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(2.06) Remark (simple cases, last part).

(O) orthogonal (A is orthogonal if one of the following three equivalent conditions 
    subsists:

(1) the columns (or rows) of A are an orthonormal basis of Rn with
                        respect to the canonical scalar product;

(2) A is invertible and A-1 = At;
(3) At A = A At = I  )

• A is certainly invertible.
• The solution x* of the system A x = b is determined by:

x* = At b

The number of operations needed to determine the solution is the number of operations 
       needed to perform the product of a matrix by a column:

n2 multiplications + n(n-1) sums

(P) permutation matrix (A is a permutation matrix if it is obtained from the identity
    matrix I by permuting the column).

    The columns of a permutation matrix are therefore those of the identity matrix (except
    for the order). Therefore, they constitute an orthonormal basis of Rn with respect to
    the canonical dot product (the canonical basis). It follows that a permutation matrix
    is orthogonal.    

• In this case too we have: A is certainly invertible.
• The solution x* of the system A x = b is determined by

x* = At b

    The number of operations needed to determine the solution is, this time, zero because
    At, as A, is a permutation matrix and the product P v of a permutation matrix P by a
    column v produces a column that has the same components as v but in a different order.

(2.07) Remark (general case).

When the matrix A of the system does not have a structure that allows it to fall into a 
simple case, the problem is faced in two steps:

Step one:

We factor A into a product of simple factors.
    
    Example: A = F1 F2 F3, with F1 orthogonal, F2 upper triangular and F3 a permutation matrix.
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Step two:

Factorization is used to decide whether A is invertible and, if so, to determine the 
solution x*.

    Example:
A = F1 F2 F3 ⇒ det A = det F1 det F2  det F3

    hence: A is invertibile ⇔ each one of the factors is invertible. Then:

    (1) A x = b  ≡  F1 F2 F3 x = b  ≡  F2 F3 x = F1
-1 b = c1

    and we find c1 as the solution of the simple system F1 x = b.

    (2) F2 F3 x = c1  ≡  F3 x = F2
-1 c1 = c2

    and we find c2 as the solution of the simple system F2 x = c1.

    (3)            F3 x = c2  ≡  x* = F3
-1 c2

    and we find x* as the solution of the simple system F3 x = c2.

In general, if A is invertible, the solution is determined by solving as many simple 
systems as there are factors of A.

(2.08) Definition (LR factorization, LR factorization with pivoting and QR factorization).

Let A ∈ Rn × n. 

An LR factorization of A is a pair S,D such that:

• S ∈ Rn × n is a lower triangular matrix with skk = 1 for k = 1,...,n
• D ∈ Rn × n is an upper triangular matrix
• S D = A

Note that the left factor S is invertible. Then: A is invertible if and only if the right 
factor D is invertible.

A LR factorization of A with pivoting is a triplet P,S,D such that:

• P ∈ Rn × n is a permutation matrix
• the pair S,D is an LR factorizationn of P A

The relationship between A,P,S and D is:

P A = S D    i.e.    A = Pt S D

Note that both P and the left factor S are invertible. Again: A is invertible if and only 
if the right factor D is invertible.
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A QR factorization of A is a pair U,T such that:

• U ∈ Rn × n is an orthogonal matrix
• T ∈ Rn × n is an upper triangular matrix
• U T = A

Note that the left factor U is invertible. Again: A is invertible if and only if the right 
factor T is invertible.

(2.09) Definition (elementary Gaussian matrix).

Let A ∈ Rn × n, to find an LR factorization with pivoting, the EGP procedure is used, which 
is based on the Gaussian elimination process. To describe the procedure, the notion of an 
elementary Gaussian matrix is needed.

H ∈ Rn × n is an elementary Gaussian matrix if: there exists an index k  {1,...,n-1} and ∈
real numbers λk+1,...,λn such that H is obtained from the identity matrix I ∈ Rn × n by 
replacing the k-th column ek (whose components are all equal to zero except the k-th one 
which is one) with the column:

[0 ;...; 0 ; 1 ; λk+1 ;...; λn]
         ↑

                 k-th component

Examples: 
• the identity matrix I ∈ Rn × n is elementary Gaussian;
• the matrix:

[1,0,0;
 1,1,0;
-2,0,1] 

    is elementary Gaussian;
• the matrix:

[1,0,1;
 1,1,0;
-2,0,1] 

   is not elementary Gaussian.

(2.10) Properties (of elementary Gaussian matrices).

Let H be an elementary Gaussian matrix. Then:

• H is lower triangular with hkk = 1 for every k (hence it is invertible)
• H-1 is obtained from H by changing the sign of the elements below the main diagonal

(for Example:
                     H = [1,0,0;      H-1 = [1,0,0;
                          1,1,0;           -1,1,0;
                         -2,0,1]            2,0,1]  )

(2.11) Definition (EGP procedure).

The following EGP procedure operates on a matrix A ∈ Rn × n, and determines a triplet P,S,D 
which is an LR factorization of A with pivoting.
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(P,S,D) = EGP(A)

  A1 = A;
  for k = 1,...,n-1 repeat:
    determine appropriately a permutation matrix Pk, an elementary Gaussian
        matrix Hk and set Ak+1 = Hk Pk Ak;
  D = An;
  P = Pn-1 ... P1;
  S = P (P1

t H1
-1 … Pn-1

t Hn-1
-1)

The matrices Pk and Hk are determined so that An is upper triangular.

Observe that:
D = An = Hn-1 Pn-1 An-1 = ... = Hn-1 Pn-1 ... H1 P1 A 

so that:
A = (P1

t H1
-1 ... Pn-1

t Hn-1
-1 ) D

The matrix P1
t H1

-1 ... Pn-1
t Hn-1

-1  is not lower triangular with unit elements on the diagonal 
but the matrix

P (P1
t H1

-1 ... Pn-1
t Hn-1

-1 )

is lower triangular with unit elements on the diagonal. Hence, the pair S = P (P1
t H1

-1 … Pn-1
t 

Hn-1
-1), D is an LR factorization of P A, as required.

It remains to be clarified how, at each iteration, the matrices Pk and Hk are determined.
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