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(4.12) Theorem (convergence of the TS(1) method) .

Let t, be a real number, F be a function defined in R X R" with values in R" and let x, € R,
and consider the Cauchy Problem:

€)) x'(t) = FC t,x(t) ) , x(to) = % , t € [to,t:]
If all first partial derivatives of F(t,x) are continuous functions of t and x and Problem

(8) has only one solution, then for every A > O the TS(1) method applied to Problem (§) is
convergent as E + 0 and:

e N - © as 1/¢E ;

e For every k: ET(k) = O as JE

(4.13) Realization in Scilab (TS_1_pv).

function [T, X, PASSO] = TS_1_pv(x0, tO, tf, F, G2, E, LAMBDA, HMIN)

//

// Numerically integrates, on [tO,tf], the Cauchy Problem

// in R(n):

//

// x' = F(t,x)

// x(£0) = x0

//

// using the TS(1)cmethod - explicit Euler - with variable step.

//

// x0: initial condition (column of n elements)

// t0: initial time (real number)

// tf: final time (real number)

// F: function which defines the differential equation; F(t,x) should

// be a column of n real numbers

// G2: function whose values are the second derivative in t of the solution of the
// differential equation whose value at time t is x; G2(t,x) should be
// a column of n real numbers

// E: maximum value of the estimate of the local error (real number)

// LAMBDA: real number that sets the maximum value of the step

// (OPTIONAL - predefined value: 1d-5)

// HMIN: minimal allowed value of the step

// (OPTIONAL - predefined value: (tf - t0) / 1d6)

//

// T = [t(0),...,t()]: row whose elements are the integration instants

// X = [x(0),...,x(N)]: matrix n x (N+1) whose columns are the approximations
// PASSO = [h(0),...,h(N-1)]: row whose elements are the integration step

//

// Values for the optional input parameters

//

if ~exists('LAMBDA','1') then LAMBDA = 1d-5; end;
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if ~exists('HMIN','1l') then HMIN = (tf - t0) / 1d6; end;

//
// Initialization of the output variables
//
T(1,1) = t0;
X(:,1) = x0;
PASSO = [];
//
// main loop
//
while (T(1,$) < tf), // halt the construction if tf has been reached
//
// choice of the step
//

Nd2x = norm(G2(T(1,$),X(:,$)));

d = max(LAMBDA, Nd2x);

PASSO(1,$+1) = min(sqrt(2*E/d), tf - T(1,$));

//

// computation of the approximation and of the new integration instant

//

XC:,8+1) = X(:,8) + F(T(1,$),X(:,$)) = PASSO(1,$);
T(1,$+1) = T(1,$) + PASSO(1,%);
//

// halt the construction if the computed step is too small and tf has not been reached
//
if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;
//
end;
//
// Verify if the integration reached tf
//
if T(1,$) < tf then
printf ("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
end;
/7

endfunction

(4.14) Example (explained to the class on December 4th).

Consider a pendulum consisting of a heavy point of mass m connected to a fixed point by an
inextensible string of length L. Assuming the motion of the point to be planar and adopting

the angle x between the downward-sloping vertical and the string, measured
counterclockwise, as the Lagrangian coordinate, the equation of motion is:

(ED) " (t) = —%sinx(t)

To approximate on the interval [t,,t:] [0,3] s the solution of the Cauchy problem which is

obtained by considering the initial conditions:

(CI) x(0) = %, =7T/4 rad , x'(0) =0
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with Sciladb, the TS_1_pv procedure is used. Using the procedure requires:
* To determine a system of two first-order differential equations equivalent to

equation (ED). By introducing the variables w,;(t) = x(t) and u,(t) = x'(t), we
obtain:

(ED') u, ' () =u (1) , u2'(t)=—%sinu1(t)
which is completed with the initial conditions:
(c1") u,; (0) = %, , w,(0) =0
* To write the function that defines the system (ED'):
function y = F(t,u)

y=1[ u(2) ;
- (g/L) * sin( u(1) ) 1;

endfunction
e To find the function that, given t and u, returns the value of the second

dertvative, calculated at t, of the solution of the system (ED') that evaluates to u
at time t:

u,(¢) [ (/) sinfu, (o))
—(g/L)ul'(t)cos(ul(t)) —(g/L)uQ(t)cos(ul(tD

ull (t) -

and to write the relative function:
function y = G2(t,u)

y = [ - (g/L) * Sin( u(l) );
- (g/L) * u(2) * cos( u(1) ) 1;

endfunction

* To assign the final instant t; (s):

* To assign the column of the initial conditions (CI'):
u0 = [x0;0];

e To assign values to the parameters:

9.82; // m/s72

L=1; // m
1; // kg

0]
]
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¢ To choice the maximum allowed value for the estimate of the local error, E.
To obtain an adequate value of E, we need a criterion to judge the accuracy of the
approximation obtained by the procedure. For the physical system under consideration,

we can proceed as follows.

(A) Since the mechanical energy:
1 .2 2
EN(x(t)) =mgL(1-cos x, (t)) + EmL (x,(£))

assumes along the motion the constant value EN(t,), as a relative measure of the
accuracy of the approximation, we can choose the relative change in energy during

the approxrimate motion:

max EN(u(t )) — min ENCu(t ))
k k

Var_EN =
EN(u(tO))

(B) Since the motion of the pendulum is periodic and:
min x,(t) = - max x,(t) = max x,(t) + minx,(t) = 0

as a relative measure of the accuracy of the approximation, we can choose the
relative change of the amplitude of the oscillation during the approximate

motion:
max u, (t_ ) + min u, (t )
17k 17k

Var_A =
u, (t )
170

This choice is reasonable if the interval [t,,t:] includes at least one

oscillation of the function u,;(t,).

(C) We get the following table:

E N Var_EN (%) Var_A (%)
107 267 35.89 6.3
107° 2587 3.25 5.99 10
1077 25779 0.32 5.97 107

What an appropriate value of E is depends on what the user wants to achieve. The
table suggests that as E decreases, the accuracy of the approximation increases.

(4.15) Remark (variation of N and ET with E).

Let N and M, respectively, be the number of integration instants and the maximum value of
ET(k) obtained using the TS_1_pv procedure with E = E and N' and M' be the corresponding
values obtained with E = a E. By Theorem (4.12) we expect that:

N'/N ~ 1/a*? and M'/M ~ a'?

In the final table of the previous Example we have a = 107, so we expect:
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N'/N =~ 10 and M'/M ~ 1/10

The relationship regarding the increase in the number of integration instants is evidently
verified:

2587/267 = 9.69 and 25779/2587 = 9.96

Since we cannot access the total error, we simply note that for the relative variation of
the energy we have:

Var_EN'/Var_EN = 3.25/35.89 ~ 0.90 107 and 0.32/3.25 ~ 0.98 107!
and for the relative variation of the amplitude:

Var_A'/Var A = 5.99 10'/6.3 ~ 0.95 10 and 5.97 107%/5.99 10" ~ 0.99 107

(4.B) TS(2) METHOD

(4.16) Hypothesis (regularity of the solutiomns).

Suppose that all solutions of the differential equation x'(t) = F( t,x(t) ) have continuous
third derivatives.

The condition is certainly satisfied if all second partial derivatives of the function

F(t,x) exist and are continuous functions of t and x.

(Indeed:
G (¢,x) =0 F(Ct,x )+ 0 F(t,x) - F(t,x)
2 t X

has continuous first partial derivatives and therefore:

Gs(t,x) = atGQ( t,x ) + 6XG2( t,x ) - F( t,x )

is continuous. Then, if y(t) is a solution of the differential equation:

vy @ = (@)D = CCFGLy@) ) ) = ( 6, £y(®) ) )" =6 (£,y(8) )

is continuous because G3( t,x ) and y(t) are.)

(4.17) Definition (TS(2) method).
The TS(2) method is defined by the following procedures.

e CHOICE of h(k). Given E > 0 and A> 0, for each k we set:
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d(x) = max { )\ , ||Y(3) t®; x&,t&)| ¥

3 6E
h(k) = min { 4—— , tf - t(k) }
d(k)

* CALCULATION of x(k+1). After choosing h(k) we set:

then:

1
x(k+1) = x(k) + F( t(k),x(k) ) h(k) + 5 G2( t(k),xk) ) h(k)2

The name of the method is a consequence of the fact that the function used to calculate
x(k+1) is obtained by truncating the Taylor sertes of y(t(k) + h; x(k),t(k)) at the second
term in h = 0.

(4.18) Remark (on the choice of h(k)).
Let y(t) be the solution y(t; x(k),t(k)) of the differential equation. The deviation s(h)

between y(t(k) + h) and the approximation calculated by the method with a step of length h
starting from ( t(k),x(k) ) is, using the Taylor Formula in h = O with Lagrange remainder:

sCh) = - é; y(s)(t(k)) h3 + z(h) h3 where: z(h) + 0 as h -+ 0
If y¥(t()) # 0 then:
® When h is small: - ig y(s)(t(k)) h3 s a good estimate of s(h)
e It is:
1 6E
s vP e’ | s = e i
ly =" &)l

The parameter A is intended to prevent d(k) = O and also ensures that:

3| 6E
for every k: d(k) = A hence h(k) < o

(4.19) Theorem (convergence of the TS(2) method).

Let t, and t; > t, be real numbers, let F be a function defined in R X R" with values in R",
let x, € R" and consider the Cauchy Problem:

) x'(t) = FC t,x(t) ) s x(to) = Xo , t € [to,te]
If all second partial derivatives of F(t,x) are continuous functions of t and x and Problem

(§) has only one solution, then for every A > O the TS(2) method applied to Problem (§) is
convergent as E » 0 and:

e N - © gs 1/?E ;

* For every k: ET(k) = 0 as E° = E°
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(4.20) Remark.

Consider the Cauchy Problem (§). For each E > 0, let N;(E) and ET,(E) be the number of
integration instants and the maximum total error generated by the TS(1) method, and let
N,(E) and ET,(E) be the number of integration instants and the maximum total error generated

by the TS(2) method. By Theorem (4.12) and Theorem (4.19), as E »+ 0 we have:

. . ) + +00 as VE , hence N;,(E) = o faster than N,(E)
N,(E) / N,(E) 1/JE f

* ET,(E) / ET,(E) =+ +00 come ]./WE , dunque ET,(E) -+ O faster than ET,(E)

We then expect that, with the same value of E:

®* TS(2) generates a smaller maximum total error than that generated by TS(1)

®* TS(2) reaches t; with fewer steps than TS(1)
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(4.12) Theorem (convergence of the TS(1) method).



Let t0 be a real number, F be a function defined in R × Rn with values in Rn and let x0 ∈ Rn, and consider the Cauchy Problem:



(§)  x'(t) = F( t,x(t) )  ,  x(t0) = x0  ,  t ∈ [t0,tf]



If all first partial derivatives of F(t,x) are continuous functions of t and x and Problem (§) has only one solution, then for every λ > 0 the TS(1) method applied to Problem (§) is convergent as E → 0 and:



		N → ∞ asformula;



		For every k: ET(k) → 0 asformula.







(4.13) Realization in Scilab (TS_1_pv).



function [T, X, PASSO] = TS_1_pv(x0, t0, tf, F, G2, E, LAMBDA, HMIN)

//

// Numerically integrates, on [t0,tf], the Cauchy Problem

// in R(n):

// 

// x' = F(t,x)

// x(t0) = x0

//

// using the TS(1)cmethod – explicit Euler – with variable step.

//

// x0: initial condition (column of n elements)

// t0: initial time (real number)

// tf: final time (real number)

// F: function which defines the differential equation; F(t,x) should

//  be a column of n real numbers

// G2: function whose values are the second derivative in t of the solution of the 

//  differential equation whose value at time t is x; G2(t,x) should be

//  a column of n real numbers

// E: maximum value of the estimate of the local error (real number)

// LAMBDA: real number that sets the maximum value of the step

//  (OPTIONAL – predefined value: 1d-5)

// HMIN: minimal allowed value of the step

//  (OPTIONAL – predefined value: (tf - t0) / 1d6)

//

// T = [t(0),...,t(N)]: row whose elements are the integration instants

// X = [x(0),...,x(N)]: matrix n x (N+1) whose columns are the approximations

// PASSO = [h(0),...,h(N-1)]: row whose elements are the integration step

//

// Values for the optional input parameters

//

if ~exists('LAMBDA','l') then LAMBDA = 1d-5; end;

if ~exists('HMIN','l') then HMIN = (tf - t0) / 1d6; end;

//

// Initialization of the output variables

//

T(1,1) = t0;

X(:,1) = x0;

PASSO = [];

//

// main loop

//

while (T(1,$) < tf), // halt the construction if tf has been reached

 //

 // choice of the step

 //

 Nd2x = norm(G2(T(1,$),X(:,$)));

 d = max(LAMBDA, Nd2x);

 PASSO(1,$+1) = min(sqrt(2*E/d), tf - T(1,$));

 //

 // computation of the approximation and of the new integration instant

 //

 X(:,$+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,$);

 T(1,$+1) = T(1,$) + PASSO(1,$);

 //

 // halt the construction if the computed step is too small and tf has not been reached

 //

 if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;

 //

end;

//

// Verify if the integration reached tf

//

if T(1,$) < tf then

 printf("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));

end;

//

endfunction



(4.14) Example (explained to the class on December 4th).



Consider a pendulum consisting of a heavy point of mass m connected to a fixed point by an inextensible string of length L. Assuming the motion of the point to be planar and adopting the angle x between the downward-sloping vertical and the string, measured counterclockwise, as the Lagrangian coordinate, the equation of motion is:



(ED)  x”(t) =formula



To approximate on the interval [t0,tf] = [0,3] s the solution of the Cauchy problem which is obtained by considering the initial conditions:



(CI)  x(0) = x0 = π/4 rad  ,  x'(0) = 0



with Scilab, the TS_1_pv procedure is used. Using the procedure requires:



		To determine a system of two first-order differential equations equivalent to equation (ED). By introducing the variables u1(t) = x(t) and u2(t) = x'(t), we obtain:





(ED')  formula ,  formula



which is completed with the initial conditions:



(CI')  u1(0) = x0  ,  u2(0) = 0



		To write the function that defines the system (ED'):







function y = F(t,u)



 y = [  u(2)  ;

 - (g/L) * sin( u(1) ) ];



endfunction



		To find the function that, given t and u, returns the value of the second derivative, calculated at t, of the solution of the system (ED') that evaluates to u at time t:







u”(t) =formula=formula



and to write the relative function:



function y = G2(t,u)



 y = [  - (g/L) * sin( u(1) );

 - (g/L) * u(2) * cos( u(1) ) ];



endfunction



		To assign the final instant tf (s):







tf = 3;



		To assign the column of the initial conditions (CI'):







u0 = [x0;0];



		To assign values to the parameters:







g = 9.82; // m/s^2

L = 1; // m

m = 1; // kg



		To choice the maximum allowed value for the estimate of the local error, E.







	To obtain an adequate value of E, we need a criterion to judge the accuracy of the 	approximation obtained by the procedure. For the physical system under consideration, 	we can proceed as follows.



	(A) Since the mechanical energy:



formula



	  assumes along the motion the constant value EN(t0), as a relative measure of the 	  accuracy of the approximation, we can choose the relative change in energy during 	  the approximate motion:



Var_EN =formula



	(B) Since the motion of the pendulum is periodic and:



min x1(t) = - max x1(t)  ⇒   max x1(t) + min x1(t) = 0



	  as a relative measure of the accuracy of the approximation, we can choose the 	  relative change of the amplitude of the oscillation during the approximate 	  

 motion:

Var_A =formula



	  This choice is reasonable if the interval [t0,tf] includes at least one 	 	

	  oscillation of the function u1(tk).



	(C) We get the following table:



		E

		N

		Var_EN (%)

		Var_A (%)



		10-3

		267

		35.89

		6.3



		10-5

		2587

		3.25

		5.99 10-1



		10-7

		25779

		0.32

		5.97 10-2







	  What an appropriate value of E is depends on what the user wants to achieve. The 	  table suggests that as E decreases, the accuracy of the approximation increases.



(4.15) Remark (variation of N and ET with E).



Let N and M, respectively, be the number of integration instants and the maximum value of ET(k) obtained using the TS_1_pv procedure with E = E and N' and M' be the corresponding values obtained with E = α E. By Theorem (4.12) we expect that:



N'/N ≈ 1/α1/2  and  M'/M ≈ α1/2



In the final table of the previous Example we have α = 10-2, so we expect:

N'/N ≈ 10  and  M'/M ≈ 1/10



The relationship regarding the increase in the number of integration instants is evidently verified:



 2587/267 = 9.69  and  25779/2587 = 9.96



Since we cannot access the total error, we simply note that for the relative variation of the energy we have:



Var_EN'/Var_EN = 3.25/35.89 ≈ 0.90 10-1  and  0.32/3.25 ≈ 0.98 10-1



and for the relative variation of the amplitude:



Var_A'/Var_A = 5.99 10-1/6.3 ≈ 0.95 10-1  and  5.97 10-2/5.99 10-1 ≈ 0.99 10-1







(4.B) TS(2) METHOD







(4.16) Hypothesis (regularity of the solutions).



Suppose that all solutions of the differential equation x'(t) = F( t,x(t) ) have continuous third derivatives.



The condition is certainly satisfied if all second partial derivatives of the function F(t,x) exist and are continuous functions of t and x.



(Indeed:

formula



has continuous first partial derivatives and therefore:



formula



is continuous. Then, if y(t) is a solution of the differential equation: 



formula



is continuous becauseformulaand y(t) are.)



(4.17) Definition (TS(2) method).



The TS(2) method is defined by the following procedures.



		CHOICE of h(k). Given E > 0 and λ > 0, for each k we set:







d(k) = max { λ ,formula}

then:

h(k) = min {formula, tf – t(k) } 



		CALCULATION of x(k+1). After choosing h(k) we set:







formula



The name of the method is a consequence of the fact that the function used to calculate x(k+1) is obtained by truncating the Taylor series of y(t(k) + h; x(k),t(k)) at the second term in h = 0.



(4.18) Remark (on the choice of h(k)).



Let y(t) be the solution y(t; x(k),t(k)) of the differential equation. The deviation s(h) between y(t(k) + h) and the approximation calculated by the method with a step of length h starting from ( t(k),x(k) ) is, using the Taylor Formula in h = 0 with Lagrange remainder:



formula where: z(h) → 0 as h → 0



If y(3)(t(k)) ≠ 0 then:



		When h is small:formula is a good estimate of  s(h)



		It is:





formula= E  formula h =formula



The parameter λ is intended to prevent d(k) = 0 and also ensures that:



for every k: formula hence  formula



(4.19) Theorem (convergence of the TS(2) method).



Let t0 and tf > t0 be real numbers, let F be a function defined in R × Rn with values in Rn, let x0 ∈ Rn and consider the Cauchy Problem:



(§)  x'(t) = F( t,x(t) )  ,  x(t0) = x0  ,  t ∈ [t0,tf]



If all second partial derivatives of F(t,x) are continuous functions of t and x and Problem (§) has only one solution, then for every λ > 0 the TS(2) method applied to Problem (§) is convergent as E → 0 and:



		N → ∞  as formula;



		For every k: ET(k) → 0  as formula







(4.20) Remark.



Consider the Cauchy Problem (§). For each E > 0, let N1(E) and ET1(E) be the number of integration instants and the maximum total error generated by the TS(1) method, and let N2(E) and ET2(E) be the number of integration instants and the maximum total error generated by the TS(2) method. By Theorem (4.12) and Theorem (4.19), as E → 0 we have:

		N1(E) / N2(E) → +∞ asformula, hence N1(E) → ∞ faster than N2(E)



		ET1(E) / ET2(E) → +∞ comeformula, dunque ET2(E) → 0 faster than ET1(E)







We then expect that, with the same value of E: 

		TS(2) generates a smaller maximum total error than that generated by TS(1)



		TS(2) reaches tf with fewer steps than TS(1)









