Lecture 19 (hrs. 36,37) - November 6, 2025, 8:30 - 10:30 F3

(2.36) Exercise.

Let V = R^2 with 2-norm and let $v \in R^2$ be such that $\|v\|_2$ = 2.

- Let x^* = v. Draw the set of \hat{x} such that $\varepsilon_x \leqslant$ 1/4.
- Let x^* = v/2. Draw the set of \hat{x} such that $\varepsilon_x \leqslant$ 1/4.

(2.37) <u>Exercise</u>.

Let V = \mathbb{R}^2 with 2-norm and let $\mathbf{v} \in \mathbb{R}^2$ be such that $\|\mathbf{v}\|_2 = 2$.

- Let x^* = v. Draw the set of \hat{x} such that $\|\delta x\|_2 \leqslant 1/2$.
- Let $x^* = v/2$. Draw the set of \hat{x} such that $\|\delta x\|_2 \leqslant 1/2$.

(2.38) Exercise.

In R^2 with 2-norm, let: x^* = [2; 0,1] and let \hat{x} be such that $\varepsilon_x \leqslant L$. Determine: max $|\delta x_1 / x_1^*|$ and max $|\delta x_2 / x_2^*|$.

<u>Solution</u>: $\varepsilon_x \leqslant L \Rightarrow \|\delta x\|_2 \leqslant L \|x^*\|_2$. Hence, for k = 1,2 it is:

$$\max |\delta x_k / x_k^*| = \max |\delta x_k| / |x_k^*| = \max |\delta x_k| / |x_k^*| \leq L ||x_k^*||_2 / |x_k^*|$$

Then:

$$\max |\delta x_1 / x_1^*| \leqslant L \|x^*\|_2 / |x_1^*| = \text{sqrt}(4 + 0.01) / 2 \approx L$$

and:

max
$$|\delta x_2 / x_2^*| \leqslant L \| x^* \|_2 / |x_2^*| = sqrt(4 + 0.01) / 0,1 \approx 20 L$$

For the first component, the relative error has a limitation similar to that of the deviation; for the second, however, the limitation is *worse*. This happens because $\parallel x^* \parallel_2 / \mid x^*_1 \mid \approx 1$ but $\parallel x^* \parallel_2 / \mid x^*_2 \mid$ is *much larger* than 1.

(2.39) Remark.

Let $A \in R^{n \times n}$ be an invertible matrix, let $b \in R^n$, let x^* be the solution of the system A x = b and let $\hat{x} \in R^n$. We use \hat{x} to approximate x^* . The question arises as to how accurate the approximation is. Having chosen a norm in R^n , we use the quantity $N(\hat{x} - x^*)/N(x^*)$ to measure the accuracy.

(A) To obtain information on the accuracy, we introduce the $residual\ vector$ of the system A x = b associated with \hat{x} defined by:

$$r = A \hat{x} - b$$

and \hat{x} is *interpreted* as the solution of the perturbed system:

$$Ax = b + r$$

obtained with the perturbations $\delta A=0$ and $\delta b=r$. With this interpretation of \hat{x} the quantity $N(\hat{x}-x^*)/N(x^*)$ turns out to be the relative measure ε_x of the deviation of the solution due to the perturbation. Applying the Conditioning Theorem (2.36) of Lecture 18 we obtain the limitation:

$$N(\hat{x} - x^*)/N(x^*) = \varepsilon_x \leqslant c_N(A) \varepsilon_b \quad \text{con} \quad \varepsilon_b = N(r)/N(b)$$

(B) To obtain information about the accuracy, we look for a matrix M \in R^{n \times n} such that:

$$M \hat{x} = -r$$

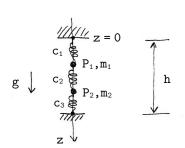
and, given $\delta A = M$, \hat{x} is *interpreted* as the solution of the perturbed system:

$$(A + \delta A) x = b$$

With this interpretation of \hat{x} the quantity $N(\hat{x} - x^*)/N(x^*)$ turns out to be the relative measure ε_x of the deviation of the solution due to the perturbation. If $c_N(A)$ $\varepsilon_A < 1$, from the Conditioning Theorem (2.36) of Lecture 18 we obtain the limitation:

$$N(\hat{x} - x^*)/N(x^*) = \varepsilon_x \leq c_N(A) \varepsilon_A / (1 - c_N(A) \varepsilon_A)$$

(2.40) Example.



Consider the system shown in the figure, composed of two heavy points, P_1 of mass m_1 , and P_2 of mass m_2 , free to slide along a vertical guide and connected by three ideal springs with a rest length of 0, as in the drawing.

Having chosen the descending vertical z-axis, to determine the equilibrium configurations, the static equations are written for each of the points:

$$m_1 g - c_1 z_1 + c_2 (z_2 - z_1) = 0$$

 $m_2 g - c_2 (z_2 - z_1) + c_3 (h - z_2) = 0$

which, in the form of a system, are rewritten:

Using the parameter values:

$$c_1$$
 = c_2 = c_3 = 100 N/m , m_1 = m_2 = 1 kg , h = 5 m , g = 9.81 m/s²

the solution z^* of the system is:

$$\mathbf{z_{\scriptscriptstyle 1}}^* \approx$$
 1.76 m $\,$, $\,$ $\mathbf{z_{\scriptscriptstyle 2}}^* \approx$ 3.43 m

If we now assume as the value of the gravitational acceleration a value g' such that:

$$|g' - g| = |\delta g| < 10^{-2}$$

the system A z = b is transformed into the perturbed system A z = b + δ b with:

$$\delta b = [m_1 \delta g ; m_2 \delta g]$$

Then, choosing the 1-norm in \mathbb{R}^2 , we have:

$$\varepsilon_b = N_1(\delta b)/N_1(b) < 4 \times 10^{-5}$$
 and $c_1(A) = 3$

According to the Conditioning Theorem, for the deviation of the solution \hat{z} of the perturbed system from the solution z^* we have the following limitation:

$$\varepsilon_{\rm x} \leqslant c_{\rm N}({\rm A}) \varepsilon_{\rm b} < 1.2 \times 10^{-4}$$

Finally, since:

$$\parallel z^* \parallel_{\scriptscriptstyle 1} / \mid z_{\scriptscriptstyle 1}^* \mid \approx 3$$
 and $\parallel z^* \parallel_{\scriptscriptstyle 1} / \mid z_{\scriptscriptstyle 2}^* \mid \approx 1.5$

 $similar\ estimates$ are also obtained for the deviation of the components (see Exercise (2.38)).

¹ Remember that the value of the gravitational acceleration is known only approximately.