

(4.05) Definition (total error).

Let $t(k)$ be an integration instant and let $x(k)$ be the corresponding approximation generated by a numerical method for the approximation of the solution of the problem

$$(\S) \quad x'(t) = F(t, x(t)) \quad , \quad x(t_0) = x_0 \quad , \quad t \in [t_0, t_f]$$

The column:

$$et(k) = x(k) - y(t(k); x_0, t_0) \in \mathbb{R}^n$$

is called the *total error at time $t(k)$* . The norm of $et(k)$, which is indicated by $ET(k)$, is a measure of how much the method fails, at time $t(k)$, in following the solution of the problem (\S) .

(4.06) Definition (convergent method for $E \rightarrow 0$).

A numerical method for approximating the solution of the problem (\S) is *convergent for $E \rightarrow 0$* if: for every $\Delta > 0$ there exists E_* such that if $E < E_*$ then for the instants $t(0) = t_0, \dots, t(N)$ and the columns $x(0) = x_0, \dots, x(N)$ determined by the method we have:

$$t(N) = t_f \quad \text{and} \quad \max \{ ET(0), \dots, ET(N) \} < \Delta$$

(4.07) Definition (local error).

Let $t(k-1)$ and $t(k)$ be two consecutive integration instants and $x(k-1)$, $x(k)$ be the corresponding approximations generated by a numerical method for the approximation of the solution of the problem (\S) . The column:

$$el(k) = x(k) - y(t(k); x(k-1), t(k-1)) \in \mathbb{R}^n$$

is called the *local error at time $t(k)$* . The norm of $el(k)$, which is indicated by $EL(k)$, is a measure of how much the method fails, at time $t(k)$, in following the solution of the differential equation $x'(t) = F(t, x(t))$ which at time $t(k-1)$ passes through $x(k-1)$.

(4.08) Remark (relation between local and total error).

It is:

$$et(k) = x(k) - y(t(k); x_0, t_0) = (x(k) - y(t(k); x(k-1), t(k-1))) + \\ + (y(t(k); x(k-1), t(k-1)) - y(t(k); x_0, t_0))$$

hence:

$$et(k) = el(k) + (y(t(k); x(k-1), t(k-1)) - y(t(k); x_0, t_0))$$

Using the notation:

$$\Delta y(t''; s, t') = y(t''; y(t'; x_0, t_0) + s, t') - y(t''; y(t'; x_0, t_0), t')$$

we may rewrite:

$$et(k) = el(k) + \Delta y(t(k); et(k-1), t(k-1))$$

The quantity $\Delta y(t'; s, t')$ describes how *the differential equation* transmits at time t' the deviation, s , at time t' , from the solution $y(t; x_0, t_0)$ of the problem $(\$)$.

(4.A) TS(1) METHOD - EXPLICIT EULER

(4.09) Hypothesis (solution regularity).

Suppose that *all* solutions of the differential equation $x'(t) = F(t, x(t))$ have *continuous second derivatives*.

The condition is certainly satisfied if *all* first partial derivatives of the function $F(t, x)$ *exist* and are *continuous* functions of t and x .

(In fact: if $y(t)$ is a solution to the differential equation we have:

$$y''(t) = (y'(t))' = (F(t, y(t)))' = \frac{\partial}{\partial t} F(t, y(t)) + \frac{\partial}{\partial x} F(t, y(t)) \cdot y'(t)$$

which is continuous because $\frac{\partial}{\partial t} F(t, x)$, $\frac{\partial}{\partial x} F(t, x)$, $y(t)$ and $y'(t)$ are.)

(4.10) Definition (TS(1) method - explicit Euler).

The *TS(1) method* (or *explicit Euler method*) is defined by the following procedures.

- CHOICE of $h(k)$. Given $E > 0$ and $\lambda > 0$, for each k we set:

$$d(k) = \max \{ \lambda, \| y''(t(k); x(k), t(k)) \| \}$$

then:

$$h(k) = \min \{ \sqrt{\frac{2E}{d(k)}}, t_f - t(k) \}$$

- CALCULATION of $x(k+1)$. After choosing $h(k)$ we set:

$$x(k+1) = x(k) + F(t(k), x(k)) h(k)$$

The name of the method is a consequence of the fact that the function $x(k) + F(t(k), x(k)) h$ is obtained by *truncating the Taylor series* of $y(t(k) + h; x(k), t(k))$ *at the first term* in $h = 0$.

(4.11) Remark (on the choice of $h(k)$).

Let $y(t)$ indicate the solution $y(t; x(k), t(k))$ of the differential equation, and let s be the function from \mathbb{R} to \mathbb{R}^n defined by:

$$s(h) = x(k) + F(t(k), x(k)) h - y(t(k) + h)$$

Let G be the graph of $y(t)$. The value $s(h)$ represents the *deviation* between G and the tangent line to G at $(t(k), x(k))$, measured at time $t(k) + h$. For $h > 0$ the quantity $s(h)$ is the local error at time $t(k) + h$.

Since $y(t)$ has a continuous second derivative, $s(h)$ also has a continuous second derivative. By Taylor's formula at $h = 0$ with Lagrange remainder, there exists a function z from \mathbb{R} to \mathbb{R}^n such that:

$$s(h) = s(0) + s'(0) h + \frac{1}{2} s''(0) h^2 + z(h) h^2 \quad \text{and} \quad z(h) \rightarrow 0 \text{ as } h \rightarrow 0$$

hence, since $s(0) = x(k) - y(t(k)) = 0$, $s'(0) = F(t(k), x(k)) - y'(t(k)) = 0$ and $s''(0) = -y''(t(k))$:

$$s(h) = -\frac{1}{2} y''(t(k)) h^2 + z(h) h^2 \quad \text{where} \quad z(h) \rightarrow 0 \text{ as } h \rightarrow 0$$

If $y''(t(k)) \neq 0$ then:

- When h is small: $-\frac{1}{2} y''(t(k)) h^2$ is a good estimate of $s(h)$

(in the sense that the relative error tends to zero as $h \rightarrow 0$)

- It is:

$$\left\| -\frac{1}{2} y''(t(k)) h^2 \right\| = E \quad \Leftrightarrow \quad h = \sqrt{\frac{2E}{\| y''(t(k)) \|}}$$

The choice of $h(k)$ guarantees that, in any case and for every $\lambda > 0$, we have:

$$\left\| -\frac{1}{2} y''(t(k)) h(k)^2 \right\| \leq E$$

The parameter λ is intended to prevent $d(k) = 0$ and also ensures that:

$$\text{for every } k: \quad d(k) \geq \lambda \quad \text{hence} \quad h(k) \leq \sqrt{\frac{2E}{\lambda}}$$