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(4.12) Teorema (convergenza del metodo TS(1)).

Siano t, un numero reale, F una funzione definita in R x R" a valori in R" e x, in R" e si
consideri il Problema di Cauchy:

€)) x'(t) = FC t,x(t) ) , x(to) = % , t € [to,t:]
Se tutte le derivate parziali prime di F(t,x) sono funzioni continue di t ed x e il
Problema (§) ha una sola soluzione, allora per ogni A > 0 il metodo TS(1) applicato al
Problema (§) & convergente per E + 0 e:

* N tende a infinito come 1 / JE ;

e Per ogni k: ET(k) tende a zero come JE

(4.13) Realizzazione in Scilab (TS_1_pv).

function [T, X, PASSO] = TS_1_pv(x0, tO, tf, F, G2, E, LAMBDA, HMIN)
//

// Integra numericamente, sull'intervallo [tO,tf], il Problema

// di Cauchy in R(n):

//

// x' = F(t,x)

// x(t0) = x0

//

// con il metodo TS(1) - Eulero esplicito - a passo variabile.
//

// x0: condizione iniziale (colonna di n elementi)

// t0O: istante iniziale (numero reale)

// tf: istante finale (numero reale)

// F: function che definisce 1'equazione differenziale; F(t,x) deve

// essere una colonna di n numeri reali

// G2: function che restituisce la derivata seconda in t della soluzione
// dell'equazione differenziale che all'istante t assume valore x;
// G2(t,x) deve essere una colonna di n numeri reali

// E: valore massimo della stima dell'errore locale (numero reale)

// LAMBDA: numero reale che stabilisce il valore massimo del passo

// (OPZIONALE - valore predefinito: 1d-5)

// HMIN: valore minimo consentito del passo

// (OPZIONALE - valore predefinito: (tf - t0) / 1d6)

//

// T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione

// X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni
// PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione
//

// Valore degli argomenti opzionali

//

if ~exists('LAMBDA','1') then LAMBDA = 1d-5; end;
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if ~exists('HMIN','1l') then HMIN = (tf - t0) / 1d6; end;

//
// Inizializzazione delle variabili di uscita
//
T(1,1) = t0;
X(:,1) = x0;
PASSO = [];
//
// ciclo principale
//
while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf
//
// scelta del passo
//

Nd2x = norm(G2(T(1,$),X(:,$)));
d = max(LAMBDA, Nd2x);
PASSO(1,%+1) = min(sqrt(2+*E/d), t£f - T(1,$));

//

// calcolo approssimazione e nuovo istante di integrazione
//

X(:,8+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,%$);
T(1,$+1) = T(1,$) + PASSO(1,$);

//

// arresta la costruzione se il passo calcolato risulta troppo
// piccolo e non ha raggiunto tf

//
if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;
//

end;

//

// Verifica se 1l'integrazione ha raggiunto tf

//

if T(1,$) < tf then

printf ("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));
end;
//

endfunction

(4.14) Esempio (svolto in classe il 4 dicembre).

Si consideri un pendolo realizzato da un punto pesante di massa m collegato da un filo
inestensibile di lunghezza L ad un punto fisso. Supposto piano il moto del punto ed

adottato l'angolo x tra la verticale discendente ed il filo, misurato in senso antiorario,
come coordinata lagrangiana, 1'equazione del moto risulta:

(ED) x"(t) = —%senx(t)

Per approssimare nell'intervallo [t,,t:] = [0,3] s la soluzione del Problema di Cauchy che si
ottiene considerando le condizioni iniziali:

(CI) x(0) = x, =7/4 rad , x'(0) =0
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si utilizza, in Scilab, la procedura TS_1_pv. L'uso della procedura richiede:
* La determinazione di un sistema di due equazionti differenziali di ordime uno

equivalente all'equazione (ED). Introdotte le variabili u,;(t) = x(t), u,(t) = x'(t)
si ottiene:

(ED") u, ' (t) =u,(t) R u, ' (t) =—-%—senu1(t)

che si completa con le condizioni iniziali:
(ci"H u;(0) = x, , u,(0) =0

* La scrittura della function che definisce tl sistema (ED'):
function y = F(t,u)

y=1 u(2) ;
- (g/L) * sin( u(1) ) 1;

endfunction
. La determinazione della funzione che, dati t ed u, restituisce il wvalore della

derivata seconda, calcolata in t, della soluzione del sistema (ED') che passa per u
all'istante t:

uz‘(t) _ —(g/L)sen(ul(t»
—(g/L)ul'(t)cos(ui(t)) —(g/L)uQ(t)Cos(ul(tD

ull (t) =

e la scrittura della relativa function:
function y = G2(t,u)

y =1 - (g/L) * sin( u(1) );
- (g/L) * u(2) * cos( u(1) ) 1;

endfunction

* L'assegnamento dell'istante finale t; (s):

* L'assegnamento della colonna delle condizioni iniziali (CI'):
u0 = [x0;0];

e L'assegnamento del wvalore at parametri:

g =9.82; // m/s"2
L=1; //m
m=1; // kg
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* La scelta del valore massimo consentito per la stima dell'errore locale, E.
Per ottenere un valore di E adeguato, occorre un criterio per giudicare 1l’accuratezza
dell’approssimazione ottenuta dalla procedura. Per il sistema fisico in esame

possiamo procedere come segue.

(A) Considerato che durante il moto 1’energia meccanica:
1 2 2
EN (x(t)) =mgL(1—cosx1(t))+-5mL (x,(£))

assume valore costante e pari al valore EN(t,) assunto all’istante t,, come
misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la
vartazione relativa dell’energia durante 2l moto approssimato:

max EN(u(t )) — min EN(u(t ))
k k

Var_EN =
EN(u(tO))

(B) Considerato che il moto del pendolo é periodico e che si ha:
min x,(t) = - max x,(t) = max x,(t) + minx;(t) =0

come misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la
vartazione relativa dell’ampiezza dell’oscillazione durante il moto approssimato:

max u, (t ) + minu, (t )
k 17k

Var_A =
ul(to)

Questa scelta & ragionevole se l'intervallo [t,,t;] include almeno una

oscillazione della funzione u,(t,).

(C) Si ottiene la tabella che segue:

E N Var_EN (%) Var A (%)
107 267 35.89 6.3

107° 2587 3.25 5.99 10
1077 25779 0.32 5.97 1072

Quale sia un valore di E adeguato dipende da quello che 1l’utilizzatore vuole
ottenere. La tabelle suggerisce che al diminuire di E 1l’accuratezza

dell’approssimazione aumenta.
(4.15) Osservazione (variazione di N e ET con E).
Siano N e M, rispettivamente, il numero di istanti di integrazione e il massimo valore di
ET(k) ottenuto utilizzando la procedura TS_1_pv con E = E e N' e M' i corrispondenti valori

ottenuti con E = o E. Per quanto detto nel Teorema (4.12) ci si aspetta che:

N'/N =~ 1/a'? e M'/M ~ a'?
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Nella tabella finale dell’esempio precedente si ha o = 107, dunque ci si aspetta:
N'/N =~ 10 e M'/M =~ 1/10

La relazione riguardante 1l’aumento del numero di istanti di integrazione & evidentemente
verificata:

2587/267 = 9.69 e 25779/2587 = 9.96

Non avendo possibilitad di accedere all’errore totale, ci limitiamo a constatare che per la
variazione relativa dell’energia si ha:

Var_EN'/Var_EN = 3.25/35.89 ~ 0.90 107! e 0.32/3.25 ~ 0.98 107"
e per la variazione relativa dell’ampiezza:

Var_A'/Var_ A = 5.99 10'/6.3 ~ 0.95 10 e 5.97 107%/5.99 10" ~ 0.99 107"

(4.B) METODO TS(2)

(4.16) Ipotesi (regolaritd delle soluzioni).

Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano
derivata terza continua.

La richiesta é certamente soddisfatta se tutte le derivate parziali seconde della funzione

F(t,x) esistono e sono funzioni continue di t ed x.

(Infatti:
G (t,x) =0 F(Ct,x )+ 0 F(t,x) - F(t,x)
2 t X

ha derivate parziali prime continue e quindi:

GS(t,X) = atGQ( t,x ) + GXGQ( t,x ) - F( t,x )

[0l

continua. Allora, se y(t) & soluzione dell'equazione differenziale:

v @ = (@)D = (CCFGLy@) ) ) = ( 6, £y(®) ) )" =6 (t,y(8) )

& continua perché lo sono G3( t,x ) ed y(t).)

(4.17) Definizione (metodo TS(2)).
I1 metodo TS(2) & definito dalle procedure seguenti.

* SCELTA di h(k). Dati E > 0O e A > O, per ogni k si pone:
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Iy € ; xG0,ta)|| 3

3
h(k) = min { 1—£EL— , tf - t(k) }
d(k)

* CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:

dk) =max { A ,
e poi:

1
x(k+1) = x(k) + FC t(&),x(k) ) h(k) + -5 G2( t (k) ,x(k) ) h(k)2

I1 nome del metodo & conseguenza del fatto che la funzione di h utilizzata per il calcolo
di x(k+1) si ottiene troncando al termine di ordine due la serie di Taylor di y(t(k) + h;
x(k),t(k)) in h = 0.

(4.18) Osservazione (sulla scelta di h(k)).

Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, per lo
scostamento s(h) tra y(t(k) + h) e 1'approssimazione calcolata dal metodo con un passo di
lunghezza h a partire da ( t(k),x(k) ) si ha, utilizzando la Formula di Taylor in h = 0 con
resto di Lagrange:

3

sth) = - y (k) h3 + z(h) h3 con: z(h) + 0 per h » 0

o |~

Se y(s)(t(k)) non & zero allora:

® per h piccolo: - % y<3) (t)) B> ¢ una buona stima di s(h)
¢ si ha:
! 6E
I e y(3) G B> | =E & n= 3 S
lly ™ (e )|

I1 parametro A garantisce che:

3/ 6E
per ogni k: d(k) = A e quindi hk) < =
(4.19) Teorema (convergenza del metodo TS(2)).

Siano t, e t¢ > t, numeri reali, F una funzione definita in R x R" a valori in R", X, in R" e

si consideri il Problema di Cauchy:
€); x'(t) = FC t,x(®) ) ) x(te) = % , t € [to,t]
Se tutte le derivate parziali seconde di F(t,x) sono funzioni continue di t ed x e il

Problema (§) ha una sola soluzione, allora per ogni A > 0 il metodo TS(2) applicato al
Problema (§) & convergente per E + 0 e:

* N tende a infinito come 1 IVE
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*  Per ogni k: ET(k) tende a zero come VEE = g*°

(4.20) Osservazione.

Si consideri il Problema di Cauchy (§). Per ogni E > O, indichiamo con N;(E) e ET,(E) il
numero di istanti di integrazione e 1l’errore totale massimo generati dal metodo TS(1) e con
N,(E) e ET,(E) il numero di istanti di integrazione e 1l’errore totale massimo generati dal
metodo TS(2). Per quanto detto nel Teorema (4.12) e nel Teorema (4.19), per E -+ 0 si ha:

* N,;(E) / N,(E) = +00 come J./%E , dunque N,;(E) tende ad o pid rapidamente di N,(E)

* ET,(E) / ET,(E) = 400 come ]./WE , dunque ET,(E) tende a O pidu rapidamente di ET,(E)

Ci si aspetta allora che, con lo stesso valore di E:

® TS(2) generi un errore totale massimo piud piccolo di quello generato con TS(1)

®* TS(2) raggiunga t; con un numero dit passi inferiore rispetto a TS(1)
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(4.12) Teorema (convergenza del metodo TS(1)).



Siano t0 un numero reale, F una funzione definita in R x Rn a valori in Rn e x0 in Rn e si consideri il Problema di Cauchy:



(§)  x'(t) = F( t,x(t) )  ,  x(t0) = x0  ,  t ∈ [t0,tf]



Se tutte le derivate parziali prime di F(t,x) sono funzioni continue di t ed x e il Problema (§) ha una sola soluzione, allora per ogniformula> 0 il metodo TS(1) applicato al Problema (§) è convergente per E → 0 e:



		N tende a infinito come 1 /formula;



		Per ogni k: ET(k) tende a zero comeformula.







(4.13) Realizzazione in Scilab (TS_1_pv).



function [T, X, PASSO] = TS_1_pv(x0, t0, tf, F, G2, E, LAMBDA, HMIN)

//

// Integra numericamente, sull'intervallo [t0,tf], il Problema

// di Cauchy in R(n):

// 

// x' = F(t,x)

// x(t0) = x0

//

// con il metodo TS(1) - Eulero esplicito - a passo variabile.

//

// x0: condizione iniziale (colonna di n elementi)

// t0: istante iniziale (numero reale)

// tf: istante finale (numero reale)

// F: function che definisce l'equazione differenziale; F(t,x) deve

//  essere una colonna di n numeri reali

// G2: function che restituisce la derivata seconda in t della soluzione

//  dell'equazione differenziale che all'istante t assume valore x;

//  G2(t,x) deve essere una colonna di n numeri reali

// E: valore massimo della stima dell'errore locale (numero reale)

// LAMBDA: numero reale che stabilisce il valore massimo del passo

//  (OPZIONALE - valore predefinito: 1d-5)

// HMIN: valore minimo consentito del passo

//  (OPZIONALE - valore predefinito: (tf - t0) / 1d6)

//

// T = [t(0),...,t(N)]: riga contenente gli istanti di integrazione

// X = [x(0),...,x(N)]: matrice n x (N+1) contenente le approssimazioni

// PASSO = [h(0),...,h(N-1)]: riga contenente i passi di integrazione

//

// Valore degli argomenti opzionali

//

if ~exists('LAMBDA','l') then LAMBDA = 1d-5; end;

if ~exists('HMIN','l') then HMIN = (tf - t0) / 1d6; end;

//

// Inizializzazione delle variabili di uscita

//

T(1,1) = t0;

X(:,1) = x0;

PASSO = [];

//

// ciclo principale

//

while (T(1,$) < tf), // arresta la costruzione se ha raggiunto tf

 //

 // scelta del passo

 //

 Nd2x = norm(G2(T(1,$),X(:,$)));

 d = max(LAMBDA, Nd2x);

 PASSO(1,$+1) = min(sqrt(2*E/d), tf - T(1,$));

 //

 // calcolo approssimazione e nuovo istante di integrazione

 //

 X(:,$+1) = X(:,$) + F(T(1,$),X(:,$)) * PASSO(1,$);

 T(1,$+1) = T(1,$) + PASSO(1,$);

 //

 // arresta la costruzione se il passo calcolato risulta troppo

 // piccolo e non ha raggiunto tf

 //

 if (PASSO(1,$) < HMIN) & (T(1,$) < tf) then break; end;

 //

end;

//

// Verifica se l'integrazione ha raggiunto tf

//

if T(1,$) < tf then

 printf("\n\nIntegrazione interrotta a T = %3.2e", T(1,$));

end;

//

endfunction



(4.14) Esempio (svolto in classe il 4 dicembre).



Si consideri un pendolo realizzato da un punto pesante di massa m collegato da un filo inestensibile di lunghezza L ad un punto fisso. Supposto piano il moto del punto ed adottato l'angolo x tra la verticale discendente ed il filo, misurato in senso antiorario, come coordinata lagrangiana, l'equazione del moto risulta:



(ED)  x”(t) =formula



Per approssimare nell'intervallo [t0,tf] = [0,3] s la soluzione del Problema di Cauchy che si ottiene considerando le condizioni iniziali:



(CI)  x(0) = x0 = π/4 rad  ,  x'(0) = 0

si utilizza, in Scilab, la procedura TS_1_pv. L'uso della procedura richiede:



		La determinazione di un sistema di due equazioni differenziali di ordine uno equivalente all'equazione (ED). Introdotte le variabili u1(t) = x(t), u2(t) = x'(t) si ottiene:







(ED')  formula ,  formula



che si completa con le condizioni iniziali:



(CI')  u1(0) = x0  ,  u2(0) = 0



		La scrittura della function che definisce il sistema (ED'):







function y = F(t,u)



 y = [  u(2)  ;

 - (g/L) * sin( u(1) ) ];



endfunction



		La determinazione della funzione che, dati t ed u, restituisce il valore della derivata seconda, calcolata in t, della soluzione del sistema (ED') che passa per u all'istante t:







u”(t) =formula=formula



e la scrittura della relativa function:



function y = G2(t,u)



 y = [  - (g/L) * sin( u(1) );

 - (g/L) * u(2) * cos( u(1) ) ];



endfunction



		L'assegnamento dell'istante finale tf (s):







tf = 3;



		L'assegnamento della colonna delle condizioni iniziali (CI'):







u0 = [x0;0];



		L'assegnamento del valore ai parametri:







g = 9.82; // m/s^2

L = 1; // m

m = 1; // kg



		La scelta del valore massimo consentito per la stima dell'errore locale, E.







	Per ottenere un valore di E adeguato, occorre un criterio per giudicare l’accuratezza 	dell’approssimazione ottenuta dalla procedura. Per il sistema fisico in esame 	possiamo procedere come segue.



	(A) Considerato che durante il moto l’energia meccanica:



formula



	  assume valore costante e pari al valore EN(t0) assunto all’istante t0, come 	  	

	  misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la 	 

	  variazione relativa dell’energia durante il moto approssimato:



Var_EN =formula



	(B) Considerato che il moto del pendolo è periodico e che si ha:



min x1(t) = - max x1(t)  ⇒   max x1(t) + min x1(t) = 0



	  come misura relativa dell’accuratezza dell’approssimazione possiamo scegliere la 	

	  variazione relativa dell’ampiezza dell’oscillazione durante il moto approssimato:



Var_A =formula



	  Questa scelta è ragionevole se l'intervallo [t0,tf] include almeno una 

	  oscillazione della funzione u1(tk).



	(C) Si ottiene la tabella che segue:



		E

		N

		Var_EN (%)

		Var_A (%)



		10-3

		267

		35.89

		6.3



		10-5

		2587

		3.25

		5.99 10-1



		10-7

		25779

		0.32

		5.97 10-2







	  Quale sia un valore di E adeguato dipende da quello che l’utilizzatore vuole 	  

	  ottenere. La tabelle suggerisce che al diminuire di E l’accuratezza 

	  dell’approssimazione aumenta.



(4.15) Osservazione (variazione di N e ET con E).



Siano N e M, rispettivamente, il numero di istanti di integrazione e il massimo valore di ET(k) ottenuto utilizzando la procedura TS_1_pv con E = E e N' e M' i corrispondenti valori ottenuti con E = α E. Per quanto detto nel Teorema (4.12) ci si aspetta che:



N'/N ≈ 1/α1/2  e  M'/M ≈ α1/2

Nella tabella finale dell’esempio precedente si ha α = 10-2, dunque ci si aspetta:



N'/N ≈ 10  e  M'/M ≈ 1/10



La relazione riguardante l’aumento del numero di istanti di integrazione è evidentemente verificata:



 2587/267 = 9.69  e  25779/2587 = 9.96



Non avendo possibilità di accedere all’errore totale, ci limitiamo a constatare che per la variazione relativa dell’energia si ha:



Var_EN'/Var_EN = 3.25/35.89 ≈ 0.90 10-1  e  0.32/3.25 ≈ 0.98 10-1



e per la variazione relativa dell’ampiezza:



Var_A'/Var_A = 5.99 10-1/6.3 ≈ 0.95 10-1  e  5.97 10-2/5.99 10-1 ≈ 0.99 10-1







(4.B)  METODO TS(2)







(4.16) Ipotesi (regolarità delle soluzioni).



Supponiamo che tutte le soluzioni dell'equazione differenziale x'(t) = F( t,x(t) ) abbiano derivata terza continua.



La richiesta è certamente soddisfatta se tutte le derivate parziali seconde della funzione F(t,x) esistono e sono funzioni continue di t ed x.



(Infatti:

formula



ha derivate parziali prime continue e quindi:



formula



è continua. Allora, se y(t) è soluzione dell'equazione differenziale: 



formula



è continua perché lo sonoformulaed y(t).)



(4.17) Definizione (metodo TS(2)).



Il metodo TS(2) è definito dalle procedure seguenti.



		SCELTA di h(k). Dati E > 0 eformula> 0, per ogni k si pone:





d(k) = max {formula,formula}

e poi:

h(k) = min {formula, tf – t(k) } 



		CALCOLO di x(k+1). Dopo aver scelto h(k) si pone:







formula



Il nome del metodo è conseguenza del fatto che la funzione di h utilizzata per il calcolo di x(k+1) si ottiene troncando al termine di ordine due la serie di Taylor di y(t(k) + h; x(k),t(k)) in h = 0.



(4.18) Osservazione (sulla scelta di h(k)).



Indicando con y(t) la soluzione y(t; x(k),t(k)) dell'equazione differenziale, per lo scostamento s(h) tra y(t(k) + h) e l'approssimazione calcolata dal metodo con un passo di lunghezza h a partire da ( t(k),x(k) ) si ha, utilizzando la Formula di Taylor in h = 0 con resto di Lagrange:



formula con: z(h) → 0 per h → 0



Seformulanon è zero allora:



		per h piccolo:formulaè una buona stima di s(h)



		si ha:





formula= E  formula h =formula



Il parametroformulagarantisce che:



per ogni k: formula e quindi  formula



(4.19) Teorema (convergenza del metodo TS(2)).



Siano t0 e tf > t0 numeri reali, F una funzione definita in R x Rn a valori in Rn, x0 in Rn e si consideri il Problema di Cauchy:



(§)  x'(t) = F( t,x(t) )  ,  x(t0) = x0  ,  t ∈ [t0,tf]



Se tutte le derivate parziali seconde di F(t,x) sono funzioni continue di t ed x e il Problema (§) ha una sola soluzione, allora per ogniformula> 0 il metodo TS(2) applicato al Problema (§) è convergente per E → 0 e:



		N tende a infinito comeformula;



		Per ogni k: ET(k) tende a zero comeformula







(4.20) Osservazione.



Si consideri il Problema di Cauchy (§). Per ogni E > 0, indichiamo con N1(E) e ET1(E) il numero di istanti di integrazione e l’errore totale massimo generati dal metodo TS(1) e con N2(E) e ET2(E) il numero di istanti di integrazione e l’errore totale massimo generati dal metodo TS(2). Per quanto detto nel Teorema (4.12) e nel Teorema (4.19), per E → 0 si ha:

		N1(E) / N2(E) → +∞ comeformula, dunque N1(E) tende ad ∞ più rapidamente di N2(E)



		ET1(E) / ET2(E) → +∞ comeformula, dunque ET2(E) tende a 0 più rapidamente di ET1(E)







Ci si aspetta allora che, con lo stesso valore di E: 

		TS(2) generi un errore totale massimo più piccolo di quello generato con TS(1)



		TS(2) raggiunga tf con un numero di passi inferiore rispetto a TS(1)









