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(4.05) Definition (total error).

Let t(k) be an integration instant and let x(k) be the corresponding approximation
generated by a numerical method for the approximation of the solution of the problem

) x'(t) = FC t,x(¢) ) , x(to) = %o > t € [to,tel

The column:
et(k) = x(k) - y(tX); %,t,) € R

is called the total error at time t(k). The norm of et(k), which is indicated by ET(k), is
a measure of how much the method fails, at time t(k), in following the solution of the
problem (8).
(4.06) Definition (convergent method for E -+ 0).
A numerical method for approximating the solution of the problem (§) is conwvergent for E -
0 if: for every A > O there exists E, such that <f E < E, then for the instants t(0) =
to,...,t(N) and the columns x(0) = X,,...,x(N) determined by the method we have:

t(N) = t; and max { ET(0), ... ,ET(N) } <A
(4.07) Definition (local error).
Let t(k-1) and t(k) be two consecutive integration instants and x(k-1), x(k) be the
corresponding approximations generated by a numerical method for the approximation of the
solution of the problem (§). The column:

el(k) = x(k) - y(t(k); x(k-1),t(k-1)) € R"

is called the local error at time t(k). The norm of el(k), which is indicated by EL(k), is
a measure of how much the method fails, at time t(k), in following the solution of the

differential equation x'(t) = F( t,x(t) ) which at time t(k-1) passes through x(k-1).

(4.08) Remark (relation between local and total error).

It is:
et(k) = x(k) - y(tX); xo,t0) = ( x(k) - y(t(k); x(k-1),t(k-1)) ) +
+ (yt®; xk-1),tk-1)) - y(t&); x0,t0) )
hence:
et(k) = el(k) + ( y(t(k); x(k-1),t(k-1)) - y(t(k); %o,te) )

Using the notation:

Ay(t"; s, t') = y(t"; y(&'; Xo,to) + 8, t') - y"; y(t'; Xo,t0), t')
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we may rewrite:
et(k) = el(k) + Ay(t(k); et(k-1), t(k-1))

The quantity Ay(t"; s, t') describes how the differential equation transmits at time t" the
deviation, s, at time t', from the solution y(t; X,,t,) of the problem (§).

(4.4) TS(1) METHOD - EXPLICIT EULER

(4.09) Hypothesis (solution regularity).

Suppose that all solutions of the differential equation x'(t) = F( t,x(t) ) have continuous
second derivatives.

The condition is certainly satisfied if all first partial derivatives of the function
F( t,x ) exist and are continuous functions of t and x.

(In fact: if y(t) is a solution to the differential equation we have:

y'(t) = (y' &N = (FCt,yt) N = 8tF( t,y(t) ) + OXF( t,y(t) ) - y' ()
which is continuous because 6tF( t,x ) , 0 F(Ct,x) , y(t) and y'(t) are.)
x

(4.10) Definition (TS(1) method - explicit Euler).
The TS(1) method (or explicit Euler method) is defined by the following procedures.

e CHOICE of h(k). Given E > 0 and A > 0, for each k we set:

dk) =max { A , [ y"G®; x&),t®&) [ }
then:
h(k) = min { 2B , te - t(k) %
dk)

* CALCULATION of x(k+1). After choosing h(k) we set:
x(k+1) = x(k) + F( t(k),x(k) ) h(k)
The name of the method is a consequence of the fact that the function x(k) + F( t(k),x(k) )
h is obtained by truncating the Taylor series of y(t(k) + h; x(k),t(k)) at the first term
in h = 0.

(4.11) Remark (on the choice of h(k)).

Let y(t) indicate the solution y(t; x(k),t(k)) of the differential equation, and let s be
the function from R to R defined by:
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s(h) = x(k) + FC t(®),x(k) ) h - y(t(k) + h)

Let G be the graph of y(t). The value s(h) represents the deviation between G and the
tangent line to G at (t(k),x(k)), measured at time t(k) + h. For h > O the quantity s(h) s
the local error at time t(k) + h.

Since y(t) has a continuous second derivative, s(h) also has a continuous second
derivative. By Taylor’s formula at h = 0 with Lagrange remainder, there exists a function z
from R to R" such that:

s(h) = s(0) + s'(0) h + é; s"(0) h2 + z(h) h2 and z(h) = 0as h-=+0

hence, since s(0) = x(k) - y(t(k)) =0, s'(0) = F( t(k),x(X) ) - y'(t(X)) = 0 and
s"(0) = - y"(t(k)):

1 2 2
sth) = - Py y"(t(k)) h + z(h) h where z(h) = 0ash=+0
If y"(t (X)) # 0 then:
. 1 2 .
® When h is small: - Py y"(t(k)) h is a good estimate of s(h)

(in the sense that the relative error tends to zero as h - 0)

|- Ly b | = E he
2 7 |y @) |

The choice of h(k) guarantees that, in any case and for every A > 0, we have:

. It is:

1 2
|- 5 vy @) nw” || < E

The parameter A is intended to prevent d(k) = O and also ensures that:

for every k:  d(k) = A hence h(k) < -
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(4.05) Definition (total error).



Let t(k) be an integration instant and let x(k) be the corresponding approximation generated by a numerical method for the approximation of the solution of the problem



(§)  x'(t) = F( t,x(t) )  ,  x(t0) = x0  ,  t ∈ [t0,tf]



The column:

et(k) = x(k) – y(t(k); x0,t0) ∈ Rn



is called the total error at time t(k). The norm of et(k), which is indicated by ET(k), is a measure of how much the method fails, at time t(k), in following the solution of the problem (§).



(4.06) Definition (convergent method for E → 0).



A numerical method for approximating the solution of the problem (§) is convergent for E → 0 if: for every Δ > 0 there exists E* such that if E < E* then for the instants t(0) = t0,...,t(N) and the columns x(0) = x0,...,x(N) determined by the method we have:



t(N) = tf  and  max { ET(0), ... ,ET(N) } < Δ





(4.07) Definition (local error).



Let t(k-1) and t(k) be two consecutive integration instants and x(k-1), x(k) be the corresponding approximations generated by a numerical method for the approximation of the solution of the problem (§). The column:



el(k) = x(k) – y(t(k); x(k-1),t(k-1)) ∈ Rn



is called the local error at time t(k). The norm of el(k), which is indicated by EL(k), is a measure of how much the method fails, at time t(k), in following the solution of the differential equation x'(t) = F( t,x(t) ) which at time t(k-1) passes through x(k-1).



(4.08) Remark (relation between local and total error).



It is:



 et(k) = x(k) – y(t(k); x0,t0) = ( x(k) – y(t(k); x(k-1),t(k-1)) ) +



 + ( y(t(k); x(k-1),t(k-1)) – y(t(k); x0,t0) )

hence:

et(k) = el(k) + ( y(t(k); x(k-1),t(k-1)) – y(t(k); x0,t0) )



Using the notation:



Δy(t”; s, t') = y(t”; y(t'; x0,t0) + s, t') – y(t”; y(t'; x0,t0), t')



we may rewrite:

et(k) = el(k) + Δy(t(k); et(k-1), t(k-1))



The quantity Δy(t”; s, t') describes how the differential equation transmits at time t” the deviation, s, at time t', from the solution y(t; x0,t0) of the problem (§).







(4.A)  TS(1) METHOD – EXPLICIT EULER







(4.09) Hypothesis (solution regularity).



Suppose that all solutions of the differential equation x'(t) = F( t,x(t) ) have continuous second derivatives.



The condition is certainly satisfied if all first partial derivatives of the function

F( t,x ) exist and are continuous functions of t and x.



(In fact: if y(t) is a solution to the differential equation we have:



y”(t) = (y'(t))' = ( F( t,y(t) ))' =formula+formula· y'(t)



which is continuous becauseformula,formula, y(t) and y'(t) are.)



(4.10) Definition (TS(1) method – explicit Euler).



The TS(1) method (or explicit Euler method) is defined by the following procedures.



		CHOICE of h(k). Given E > 0 and λ > 0, for each k we set:







d(k) = max {formula, ∥ y”(t(k); x(k),t(k)) ∥ }



then:

h(k) = min {formula, tf – t(k) } 



		CALCULATION of x(k+1). After choosing h(k) we set:







x(k+1) = x(k) + F( t(k),x(k) ) h(k)



The name of the method is a consequence of the fact that the function x(k) + F( t(k),x(k) ) h is obtained by truncating the Taylor series of y(t(k) + h; x(k),t(k)) at the first term in h = 0.



(4.11) Remark (on the choice of h(k)).



Let y(t) indicate the solution y(t; x(k),t(k)) of the differential equation, and let s be the function from R to Rn defined by:



s(h) = x(k) + F( t(k),x(k) ) h – y(t(k) + h)



Let G be the graph of y(t). The value s(h) represents the deviation between G and the tangent line to G at (t(k),x(k)), measured at time t(k) + h. For h > 0 the quantity s(h) is the local error at time t(k) + h.



Since y(t) has a continuous second derivative, s(h) also has a continuous second derivative. By Taylor’s formula at h = 0 with Lagrange remainder, there exists a function z from R to Rn such that:



formula and  z(h) → 0 as h → 0



hence, since s(0) = x(k) – y(t(k)) = 0, s'(0) = F( t(k),x(k) ) - y'(t(k)) = 0 and

s”(0) = - y”(t(k)):



formula where  z(h) → 0 as h → 0



If y”(t(k)) ≠ 0 then:



		When h is small: formula is a good estimate of  s(h)



(in the sense that the relative error tends to zero as h → 0)





		It is:





∥formula∥ = E  formula h =formula



The choice of h(k) guarantees that, in any case and for every λ > 0, we have:



∥formula∥formulaE



The parameter λ is intended to prevent d(k) = 0 and also ensures that:

for every k: formula hence formula
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