Lecture 21 (hrs. 41,42) - November 12, 2025, 11:30 - 13:30 A13

(2.55) Remark.

Let's analyze the cost of solving the system $A \times = b$, with $A \in \mathbb{R}^{n \times n}$ an invertible matrix, using the EGPP procedure. The procedures executed are EGPP, SA, and SI. We have:

$$C(EGPP) = \frac{2}{3} n^3 + \dots$$
, $C(SA) = C(SI) = n^2$

Note that while in the computation of SA and SI *only* arithmetic operations are performed, in the calculation of EGPP *comparisons* are also performed, but their number is *negligible* compared to that of the arithmetic operations.¹

(Exercise: Determine the number of comparisons performed by EGPP.)

The overall number of arithmetic operation is:

$$C(EGPP) + C(SA) + C(SI) = \frac{2}{3}n^3 + \dots$$

When we use the qr procedure to solve the system, the qr, matrix by column product (denoted by: pmc) and SI procedures are performed. We have:

$$C(qr) = \frac{4}{3}n^3 + \dots$$
, $C(pmc) = 2n^2 + \dots$, $C(SI) = n^2$

Note that in the qr procedure (as in the GS procedure) the computation of square roots is also performed but their number (n) is *negligible* compared to that of the arithmetic operations.

(Exercise: Determine the number of arithmetic operations performed by pmc.)

The overall number of arithmetic operation is:

$$C(qr) + C(pmc) + C(SI) = \frac{4}{3}n^3 + ...$$

The dominant term in the arithmetic cost of the procedure using qr is therefore two times larger than that of the procedure using EGPP.

¹ It can be reasonably assumed that the time needed to compare two machine numbers is similar to the time needed to perform an arithmetic operation on the same numbers.

(2.4) ITERATIVE METHODS FOR THE SOLUTION OF A SYSTEM OF LINEAR EQUATIONS

(2.56) <u>Definition</u> (iterative method for the solution of a system of linear equations).

Let $H \in R^{n \times n}$ and $c \in R^n$. The iterative method defined by H and c is the application that maps each vector $g \in R^n$ to the sequence of vectors x(k) defined by:

$$x(0) = g$$
 , $x(k) = H x(k-1) + c$ for $k = 1,2,...$

(2.57) Remark.

• The iterative method defined by H and c is the iterative method defined by the function h: $R^n \to R^n$ such that:

$$h(x) = Hx + c$$

The function h is *continuous* therefore (see Remark (1.54) in Lecture 8) <u>if</u> the sequence x(k) generated by the method is convergent, <u>then</u> its limit $v \in R^n$ is a *fixed point* of h, that is, it satisfies the relation:

$$v = H v + c$$
 equivalent to $(I - H) v = c$

and this last relationship means that:

v is the solution of the system of linear equations (I - H) x = c

- Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. The iterative method defined by H and c can be used to approximate the solution of the system $A \times B$ if:
 - (1) the systems A x = b and (I H) x = c are equivalent (in particular: I H is invertible) and
 - (2) it is (practically) possible to find $g \in R^n$ from which the sequence generated by the method is convergent.

(2.58) <u>Example</u>.

(1) Let:

$$A = \begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix} , b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

- Let $g = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$. The sequence generated by the method defined by H and c is then: x(0) = g, x(1) = H x(0) + c = H g, $x(2) = H x(1) + c = H^2 g$, ...

hence:

$$x(k) = H^{k} g = \begin{bmatrix} (1/2)^{k} & 0 \\ 0 & 2^{k} \end{bmatrix} g = \begin{bmatrix} (1/2)^{k} g_{1} \\ 2^{k} g_{2} \end{bmatrix}$$

The sequence is convergent if and only if g_2 = 0. In this case we have:

$$\lim_{k \to \infty} x(k) = 0$$

and the sequence converges to the unique solution of the system A x = b.

(2) Let:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \qquad , \qquad b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• Set: $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and rewrite A = 2 I + J. Then:

Ax = b is equivalent to x = -(1/2) Jx + (1/2) b

i.e., defined H = -(1/2) J and c = (1/2) b:

$$Ax = b$$
 is equivalent to $(I - H)x = c$

• The eigenvalues of the matrix H are: λ_1 = -1/2 and λ_2 = 1/2, hence H is a diagonalizable matrix. It is:

$$H = S \begin{bmatrix} -1/2 & 0 \\ 0 & 1/2 \end{bmatrix} S^{-1} \quad \text{where} \quad S = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• Set $g = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$. The sequence generated by the method defined by H and c is:

$$x(k) = H^{k} g = S \begin{bmatrix} (-1/2)^{k} & 0 \\ 0 & (1/2)^{k} \end{bmatrix} S^{-1} g$$

i.e., defined $y = S^{-1} g$:

$$x(k) = \begin{bmatrix} (-1/2)^k y_1 \\ (1/2)^k y_2 \end{bmatrix}$$

In this case we have:

for every
$$g \in R^2 : \lim_{k \to \infty} x(k) = 0$$

that is: for every $g \in R^2$ the sequence converges to the unique solution of the system $A \times B$ = $B \times B$

² Recall that (1) a matrix $M \in \mathbb{R}^{n \times n}$ is diagonalizable if there exist a diagonal matrix Λ and an invertible matrix S such that: $MS = S\Lambda$, or $M = S\Lambda S^{-1}$; the elements $\lambda_1, \ldots, \lambda_n$ on the diagonal of Λ are the eigenvalues of M, the k-th column of S is an eigenvector associated with the eigenvalue λ_k ; (2) if a matrix M has distinct eigenvalues then M is diagonalizable.

- (3) Let A = -I and b = 0.
 - Set H = I A and c = b; the systems Ax = b e (I H)x = c are equivalent.
 - The sequence generated by the iterative method defined by H and c starting from $g\in R^n$ is:

$$x(k) = H^k g = 2^k g$$

The sequence is convergent if and only if g = 0 and, in this case, it converges to the unique solution of the system A x = b.