Lecture 16 (hrs. 29,30) - October 28, 2025, 16:30 - 18:30 F3

- (2.06) Remark (simple cases, last part).
- (0) orthogonal (A is orthogonal if one of the following three equivalent conditions subsists:
 - (1) the columns (or rows) of A are an $orthonormal\ basis$ of R^n with respect to the canonical scalar product;
 - (2) A is invertible and $A^{-1} = A^{t}$;
 - (3) A^t A = A A^t = I)
 - A is certainly invertible.
 - The solution x^* of the system Ax = b is determined by:

$$x^* = A^t b$$

The number of operations needed to determine the solution is the number of operations needed to perform the product of a matrix by a column:

$$n^2$$
 multiplications + $n(n-1)$ sums

(P) permutation matrix (A is a permutation matrix if it is obtained from the identity matrix I by permuting the column).

The columns of a permutation matrix are therefore those of the identity matrix (except for the order). Therefore, they constitute an orthonormal basis of R^n with respect to the canonical dot product (the canonical basis). It follows that a permutation matrix is orthogonal.

- In this case too we have: A is certainly invertible.
- The solution x^* of the system Ax = b is determined by

$$x^* = A^t b$$

The number of operations needed to determine the solution is, this time, zero because A^t , as A, is a permutation matrix and the product P v of a permutation matrix P by a column v produces a column that has the same components as v but in a different order.

(2.07) Remark (general case).

When the matrix A of the system does not have a structure that allows it to fall into a simple case, the problem is faced in two steps:

Step one:

We factor A into a product of simple factors.

Example: $A = F_1F_2F_3$, with F_1 orthogonal, F_2 upper triangular and F_3 a permutation matrix.

Step two:

Factorization is used to decide whether A is invertible and, if so, to determine the solution \mathbf{x}^* .

Example:

$$A = F_1F_2F_3 \Rightarrow \det A = \det F_1 \det F_2 \det F_3$$

hence: A is invertibile \Leftrightarrow each one of the factors is invertible. Then:

(1)
$$A x = b \equiv F_1 F_2 F_3 x = b \equiv F_2 F_3 x = F_1^{-1} b = c_1$$

and we find c_1 as the solution of the simple system $F_1 x = b$.

(2)
$$F_2F_3 x = c_1 \equiv F_3 x = F_2^{-1} c_1 = c_2$$

and we find c_2 as the solution of the simple system $F_2 x = c_1$.

(3)
$$F_3 x = c_2 \equiv x^* = F_3^{-1} c_2$$

and we find x^* as the solution of the simple system $F_3 x = c_2$.

In general, if A is invertible, the solution is determined by solving as many *simple* systems as there are factors of A.

(2.08) <u>Definition</u> (LR factorization, LR factorization with pivoting and QR factorization).

Let A \in R^{n × n}.

An LR factorization of A is a pair S,D such that:

- S \in R^{n \times n} is a lower triangular matrix with s_{kk} = 1 for k = 1,...,n
- $D \in R^{n \times n}$ is an upper triangular matrix
- SD = A

Note that the left factor S is invertible. Then: A is invertible if and only if the right factor D is invertible.

A LR factorization of A with pivoting is a triplet P,S,D such that:

- $P \in R^{n \times n}$ is a permutation matrix
- the pair S,D is an LR factorizationn of PA

The relationship between A,P,S and D is:

$$PA = SD$$
 i.e. $A = P^{t}SD$

Note that both P and the left factor S are invertible. Again: A is invertible if and only if the right factor D is invertible.

A QR factorization of A is a pair U,T such that:

- $U \in R^{n \times n}$ is an orthogonal matrix
- $T \in R^{n \times n}$ is an upper triangular matrix
- UT = A

Note that the left factor U is invertible. Again: A is invertible if and only if the right factor T is invertible.

(2.09) <u>Definition</u> (elementary Gaussian matrix).

Let $A \in R^{n \times n}$, to find an LR factorization with pivoting, the EGP procedure is used, which is based on the *Gaussian elimination* process. To describe the procedure, the notion of an *elementary Gaussian matrix* is needed.

 $H \in R^{n \times n}$ is an elementary Gaussian matrix if: there exists an index $k \in \{1, \dots, n-1\}$ and real numbers $\lambda_{k+1}, \dots, \lambda_n$ such that H is obtained from the identity matrix $I \in R^{n \times n}$ by replacing the k-th column e_k (whose components are all equal to zero except the k-th one which is one) with the column:

Examples:

- the identity matrix $I \in R^{n \times n}$ is elementary Gaussian;
- the matrix:

is elementary Gaussian;

the matrix:

is not elementary Gaussian.

(2.10) Properties (of elementary Gaussian matrices).

Let H be an elementary Gaussian matrix. Then:

- H is lower triangular with h_{kk} = 1 for every k (hence it is invertible)
- H-1 is obtained from H by changing the sign of the elements below the main diagonal

(for Example:

$$H = [1,0,0;$$
 $H^{-1} = [1,0,0;$ $-1,1,0;$ $-2,0,1]$ $2,0,1]$)

(2.11) Definition (EGP procedure).

The following EGP procedure operates on a matrix $A \in R^{n \times n}$, and determines a triplet P,S,D which is an LR factorization of A with pivoting.

```
\begin{array}{l} (P,S,D) \ = \ EGP(A) \\ \\ A_1 \ = \ A; \\ \underline{for} \ k \ = \ 1, \ldots, n-1 \ \underline{repeat}; \\ \\ \text{determine appropriately a permutation matrix } P_k, \ \text{an elementary Gaussian} \\ \\ \text{matrix } H_k \ \text{and set } A_{k+1} \ = \ H_k \ P_k \ A_k; \\ \\ D \ = \ A_n; \\ P \ = \ P_{n-1} \ \ldots \ P_1; \\ S \ = \ P \ (P_1^{\, t} \ H_1^{\, -1} \ \ldots \ P_{n-1}^{\, t} \ H_{n-1}^{\, -1}) \end{array}
```

The matrices $P_{\textbf{k}}$ and $H_{\textbf{k}}$ are determined so that $\textbf{A}_{\textbf{n}}$ is upper triangular.

Observe that:

$$\label{eq:defD} D \ = \ A_n \ = \ H_{n-1} \ P_{n-1} \ A_{n-1} \ = \ \dots \ = \ H_{n-1} \ P_{n-1} \ \dots \ H_1 \ P_1 \ A$$

so that:

$$A = (P_1^t H_1^{-1} \dots P_{n-1}^t H_{n-1}^{-1}) D$$

The matrix $P_1^{t} H_1^{-1} \dots P_{n-1}^{t} H_{n-1}^{-1}$ is not lower triangular with unit elements on the diagonal <u>but</u> the matrix

$$P \ ({P_{\scriptscriptstyle 1}}^{\scriptscriptstyle t} \ {H_{\scriptscriptstyle 1}}^{\scriptscriptstyle -1} \ \dots \ {P_{\scriptscriptstyle n-1}}^{\scriptscriptstyle t} \ {H_{\scriptscriptstyle n-1}}^{\scriptscriptstyle -1})$$

is lower triangular with unit elements on the diagonal. Hence, the pair $S = P (P_1^{t} H_1^{-1} \dots P_{n-1}^{t} H_{n-1}^{-1})$, D is an LR factorization of PA, as required.

It remains to be clarified how, at each iteration, the matrices P_{k} and H_{k} are determined.