
Lecture 34 (hrs. 68,69) – December 11, 2025, 8:30 – 10:30 F3

In this lecture we solve some problems.

Problem 1

Let:

F(x) = [ x1 - x2 - 1

x1
2 + x2

2 - 1] : R2 → R2

(1) Find graphically the zeros of F;
(2) Let G(x) = x – F(x). Verify that the zeros of F are all and only the fixed points of 

G;
(3) Decide whether the one-point method defined by G can be used to approximate the 

zeros of F;

(4) Given x(0) = [01] , find the element x(1) obtained using one step of Newton’s method 

applied to F;
(5) Decide whether Newton’s method applied to F can be used to approximate the zeros of 

F.

Solution.

(1) Let:
F1(x) = x1 – x2 – 1    and    F2(x) = x1

2 + x2
2 – 1

The equation F(x) = 0 is equivalent to the system:

F1(x) = 0    ,    F2(x) = 0

The set of zeros of F1 is the straight line with equation x2 = x1 – 1; the set of 
zeros of F2 is the circle with equation x1

2 + x2
2 = 1, with center at the origin and 

radius 1. By graphically representing the two sets on a Cartesian plane, we find that 
F has two zeros:

α1 = [10]     and    α2 = [ 0
−1]

(2) The equation x = G(x) can be rewritten as x = x + F(x), and the latter is equivalent 
to the equation F(x) = 0. Therefore, the equations x = G(x) and F(x) = 0 are 
equivalent, that is, they have the same solutions. The solutions of the first are 
the fixed points of G, those of the second are the zeros of F.

(3) As stated in Lesson 14, the method defined by G can be used to approximate the fixed 
point αk if and only if the spectral radius1 of the Jacobian matrix of G computed in 
αk, JG(αk), is less than 1. The Jacobian matrix of G is:

1 See Definition (2.65) in Lecture 22.



Lecture 34 - 2

JG(x) = [ 2 −1
2x1 2x2+1]

Concerning α1 we have:

JG(α1) = [2 −1
2 1]

The characteristic polynomial is:

det(JG(α1) – λI) = (2 – λ)(1 – λ) + 2 = λ2 – 3λ + 4

and the eigenvalues are:

λ1 =
3 + i√7

2
    and    λ2 =

3 - i√7
2

Then: ρ(JG(α1)) > 1 and the method defined by G cannot be used to approximate α1.

Concerning α2 we have:

JG(α1) = [2 −1
0 −1]

The eigenvalues are:
λ1 = 2    e    λ2 = -1

Once again: ρ(JG(α2)) > 1 and the method defined by G cannot be used to approximate 
α2.

(4) Newton’s method applied to F is the one-point method defined by the function:

N(x) = x – JF(x)-1 F(x) : R2 → R2

We have:

JF(x) = [ 1 −1
2x1 2x2]     and    JF(x(0)) = [1 −1

0 2]
The matrix JF(x(0)) is invertible, so x(1) is defined and we have:

x(1) = N(x(0))    i.e.    x(1) = x(0) – JF(x(0))-1 F(x(0))

Let v be the solution of the system JF(x(0)) z = F(x(0)). Then:

x(1) = x(0) – v

It is:

v = [−2
0]     and finally:    x(1) = [21]

(5) As stated in Remark (1.90) of Lesson 14, a sufficient condition which guarantees the 
usability of Newton's method to approximate the zero αk of F is that: F has 
continuous second (partial) derivatives in a neighbourhood of αk and JF(αk) is 
invertible. In the case in question, the functions F1 and F2 have partial derivatives 
of every order on R2 and both JF(α1) and JF(α2) are invertible. Newton’s method can 
therefore be used to approximate both zeros of F.
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Problem 2

Let:

A = [4 1 1
1 4

2
1 4

]   and  b = [5105]
(1) Decide whether the matrix A is strictly row-diagonally dominant;
(2) Find the matrix HJ and the column cJ that define the Jacobi method applied to the 

system A x = b;
(3) Find the spectrum and spectral radius of HJ;
(4) Find ∥ HJ ∥∞;
(5) Decide whether the Jacobi method is convergent;

(6) Given x(0) = [1001] , find the element x(1) obtained using one step of the Jacobi 

method.

Solution.

(1) For all rows of A, the absolute value of the diagonal element is greater than the 
sum of the absolute values of the remaining elements in the row. Therefore, the 
matrix is strictly row-diagonally dominant.

(2) Let: A = D + M where:

D = diag(A) = [4 4
2

4
]     and    M = A – D = [0 1 1

1 0
0

1 0
]

we have:

HJ = - D-1 M = - [ 0 1/4 1/4
1/4 0

0
1/4 0

]     and    cJ = D-1 b = [1/4
0
0
1/4 ]

(3) The characteristic polynomial of HJ is:

det(HJ – λI) = λ2 (λ2 – 1/8)

hence:
σ(HJ) = { 0,0,1/√8,-1/√8 }    and    ρ(HJ) = 1/√8

(4) The infinity norm of HJ is, using the formula reported in Remark (2.32) of Lecture 
18:

∥ HJ ∥∞ = max{ 1/2,1/4,0,1/4 } = 1/2

(5) To decide whether the Jacobi method is convergent in this case, we can use the 
Characterization Theorem of Convergent Methods (Theorem (2.66) of Lecture 22). From 
the result of point (3) we have: ρ(HJ) = 1/√8 < 1, therefore the method is 
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convergent.

The same result could be proved using Theorem (2.72) of Lecture 23: the strict row-
diagonal dominance of A (established in point (1)) is a sufficient condition for the 
convergence of the Jacobi method. Alternatively, by Theorem (2.73) of Lecture 23,
∥ HJ ∥∞ < 1 is a sufficient condition for having ρ(HJ) < 1 and hence the convergence of 
the Jacobi method. The calculation of ρ(HJ), which is generally a difficult task, not 
only allows one to decide with certainty on the convergence of the method (the two 
conditions mentioned above are only sufficient: if they are not verified...) but, in 
the case in which the method is convergent, it also provides information on the speed 
of convergence (Theorem (2.81) of Lecture 23).

(6) We have:

x(1) = HJ x(0) + cJ = [ 0
−1/4
0
0 ]

Problem 3

Consider the following differential equation:

y”(t) = y(t) + (y'(t))2 + sin t

(1) Find a system of first-order differential equations equivalent to the given 
equation;

(2) Find the function G2(t,x) that returns the value of the second derivative of the 
solution y(t; x,t) of the system whose value at time t is x;

(3) Given x(k), t(k) and h(k), determine x(k+1) using the TS(1) method.

Solution.

(1) Let x1(t) = y(t) and x2(t) = y'(t), a system of differential equations of order one 
equivalent to the given equation is:

x1'(t) = x2(t)    ,    x2'(t) = x1(t) + (x2(t))2 + sin t    (#)

(2) If x(t) = [x1(t)x2(t)] a solutin of system (#) then:

x1”(t) = x2'(t) =  x1(t) + (x2(t))2 + sin t
and:

x2”(t) = x1'(t) + 2 x2(t) x2'(t) + cos t = 

    = x2(t) + 2 x2(t) [x1(t) + (x2(t))2 + sin t] + cos t

hence:

G2(t,x) = [ x1 + x2
2 + sin t

x2  + 2 x1 x2 + 2 x2
3  + 2 x2 sin t + cos t]

(3) The approximation x(k+1) using TS(1) is:
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x(k+1) = x(k) + F(t(k),x(k)) h(k) = [ x1(k) + x2(k) h(k)

x2(k) + [x1(k) + (x2(k))
2 + sin t(k)] h(k)]

Problem 4

To approximate the graph of the function:

f(x) = sin 3x

on [a,b] = [0,5], using Scilab we use the following instructions:

> x = linspace(0,5,n + 1)’;
> plot(x,f(x));

The effect is to draw, on a Cartesian plane, the graph of σn(x), the continuous and 
piecewise linear function on the intervals determined by the points x(1),...,x(n + 1)  
which interpolates the values of f in x(1),...,x(n + 1).

Find n such that:
en(f) = max

x∈[0,5]
|σn (x) - f(x)| ⩽ 10-2

Solution.

The function f has a continuous second derivative: f”(x) = - 9 sin 3x. For each x ∈ 
[x(k),x(k+1)] we then have (using Theorem (3.11) of Lecture 25):

|σn(x) – f(x)| ⩽
M2
2

|x - x(k)||x - x(k+1)|   where  M2 = maxx∈[0,5]
|f"(x)| = 9

hence:

max
x∈[x(k),x(k+1)]

|σn (x) - f(x)| ⩽
M2
2

max
x∈[x(k),x(k+1)]

|x - x(k)||x - x(k+1)|

Moreover:

max
x∈[x(k),x(k+1)]

|x - x(k)||x - x(k+1)| = (x(k+1) - x(k)2 )
2

hence:

max
x∈[x(k),x(k+1)]

|σn (x) - f(x)| ⩽
M2
8

[ x(k+1) - x(k) ]2 =
M2
8 (b - an )

2

Finally we obtain:

en(f) = max
x∈[0,5]

|σn (x) - f(x)| ⩽
M2
8 (b - an )

2

To get en(f) ⩽ 10-2 it is sufficient to find n such that:

M2
8 (b - an )

2
⩽ 10-2    i.e.    n ⩾ 10 √ M28 (b - a) = 53.03 ···

Hence: n ⩾ 54.
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In this lecture we solve some problems.



Problem 1



Let:

F(x) =formula: R2 → R2



		Find graphically the zeros of F;



		Let G(x) = x – F(x). Verify that the zeros of F are all and only the fixed points of G;



		Decide whether the one-point method defined by G can be used to approximate the zeros of F;



		Given x(0) =formula, find the element x(1) obtained using one step of Newton’s method applied to F;



		Decide whether Newton’s method applied to F can be used to approximate the zeros of F.







Solution.



		Let:





F1(x) = x1 – x2 – 1  and  F2(x) = x12 + x22 – 1



	The equation F(x) = 0 is equivalent to the system:



F1(x) = 0  ,  F2(x) = 0



	The set of zeros of F1 is the straight line with equation x2 = x1 – 1; the set of 	zeros of F2 is the circle with equation x12 + x22 = 1, with center at the origin and 	radius 1. By graphically representing the two sets on a Cartesian plane, we find that 	F has two zeros:



α1 =formula  and  α2 =formula

		The equation x = G(x) can be rewritten as x = x + F(x), and the latter is equivalent to the equation F(x) = 0. Therefore, the equations x = G(x) and F(x) = 0 are equivalent, that is, they have the same solutions. The solutions of the first are the fixed points of G, those of the second are the zeros of F.



		As stated in Lesson 14, the method defined by G can be used to approximate the fixed point αk if and only if the spectral radius1 See Definition (2.65) in Lecture 22.  of the Jacobian matrix of G computed in αk, JG(αk), is less than 1. The Jacobian matrix of G is:





JG(x) =formula

	Concerning α1 we have:

JG(α1) = formula

	The characteristic polynomial is:

	det(JG(α1) – λI) = (2 – λ)(1 – λ) + 2 = λ2 – 3λ + 4

	and the eigenvalues are:

λ1 =formula  and  λ2 =formula

	Then: ρ(JG(α1)) > 1 and the method defined by G cannot be used to approximate α1.

	Concerning α2 we have:

JG(α1) = formula

	The eigenvalues are:

λ1 = 2  e  λ2 = -1

	Once again: ρ(JG(α2)) > 1 and the method defined by G cannot be used to approximate 	α2.

		Newton’s method applied to F is the one-point method defined by the function:





N(x) = x – JF(x)-1 F(x) : R2 → R2

	We have:

JF(x) =formula  and  JF(x(0)) =formula

	The matrix JF(x(0)) is invertible, so x(1) is defined and we have:

x(1) = N(x(0))  i.e.  x(1) = x(0) – JF(x(0))-1 F(x(0))

	Let v be the solution of the system JF(x(0)) z = F(x(0)). Then:

x(1) = x(0) – v

	It is:

v =formula  and finally:  x(1) =formula



		As stated in Remark (1.90) of Lesson 14, a sufficient condition which guarantees the usability of Newton's method to approximate the zero αk of F is that: F has continuous second (partial) derivatives in a neighbourhood of αk and JF(αk) is invertible. In the case in question, the functions F1 and F2 have partial derivatives of every order on R2 and both JF(α1) and JF(α2) are invertible. Newton’s method can therefore be used to approximate both zeros of F.













Problem 2



Let:

A =formula  and  b =formula



		Decide whether the matrix A is strictly row-diagonally dominant;



		Find the matrix HJ and the column cJ that define the Jacobi method applied to the system A x = b;



		Find the spectrum and spectral radius of HJ;



		Find ∥ HJ ∥∞;



		Decide whether the Jacobi method is convergent;



		Given x(0) =formula, find the element x(1) obtained using one step of the Jacobi method.







Solution.



		For all rows of A, the absolute value of the diagonal element is greater than the sum of the absolute values of the remaining elements in the row. Therefore, the matrix is strictly row-diagonally dominant.



		Let: A = D + M where:





D = diag(A) = formula and  M = A – D = formula

	we have:

HJ = - D-1 M = -formula  and  cJ = D-1 b =formula



		The characteristic polynomial of HJ is:





det(HJ – λI) = λ2 (λ2 – 1/8)

	hence:

σ(HJ) = {formula}  and  ρ(HJ) =formula



		The infinity norm of HJ is, using the formula reported in Remark (2.32) of Lecture 18:





∥ HJ ∥∞ = max{ 1/2,1/4,0,1/4 } = 1/2

		To decide whether the Jacobi method is convergent in this case, we can use the Characterization Theorem of Convergent Methods (Theorem (2.66) of Lecture 22). From the result of point (3) we have: ρ(HJ) =formula< 1, therefore the method is convergent.





	The same result could be proved using Theorem (2.72) of Lecture 23: the strict row-	diagonal dominance of A (established in point (1)) is a sufficient condition for the 	convergence of the Jacobi method. Alternatively, by Theorem (2.73) of Lecture 23,

	∥ HJ ∥∞ < 1 is a sufficient condition for having 	ρ(HJ) < 1 and hence the convergence of 	the Jacobi method. The calculation of ρ(HJ), which is generally a difficult task, not 	only allows one to decide with certainty on the convergence of the method (the two 	conditions mentioned above are only sufficient: if they are not verified...) but, in 	the case in which the method is convergent, it also provides information on the speed 	of convergence (Theorem (2.81) of Lecture 23).	



		We have:





x(1) = HJ x(0) + cJ =formula



Problem 3



Consider the following differential equation:



y”(t) = y(t) + (y'(t))2 + sin t



		Find a system of first-order differential equations equivalent to the given equation;



		Find the function G2(t,x) that returns the value of the second derivative of the solution y(t; x,t) of the system whose value at time t is x;



		Given x(k), t(k) and h(k), determine x(k+1) using the TS(1) method.







Solution.



		Let x1(t) = y(t) and x2(t) = y'(t), a system of differential equations of order one equivalent to the given equation is:





x1'(t) = x2(t)  ,  x2'(t) = x1(t) + (x2(t))2 + sin t  (#)

		If x(t) =formulaa solutin of system (#) then:





		x1”(t) = x2'(t) =  x1(t) + (x2(t))2 + sin t

	and:

		x2”(t) = x1'(t) + 2 x2(t) x2'(t) + cos t = 

			  = x2(t) + 2 x2(t) [x1(t) + (x2(t))2 + sin t] + cos t

	hence:

G2(t,x) = formula



		The approximation x(k+1) using TS(1) is:





x(k+1) = x(k) + F(t(k),x(k)) h(k) =formula



Problem 4



To approximate the graph of the function:



f(x) = sin 3x



on [a,b] = [0,5], using Scilab we use the following instructions:



> x = linspace(0,5,n + 1)’;

> plot(x,f(x));



The effect is to draw, on a Cartesian plane, the graph of σn(x), the continuous and piecewise linear function on the intervals determined by the points x(1),...,x(n + 1)  which interpolates the values of f in x(1),...,x(n + 1).



Find n such that:

en(f) =formula⩽ 10-2



Solution.



The function f has a continuous second derivative: f”(x) = - 9 sin 3x. For each x ∈ [x(k),x(k+1)] we then have (using Theorem (3.11) of Lecture 25):



|σn(x) – f(x)| ⩽formula  where  formula

hence:

formula⩽formula



Moreover:

formula

hence:

formula⩽formula=formula



Finally we obtain:

en(f) =formula⩽formula

To get en(f) ⩽ 10-2 it is sufficient to find n such that:

formula⩽ 10-2  i.e.  n ⩾ formula= 53.03 ···

Hence: n ⩾ 54.

