Lecture 18 (hrs. 34,35) - November 5, 2025, 11:30 - 13:30 A13

(2.25) <u>Definition</u> (norm in a vector space).

Let V be a vector space over R. A function $N:V \to R$ is a *norm* in V if it satisfies the following conditions:

- (1) for every $v \in V$ it is: $N(v) \ge 0$ and $N(v) = 0 \Leftrightarrow v = 0$;
- (2) for every $v \in V$ and every $\alpha \in R$ it is: $N(\alpha v) = |\alpha| N(v)$;
- (3) for every $v, w \in V$ it is: $N(v + w) \leq N(v) + N(w)$.

The pair V,N is called normed space.

(2.26) Example (usual norms in R^n).

Let $V = R^n$ and $v = [v_1, ..., v_n] \in V$. The functions:

- $N_1: \mathbb{R}^n \to \mathbb{R}$ defined by $N_1(v) = |v_1| + \ldots + |v_n|$
- $N_2: \mathbb{R}^n \to \mathbb{R}$ defined by $N_2(v) = \operatorname{sqrt}(v_1^2 + \ldots + v_n^2)$
- $N_{\infty}: \mathbb{R}^n \to \mathbb{R}$ defined by $N_{\infty}(v) = \max\{ |v_1|, \dots, |v_n| \}$

are norms in Rⁿ.

(2.27) Homework.

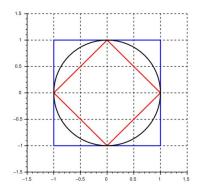
Prove that the functions N_1 and N_{∞} satisfy the properties of Definition (2.25).

(2.28) $\underline{\text{Definition}}$ (ball in R^n).

Let R^n ,N be a normed space, $v \in R^n$ and $r \in R$. The set:

$$I_{\mathbb{N}}(\mathsf{v,r}) = \{ \mathsf{x} \in \mathbb{R}^{\mathsf{n}} \text{ such that } \mathbb{N}(\mathsf{x} - \mathsf{v}) \leqslant \mathsf{r} \}$$

is called *ball of center* v *and radius* r. In the following figure the ball $I_2(0,1)$ is represented in black, $I_{\infty}(0,1)$ in blue, and $I_1(0,1)$ in red, in the case n = 2.



(2.29) <u>Definition</u> (norm of a matrix).

Let R^n , N be a normed space and $A \in R^{n \times n}$. The quantity:

$$\| A \|_{N} = \max \{ N(A v), N(v) = 1 \}$$

is called $norm \ of \ A \ induced \ by \ N.$

- (2.30) Properties (of the norm of a matrix).
- (I) Note that the norm of A induced by N is well-defined: the subset S of vectors v of R^n defined by N(v) = 1 is closed and bounded, and the function $v \to N(A v)$ is continuous. By the Weierstrass Theorem, the latter attains a maximum and a minimum on S. In particular:

there exists $y \in R^n$ such that N(y) = 1 and $||A||_N = N(Ay)$

(IIa) For every A \in $R^{n\,\times\,n}$ and every v \in R^n it is:

$$N(A v) \leqslant ||A||_N N(v)$$

Indeed: The relation is certainly true if v = 0. If $v \neq 0$ we have:

$$N(A v) = N(A N(v) unit(v))^{1} = N(N(v) A unit(v)) = N(v) N(A unit(v))$$

Furthermore, by the Definition of norm of A induced by N it is: N(A unit(v)) \leq \parallel A \parallel _N, hence:

$$N(A v) \leqslant ||A||_N N(v)$$

(IIb) There exists $\textbf{w} \in \textbf{R}^{\textbf{n}}$ such that:

$$N(A w) = ||A||_N N(w)$$

By Properties (I), there exists $y \in R^n$ such that N(y) = 1 and $||A||_N = N(Ay)$. The statement follows by unit(w) = y.

(III) For every A,B $\in R^{n \times n}$ it is:

$$\parallel A B \parallel_N \leqslant \parallel A \parallel_N \parallel B \parallel_N$$

$$unit(v) = \frac{1}{N(v)} v$$

is the $unit\ vector$ of v. Obviously it is N(unit(v)) = 1.

¹ Let R^n , N be a normed space and $v \in R^n$ be a non-zero vector. Then:

Indeed: by Properties (I) there exists $y \in R^n$ such that N(y) = 1 and $||AB||_N = N(ABy)$. Then, by Properties (II):

$$\parallel A B \parallel_{N} = N(A B y) \leqslant \parallel A \parallel_{N} N(B y) \leqslant \parallel A \parallel_{N} \parallel B \parallel_{N} N(y) = \parallel A \parallel_{N} N(y) = \parallel_{N} N(y) = \parallel A \parallel_{N} N(y) = \parallel A \parallel_{N} N(y) = \parallel A \parallel_{N} N(y) = \parallel$$

(2.31) <u>Remark</u>.

The set $R^{n \times n}$ is, with the usual matrix addition and multiple operations, a vector space over R. Introducing a norm N in R^n , the function $A \to \|A\|_N$ from $R^{n \times n}$ to R is a norm in $R^{n \times n}$ (this explains the name given to the function). Therefore, the Properties of the norm (Definition (2.25)) hold:

- (1) for every $A \in \mathbb{R}^{n \times n}$ it is: $\|A\|_{\mathbb{N}} \geqslant 0$, and $\|A\|_{\mathbb{N}} = 0 \Leftrightarrow A = 0$;
- (2) for every $A \in \mathbb{R}^{n \times n}$ and every $\alpha \in \mathbb{R}$ it is: $\|\alpha A\|_{\mathbb{N}} = |\alpha| \|A\|_{\mathbb{N}}$;
- (3) for every A,B \in R^{n × n} it is: $\|$ A + B $\|$ _N \leqslant $\|$ A $\|$ _N + $\|$ B $\|$ _N.
- (2.32) Remark (how to compute the norm of a matrix).

Let $A \in \mathbb{R}^{n \times n}$ and let a_1, \ldots, a_n be the columns of A. it is:

- $\|A\|_1 = \max\{ N_1(a_1), \ldots, N_1(a_n) \}$
- $\|A\|_2$ = sqrt(maximum of the eigenvalues of A^tA)²
- $\|A\|_{\infty} = \|A^t\|_1$ i.e., denoted by r_1, \ldots, r_n the rows of A: $\|A\|_{\infty} = \max\{N_1(r_1), \ldots, N_1(r_n)\}$

Note that while the computation of $\|A\|_1$ and $\|A\|_{\infty}$ is elementary, that of $\|A\|_2$ in general *is not*.

(2.33) Example (conditioning: the case $\delta A = 0$, $\delta b \neq 0$).

Let us return to the conditioning of the solution of the system A x = b. Let N be a norm in \mathbb{R}^n .

Let $\delta A = 0$ and $\delta b \neq 0$. Then the columns x^* and \hat{x} satisfy:

$$A x^* = b$$
 , $A \hat{x} = b + \delta b$

hence, by the invertibility of A, it is:

$$\delta x = \hat{x} - x^* = A^{-1} (b + \delta b) - A^{-1} b = A^{-1} \delta b$$

By introducing the *absolute measure* of the deviation $N(\delta x)$ and that of the perturbation $N(\delta b)$, using Property (IIa) we obtain:

$$\forall \delta b$$
 , $N(\delta x) = N(A^{-1} \delta b) \leqslant ||A^{-1}||_N N(\delta b)$

² The matrix A^tA is *symmetric* and *positive semidefinite*, hence all *i*ts eigenvalues are nonnegative.

The above is the best possible bound for the absolute measure of the deviation as a function of the absolute measure of the perturbation. Indeed, Property (IIb) shows that:

$$\exists \delta b : N(\delta x) = || A^{-1} ||_N N(\delta b)$$

If b \neq 0 (and therefore $x^* \neq$ 0), we can also introduce the *relative measures* of the deviation ε_x = N(δx)/N(x^*) and of the perturbation ε_b = N(δb)/N(b). For these measures we have:

$$\varepsilon_{x} = \frac{N(\delta x)}{N(x^{*})} \leqslant \frac{\parallel A^{-1} \parallel_{N} N(\delta b)}{N(x^{*})}$$

But:

$$A x^* = b \implies N(b) = N(A x^*) \leqslant || A^{-1} ||_N N(x^*) \implies \frac{1}{----} \leqslant \frac{|| A^{-1} ||_N}{N(x^*)} N(b)$$

hence:

$$\forall$$
 δ b , \forall b eq 0 : $arepsilon_{x}$ \leqslant \parallel A $^{-1}$ \parallel_{N} \parallel A \parallel_{N} $arepsilon_{b}$

The above is the *best possible bound* for the relative size of the deviation as a function of the relative size of the perturbation. Indeed, Property (IIb) shows that:

$$\exists~\delta b~\text{and}~\exists~b~\neq~0~:~\varepsilon_{x}$$
 = $\|~A^{\text{-1}}~\|_{\text{N}}~\|~A~\|_{\text{N}}~\varepsilon_{b}$

(2.34) <u>Definition</u> (condition number of a matrix).

Let $A \in R^{n \times n}$ be an *invertible* matrix and N be a norm in R^n . The number:

$$c_N(A) = ||A^{-1}||_N ||A||_N$$

is the condition number of A (using the norm N).

(2.35) Remark.

Since $A^{-1}A = I$, we have (using Property (III) of (2.30)):

$$\parallel \text{ I } \parallel_{\text{N}} \text{ = } \parallel \text{ A}^{\text{-1}} \text{ A } \parallel_{\text{N}} \ \leqslant \ \parallel \text{ A}^{\text{-1}} \parallel_{\text{N}} \parallel \text{ A } \parallel_{\text{N}}$$

Moreover, by the definition of norm of I:

$$\| I \|_{N} = \max \{ N(I v), N(v) = 1 \} = \max \{ N(v), N(v) = 1 \} = 1$$

hence:

$$c_N(A) = ||A^{-1}||_N ||A||_N \geqslant 1$$

(2.36) Theorem (conditioning).

Let $A \in R^{n \times n}$ be an *invertible* matrix and let N be a norm in R^n . Then: for every $b \neq 0$, every δb such that $b + \delta b \neq 0$ and every δA such that $c_N(A)$ $\varepsilon_A < 1$ it is:

$$arepsilon_{_{
m X}} \leqslant rac{{\sf c}_{_{
m N}}({
m A})}{1 - {\sf c}_{_{
m N}}({
m A}) \; arepsilon_{_{
m A}}}$$