0.90 107! e 0.32/3.25 ~ 0.98 107"
e per la variazione relativa dell’ampiezza:

Var_A'/Var_ A = 5.99 10'/6.3 ~ 0.95 10 e 5.97 107%/5.99 10" ~ 0.99 107"

(4.B) METODO TS(2)

(4.16) Ipotesi (regolaritd delle soluzioni).

Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano
derivata terza continua.

La richiesta é certamente soddisfatta se tutte le derivate parziali seconde della funzione

F(t,x) esistono e sono funzioni continue di t ed x.

(Infatti:
G (t,x) =0 F(Ct,x )+ 0 F(t,x) - F(t,x)
2 t X

ha derivate parziali prime continue e quindi:

GS(t,X) = atGQ( t,x ) + GXGQ( t,x ) - F( t,x )

[0l

continua. Allora, se y(t) & soluzione dell'equazione differenziale:

v @ = (@)D = (CCFGLy@) ) ) = ( 6, £y(®) ) )" =6 (t,y(8) )

& continua perché lo sono G3( t,x ) ed y(t).)

(4.17) Definizione (metodo TS(2)).
I1 metodo TS(2) & definito dalle procedure seguenti.

* SCELTA di h(k). Dati E > 0O e A > O, per ogni k si pone:
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Iy € ; xG0,ta)|| 3

3
h(k) = min { 1—£EL— , tf - t(k) }
d(k)

* CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:

dk) =max { A ,
e poi:

1
x(k+1) = x(k) + FC t(&),x(k) ) h(k) + -5 G2( t (k) ,x(k) ) h(k)2

I1 nome del metodo & conseguenza del fatto che la funzione di h utilizzata per il calcolo
di x(k+1) si ottiene troncando al termine di ordine due la serie di Taylor di y(t(k) + h;
x(k),t(k)) in h = 0.

(4.18) Osservazione (sulla scelta di h(k)).

Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, per lo
scostamento s(h) tra y(t(k) + h) e 1'approssimazione calcolata dal metodo con un passo di
lunghezza h a partire da ( t(k),x(k) ) si ha, utilizzando la Formula di Taylor in h = 0 con
resto di Lagrange:

3

sth) = - y (k) h3 + z(h) h3 con: z(h) + 0 per h » 0

o |~

Se y(s)(t(k)) non & zero allora:

® per h piccolo: - % y<3) (t)) B> ¢ una buona stima di s(h)
¢ si ha:
! 6E
I e y(3) G B> | =E & n= 3 S
lly ™ (e )|

I1 parametro A garantisce che:

3/ 6E
per ogni k: d(k) = A e quindi hk) < =
(4.19) Teorema (convergenza del metodo TS(2)).

Siano t, e t¢ > t, numeri reali, F una funzione definita in R x R" a valori in R", X, in R" e

si consideri il Problema di Cauchy:
€); x'(t) = FC t,x(®) ) ) x(te) = % , t € [to,t]
Se tutte le derivate parziali seconde di F(t,x) sono funzioni continue di t ed x e il

Problema (§) ha una sola soluzione, allora per ogni A > 0 il metodo TS(2) applicato al
Problema (§) & convergente per E + 0 e:

* N tende a infinito come 1 IVE
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*  Per ogni k: ET(k) tende a zero come VEE = g*°

(4.20) Osservazione.

Si consideri il Problema di Cauchy (§). Per ogni E > O, indichiamo con N;(E) e ET,(E) il
numero di istanti di integrazione e 1l’errore totale massimo generati dal metodo TS(1) e con
N,(E) e ET,(E) il numero di istanti di integrazione e 1l’errore totale massimo generati dal
metodo TS(2). Per quanto detto nel Teorema (4.12) e nel Teorema (4.19), per E -+ 0 si ha:

* N,;(E) / N,(E) = +00 come J./%E , dunque N,;(E) tende ad o pid rapidamente di N,(E)

* ET,(E) / ET,(E) = 400 come ]./WE , dunque ET,(E) tende a O pidu rapidamente di ET,(E)

Ci si aspetta allora che, con lo stesso valore di E:

® TS(2) generi un errore totale massimo piud piccolo di quello generato con TS(1)

®* TS(2) raggiunga t; con un numero dit passi inferiore rispetto a TS(1)
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(4.C) METODI RUNGE-KUTTA

(4.21) Esempio.

Nel metodo TS(2) & richiesta all'utilizzatore la determinazione e realizzazione delle
funzioni:
G2(t,x) per il calcolo di x(k+1)

Gs(t,x) per la scelta di h(k)

In generale il compito & tanto pil gravoso quanto piu alto & 1l'ordine del metodo: nel
metodo TS(p) l'utilizzatore deve determinare e realizzare le funzioni:

G2(t,x),...,G (t,x) per il calcolo di x(k+1)
p
G (t,x) per la scelta di h(k)
ptl

I metodi Runge-Kutta sono pensati per eliminare questo onere.

Per introdurre la struttura dei metodi, vediamo come si trasforma il calcolo di x(k+1) nel
metodo TS(2) utilizzando una stima numerica del valore G2(t,x).

(4.22) 0Osservazione (stima numerica di G2)
I1 valore G2(t(k),x(k)) = y"(t(k)) pud essere stimato con le considerazioni seguenti:

(a) Per definizione:
y' &) + 1) -y (tk)
T

+ y"(t(k)) per T-+0

dunque:

y' k) + ) - y'(elk) é una buona approssimazione di y"(t(k))

per T piccolo
T

(b) Poiché y(t) é la soluzione dell'equazione differenziale che vale x(k) all'istante
t(k) si ha:
y' &) = FCt),y(t&)) ) = FC t(k),x(k) )

y' & + 71 =F(t&k) +7, ytk + 71 )

Quest'ultimo valore non é calcolabile perché, assegnato 7, la procedura non conosce
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y(t(k) + 7). Allora:
st approssima y(t(k) + 1) con y(t(k)) + y'(t (k) 7= xk) + F( t(k),x(k) ) 7
Complessivamente:

scelto T piccolo, st stima G2(t(k),x(k)) = y"(t(k)) con

FCt(k) + 1, x(k) + FCt(),x(k) ) t ) - FC t(k),x(k) )
T

Questa quantita, dato 7, € calcolabile senza usare G2.

La stima & ragionevole. Infatti, indicando con F(k) il valore F( t(k),x(k) ), si consideri
la funzione di T:

H(m =FCtk) + 7, x(k) + F(k) 7)

Poiché si suppone che F(t,x) abbia derivate parzialt prime continue, anche H ha derivata
prima continua. Allora:

H(m) = H(O) + H'(0) 7+ z(7) 7 con z(1) » O per 7=+ O
Ma: H(0) = F(k) e

H'(0) = 6tF( t(k),x(k) ) + 6XF( t(&),x(k) ) - FC tk),x(k) ) = G2( t(k),x(k) ) = y"(t(k)

dunque:
H(m) =F& +y"t&®) 7+ z(nD 7

H(t) - F(k)

T

- y"(t(k)) = z(t) =+ 0per 720

(4.23) Osservazione (uso della stima numerica).

In TS(2):

(1) = x(&) + F( () ,x(k) ) h(k) + é 6, £0,x(0 ) n (k) 2

Scegliendo 7 = h(k) nella stima dell'Osservazione (4.22) si ottiene:

FCt(k) + h(k) , x(k) + F(C t(k),x(k) ) h(k) ) - F(C t(k),x(k) )
h(k)

G2( t(k),xk) ) =

da cui (posto F(k) = F( t(k),x(k) )):

x(k+1) = x(k)

+

F(k) h(k) + é [F(t®& + hk) , x(& + F& hk) ) - F& 1 hk)

x (k)

+

é— [Fk) + FCt) + h(k) , x(k) + F(&) h&) ) ] hk)
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Questa procedura di calcolo di x(k+1) pud essere riscritta, in modo piu semplicemente
p p p p
generalizzabile, come segue: il valore x(k+1) si ottiene, dopo aver scelto h(k), ponendo:

* ST, = F( t(k),x(k) )
* ST, = FC t(k) + h(k) , x(k) + ST, h(k) )
e pot

x(k+1) = x(k) + é— (ST, + ST,) h(k)

(4.24) Definizione (metodi RK a due e tre stadi).

Si chiamano metods Runge-Kutta (RK) a due stadi quelli nei quali, scelti opportunamente
numeri reali c,, a,, b; e by, il valore x(k+1) si ottiene, dopo aver scelto h(k), ponendo:

e 8T, = F(C t(k),xk) )
e 8T, = F(C t(k) + ¢, h(k) , x(k) + a, ST, h(k) )
e poi

e x(k+1) = x(k) + (b; ST, + b, ST,) h(k)

Si chiamano metodi Runge-Kutta (RK) a tre stadi quelli nei quali, scelti opportunamente
numeri reali c,, Cs, @y, as, &z, D1, Dy € by, il valore x(k+1) si ottiene, dopo aver scelto
h(k), ponendo:

e ST, = F( t(k),x(k) )

e ST, = FC t(k) + c, h(k) , x(k) + ay ST, h(k) )

e STy = FC t(k) + ¢c; h(k) , x(k) + [ as ST, + az, ST, 1 h(k) )
e poi

e x(k+1) = x(k) + (b; ST, + b, ST, + by ST3) h(k)
(4.25) Definizione (ordine di un metodo per h =+ 0)

Sia s(h) la funzione scostamento per il metodo in esame. Il numero intero p si dice ordine
del metodo per h + 0 se:
s™@0) =0 perm = 0,...,p e s®V() £ 0

ovvero se il primo termine dello sviluppo di Taylor di s(h) per h = 0 & quello di ordine
p+l:

_ 1 S(p+1) p+l

(0) n + ...

(4.26) Osservazione (determinazione dei parametri in un metodo Runge-Kutta) .

In un metodo Runge-Kutta a piu stadi i valori dei parameiri c;, a;;, b; sono determinati (non
univocamente) dalla condizione che: per ogni funzione F che definisce il Problema di
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Cauchy, 1’ordine del metodo per h =+ O, sia il p<d elevato possibile.

(4.27) Esempio.

Si consideri il metodo Runge-Kutta a due stadi. Per ogni k, posto y(t) = y(t;x(k),t(k)), si
ha:
s(h) = x() + [b; ST; + b, ST,(W)] h - y(t(k) + h)

Allora:
s®(h) = b, ST, + b, ST,' (W) h + b, ST,(h) - F[t(k) + h,y(t(k) + h)]

s(2) (h)

b, ST,"(h) h + 2b, ST,' (h) - 8, Flt(k) + h,y(t(k) + h)] -
- F[t(k) + h,y(t(k) + h)] -0, Flt(k) + h,y(t(k) + h)]

da cui, essendo ST,(0) = ST, = F[t(k),x(k)]:

s2(0) = s(0) = x&) - yt&) =0
sP(0) = (by + b, - 1) Flt(k),xX)]

s®(0) = 2b, ST,'(0) - 0, Flt(k),x(x)] - F[t&),x(k)] * 8, F[t(k),x(k)]

Poi, posto F[t(k) + ¢c; h , x(k) + ay ST; h] = F,(h) e quindi ST, = F[t(k),x(k)] = F.(0):

ST,' (h) = c, 0, Fu(h) + ay F.(0) 0, F(h)
da cui:

S(2)(O) = (2 bg Cy — 1) at Fk(o) + (2 b2 Ay ~ 1) Fk(o) ax Fk(o)]

Infine:

s (0) = 0 per ogni F & b, +b,-1=0
s?) =0 per ogni F s 2b,c, -1 =0 e 2by,a,y -1 =0

e il metodo risulta di ordine almeno due per h + O se e solo se:
b; + b, =1 ) 2byc, =1 ) 2byay =1

Ad esempio:
by =b,=1/2 , cy,=ay, =1 (metodo di Heun)'

b, =0 , by=1 , ¢y =ay, =1/2 (metodo di Eulero modificato o del punto medio)
(4.28) Osservazione.

Per un metodo di ordine p si ha:’

* N tende a infinito come 1/p+VE ;

* Per ogni k: ET(k) tende a zero come WVE; = g

1 E il metodo dell’Esempio (4.23), detto anche ‘metodo di Eulero migliorato’.
2 Dimostrazione omessa.
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(4.29) Osservazione.

La Definizione (4.24) si estende a metodi con un numero qualsiasi di stadi. Inoltre:
1’ordine massimo di un metodo ad uno stadio & uno (esiste un solo metodo ad uno stadio di

ordine uno: il metodo TS(1)), di un metodo a due stadi & due e di un metodo a tre stadi &
tre. In generale, 1’ordine massimo di un metodo &€ minore o uguale al numero di stadz.
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(4.30) Osservazione (scelta di h(k) nei metodi Runge-Kutta).

Coerentemente con 1'intento di eliminare 1'onere della determinazione e realizzazione delle

funzioni G (t,x), la scelta di h(k) nei metodi RK avviene, usualmente, come segue.

Siano: RK il metodo di Runge-Kutta, di ordine p per h = 0, scelto per il calcolo di x(k+1)

e RK' un altro metodo di Runge-Kutta, di ordine p' = p+1. Allora:

® SCELTA di h(k). Dati E > 0 e A > 0, per ogni k si sceglie 7 piccolo, si calcolano:

(1) XX = un passo di RK a partire da (x(k),t(k)), di lunghezza 7

(2) XX' = un passo di RK' a partire da (x(k),t(k)), di lunghezza T
si pone:
d(k) =max { A, [|XX - XX' || }
e poi:
. p+l E
h(k) = min { — 1t , tf - t(k) }
d)

Questa procedura di scelta si spiega considerando che:

S(p+1)

0
(a) I1 metodo RK ha ordine p per h - O dunque, posto C = ——Z——3£—l
p+ti)!
si stima s(h) con Ch"™
(b) Poiché:
XX - y(t(k) + 1) =
=C 7"+ z(n) 7™, conz(®) +0per 7+ 0 (RK ha ordine p)
XX' - y@tk) + 7 =
=C' 7" + w(D7T" , conw(r) - 0 per 7+ 0 (RK' ha ordine p+1)
allora:
XX - XX!'
T C+[z(t) - (" +w()) t] =+C per7-=+0
T
e:
, o XX - XX
scelto T piccolo, si stima C con — Qo

(c) Complessivamente:

XX - XX pa

scelto T piccolo, si stima s(h) con )
P

dunque:
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XX - XX!
p+l
ptl h

p+l E
=E =3 h: -
\ I XX - xx' ||

(4.31) Realizzazione in Scilab (RK12_pv).

Come esempio di realizzazione, consideriamo il metodo RK che utilizza Eulero esplicito, di
ordine 1 per h + 0, per il calcolo di x(k+1) e che sceglie h(k) affiancandolo con il metodo
dell'Osservazione (4.23), metodo di Heun di ordine 2 per h -+ 0. Ne risulta un metodo di
ordine 1 per h » 0 e quindi convergente di ordine 1/2 per E = 0.

01 function [T, X, PASSO] = RK12_pv(x0, tO, tf, F, E, LAMBDA, HMIN, TAU)
02 //

03 // Integra numericamente, sull'intervallo [tO,tf], il Problema

04 // di Cauchy in R(n):

05 //

06 // x' =F(t,x)

07 // x(t0) = x0

08 //

09 // con il metodo di Eulero esplicito (RK di ordine 1) - a passo

10 // variabile - affiancato, per la scelta del passo, dal metodo

11 // RK di ordine 2 definito da c(2) =1, a(21) =1 e b(1) = b(2) = 1/2.

12 //

13 // x0: condizione iniziale (colonna di n elementi)
14 // t0: istante iniziale (numero reale)

15 // tf: istante finale (numero reale)

16 // F: function che definisce 1'equazione differenziale - F(t,x) deve
17 // essere una colonna di n numeri reali

18 // E: valore massimo della stima dell'errore locale (numero reale)
19 // LAMBDA: numero reale che stabilisce il valore massimo del passo

20 // (OPZIONALE - valore predefinito: 1d-5)

21 // HMIN: valore minimo consentito del passo

22 // (OPZIONALE - valore predefinito: (tf - t0) / 1d6)

23 // TAU: valore del passo per il calcolo delle stime utilizzate

24 // nella scelta di h(k) (OPZIONALE - valore predefinito: (tf - t0) / 1d3)
25 //

26 // T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione

27 // X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni
28 // PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione
29 //

30 // Valore degli argomenti opzionali

31 //

32 if ~exists('LAMBDA','l') then LAMBDA = 1d-5; end;
33 if ~exists('HMIN','l') then HMIN = (tf - t0) / 1d6; end;
34 if ~exists('TAU','1l') then TAU = (zf - t0) / 1d3; end;

35 //

36 // Inizializzazione delle variabili di uscita
37 //

38 T(1,1) = t0;

39 X(:,1) = x0;

40 PASSO = [];

41 //

42 // ciclo principale
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43 //

44 while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf
45 //

46 // scelta del passo

47 //

48 // XX1 = X(:,$) + F(T(1,$),X(:,$)) * TAU;
49 ST1 = F(T(1,$),X(:,$));

50 ST2 = F( T(1,$) + TAU,X(:,$) + ST1 * TAU );
51 // XX2 = X(:,$) + ( (ST1 + ST2)/2 ) * TAU;

52 //
53 // XX1 - XX2 = (ST1 - ST2)/2 * TAU
54 //

55 d = max(LAMBDA, norm( ((ST1 - ST2)/2) * TAU ));
56 PASSO(1,$+1) = min(sqrt(E/d) = TAU, tf - T(1,$));

57 //
58 // calcolo approssimazione e nuovo istante di integrazione
59 //

60 X(:,8+1)
61 T(1,8+1)
62 //

63 // arresta la costruzione se il passo calcolato risulta troppo

X(:,8) + F(T(1,$),X(:,$)) * PASSO(1,$);
T(1,$) + PASSO(1,%);

64 // piccolo e non ha raggiunto tf

65 //

66 if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;

67 //

68 end;

69 //

70 // Verifica se 1l'integrazione ha raggiunto tf

71 //

72 if T(1,$) < tf then

73 printf ("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
74 end;

75 //

76 endfunction

7T //

78 // Esempio per assegnare valori ai parametri opzionali:

79 //

80 // [T,X,PASSO] = RK12_pv(x0,t0,tf,F,G,E,HMIN
81 //

82 // => LAMBDA = valore predefinito, HMIN = y, TAU = valore predefinito
83 //

v);

Si osservi che:

¢ Nella scelta del passo la differenza XX1 - XX2 pud essere determinata senza
calcolare XX1 ed XX2 (righe 48-55). Risulta infatti:

ST1 - ST2
XX1 - XX2 = ————5———— TAU

¢ Per la scelta del passo si & utilizzato lo stesso walore di T ad ognti iterazione.
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I1 file che contiene la procedura, insieme ad un esempio di applicazione all’equazione del
pendolo (la stessa dell’Esempio (4.14) della Lezione 30), si pud trovare nella pagina web
del corso, sezione "altro materiale didattico".



Lezione 34 (ore 68,69) - 11 dicembre 2025, 8:30 - 10:30 F3

In questa lezione svolgiamo alcuni esercizi.

Esercizio 1

Sia:
-x, -1
F(x) = 2 R® - R?
2
-+ x -1
(1) Determinare graficamente gli zeri di F;
(2) Posto G(x) = x - F(x), verificare che gli zeri di F sono tutti e soli i punti uniti
di G;
(8) Decidere se il metodo ad un punto definito da G sia utilizzabile per approssimare
gli zeri di F;
(4) Dato x(0) = 0 , determinare 1’elemento x(1) ottenuto utilizzando un passo del
metodo di Newton applicato ad F;
(5) Decidere se il metodo di Newton applicato ad F sia utilizzabile per approssimare gli
zeri di F.
Soluzione.
(1) Posto:

F,(x) =%, - %, -1 e Fo(x) = 32+ x° - 1

1’equazione F(x) = 0 & equivalente al sistema:

F,(x) =0 e F,(x) =0
L’insieme degli zeri di F, é la retta di equazione x, = x; — 1; 1’insieme degli zeri
di F, & la circonferenza di equazione x,° + x,° = 1, di centro 1’origine e raggio 1.

Rappresentando graficamente i due insiemi in un piano cartesiano si determinano i due
zeri di F:

(2) L’equazione x = G(x) si riscrive: x = x + F(x), e quest’ultima & equivalente
all’equazione F(x) = 0. Dunque Le equazioni x = G(x) e F(x) = 0 sono equivalenti
ossia hanno le stesse soluzioni. Le soluzioni della prima sono i punti uniti d< G,
quelle della seconda sono gli zer: dt F.

(3) Per quanto detto nella Lezione 14, il metodo definito da G & utilizzabile per
approssimare il punto unito o4 se e solo se il raggio spettrale’ della matrice
jacobiana di G calcolata in ay, J¢(), & minore di 1. La matrice jacobiana di G é:

1 Si veda la Definizione (2.65) nella Lezione 22.
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-1
JG(X) =
2X1 2x2+1
Per a; si ha:
2 —1
JG(ai) =
2 1

I1 polinomio caratteristico é:
det(Jelay) = AI) = (2 - D -X) +2=XN-3\+4
e gli autovalori sono:

3+ V7 A_s—iﬁ
3 + N7 S

)\1= e
2 2

Allora: p(Je;(ay)) > 1 e il metodo definito da G non é utilizzabile per approssimare
Q.

Per o, si ha:

Jelay) =

Gli autovalori sono:
A = 2 e A = -1

Di nuovo: p(Je(ay)) > 1 e il metodo definito da G non é utilizzabile neppure per
approssimare os.

(4) I1 metodo di Newton applicato ad F & il metodo ad un punto definito dalla funzione:
N(x) = x - Je(x)'F(x) : R » R’
Si ha:

e = |+ 7t e J3.(x(0) = [1 -1
0 2

2X1 2x2

La matrice J:(x(0)) é invertibile, dunque x(1) & definito e si ha:
x(1) = N(x(0)) ovvero x(1) = x(0) - Jx(x(0)) ' F(x(0))

Detta v la soluzione del sistema Jz(x(0)) z =F(x(0)), si riscrive:
x(1) = x(0) - v
Si ha:

2
1

e infine: x(1) =

(5) Per quanto detto nell’Osservazione (1.90) della Lezione 14, condizione sufficiente
per 1l’utilizzabilitd del metodo di Newton per approssimare lo zero oy di F & che: F
abbia derivare (parziali) seconde continue in un intorno di o, e J:(a) sia
invertibile. Nel caso in esame le funzioni F, ed F, hanno derivate parziali di ogni
ordine su R? e sia Jy(a;) che Jr(a,) sono invertibili. Il metodo di Newton risulta
quindi utilizzabile per approssimare entrambi gli zeri di F.
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Esercizio 2

Siano:
4 1 1 5
1 4
A= e b=|!
2 0
1 4 5

(1) Decidere se la matrice A & a predominanza diagonale forte per righe;
(2) Determinare la matrice H; e la colonna c; che definiscono il metodo di Jacobi

applicato al sistema Ax = b;
(3) Determinare lo spettro ed il raggio spettrale di H;;
(4) Determinare || H; ||=;
(5) Decidere se il metodo di Jacobi & convergente;
1

(6) Dato x(0) = 0 , determinare 1’elemento x(1) ottenuto utilizzando un passo del
0

1

metodo di Jacobi.

Soluzione.

(1) Per tutte le righe di A il valore assoluto dell’elemento sulla diagonale & maggiore
della somma dei valori assoluti dei restanti elementi della riga. Quindi la matrice
é a predominanza diagonale forte per righe.

(2) Posto: A =D + M con:

4 0 1 1
4 1
D = diag(h) = e M=A-D-= 0

2 0

4 1 0
si ha:

o 1/4  1/4 1/a

H o= -piy=- |4 O e ¢ =D'p=|0

0 0
1/4 0 1/4

(3) I1 polinomio caratteristico di H; é:
det(H; - AI) = A* (\* - 1/8)

dunque:

o) ={0,0,18,-1/V8 3 e  p) = 1/V8

(4) La norma infinito di H; &, usando la formula di calcolo riportata nell’Osservazione
(2.32) della Lezione 18:

| H, ||l = max{ 1/2,1/4,0,1/4 } = 1/2

(5) Per decidere se in questo caso il metodo di Jacobi & convergente si pud usare il
Teorema di caratterizzazione dei metodi convergenti (Teorema (2.66) della Lezione

22). Dal risultato del punto (3) si ha: p(H;) = 1/J§ < 1, dunque ¢l metodo é
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convergente.

Allo stesso risultato si poteva arrivare utilizzando il Teorema (2.72) della Lezione
23: la predominanza diagonale forte per righe di A (stabilita al punto (1)) & una
condizione sufficiente per la convergenza del metodo di Jacobi. Alternativamente, per
il Teorema (2.73) della Lezione 23, |[H;||» < 1 & una condizione sufficiente per avere
p(H;) < 1 e quindi la convergenza del metodo di Jacobi. Il calcolo di p(H;), che & in
generale difficile da fare, non solo consente di decidere con certezza della
convergenza del metodo (le due condizioni richiamate sopra sono solo sufficientsi: se
non sono verificate...) ma, nel caso in cui il metodo risulti convergente, fornisce
anche informazioni sulla rapiditd di convergenza (Teorema (2.81) della Lezione 23).

(6) Si ha:

0
—1/4
0
0

x(1) = H;x(0) + ¢c; =

Esercizio 3
Si consideri 1l’equazione differenziale:
y"(t) = y(&) + (y'(£))® + sent
(1) Determinare un sistema di equazioni di ordine uno equivalente all’equazione data;
(2) Determinare la funzione G,(t,x) che restituisce il valore della derivata seconda
della soluzione del sistema che all’istante t passa per x;

(3) Dati x(k), t(k) ed h(k), determinare x(k+1) con il metodo TS(1).

Soluzione.

(1) Posto x,(t) = y(t) e x,(t)
all’equazione data é:

y'(t), un sistema di equazioni di ordine uno equivalente

%' () = x,(t) s %'(t) = x,(t) + (x,(t))*> + sent (#)
x| ) .
(2) Se x(t) = |1 & una soluzione del sistema (#) allora:
x, (t)
") = x'(t) = x(t) + (x,(t))* + sent
e:

") = x,"(t) + 2x,(t) x,'(t) + cost =
= %,(t) + 2%,(t) [x(t) + (x,(£))> + sent] + cost
quindi:

2
X, + X, + sent
G2(t,X) = 1 2

3
+ + + +
X, 2 X, X, 2 X, 2 X, sen t cos t

(3) L’approssimazione x(k+1) con TS(1) é&:
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L) = x(K) + FE),x(0) B(k) = x, (&) + x,(k) h(k)

x,® + [x, & + (x,())” + sen t(x)] h(k)

Esercizio 4
Per approssimare il grafico della funzione:
f(x) = sen 3x
sull’intervallo [a,b] = [0,5], in Scilab si utilizzano i seguenti comandi:

> x = linspace(0,5,n + 1)’;

> plot(x,f(x));

L’effetto & quello di disegnare, in un piano cartesiano, il grafico della funzione o,(x)
continua e lineare a tratti sugli intervalli determinati dai punti x(1),...,x(n + 1) che
interpola i valori di f in x(1),...,x(n + 1).

Determinare un valore di n in modo che:

e,(f) = ma lo, (x) - £(x)| < 107

X
x€[0,5]
Soluzione.

La funzione f ha derivata seconda continua: f"(x) = - 9 sen 3x. Per ogni x € [x(k),x(k+1)]
si ha allora (usando il Teorema (3.11) della Lezione 25):

M
lo.(x) - £ < —|x - x®)|]x - x&+1)|  con M, = max [£"(x)] = 9
2 x€[0,5]

e quindi:

M
|Gn(x) - f(x)| < 7§-ma |x - x()|]x - x(k+1)|

max X
x€ [x(k) ,x(k+1)] x€ [x(k) ,x(k+1)]

Inoltre:
k+1) - x(k) |?
max |x - x@)||x - x(k+1)| = x(etd) - x()
x€[x(k),x(k+1)] 2
percio:
M M 2
2 2 2|b - a
max o (x) - f(x < — k+1) - k = —
xe[x(k),x(k+1)]| o (X) )| < 5 [ x(k+1) - x(k) ] 5 -
Si ottiene infine:
M [p - 2
e.(f) = max lo (x) - £()] < =2 2
xe[0,5] " 8 n

Per ottenere e,(f) < 1072 basta che sia:

M2 b-a

n

2 M
< 107 ovvero n > 104 25 (b - a) = 53.03

8
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Dunque n > 54.



