Lecture 15 (hrs. 27,28) - October 23, 2025, 8:30 - 10:30 F3

(2) SYSTEMS OF LINEAR EQUATIONS

(2.01) Example.

Examples of contexts in which systems of linear equations must be solved:

- at each iteration of Newton's method for functions from Rⁿ to Rⁿ;
- solving linear resistive electrical networks
- solving linear RLC electrical networks in sinusoidal regime.

(2.02) Problem.

<u>Given</u> an invertible matrix $A \in R^{n \times n}$ and $b \in R^n$, <u>find</u> $x^* \in R^n$ s.t. $Ax^* = b$. The column x^* is called a *solution* if the system Ax = b.

(2.03) Remark.

A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if it satisfies one of the following *equivalent* properties:

- there exists a matrix $M \in \mathbb{R}^{n \times n}$ such that AM = MA = I (the matrix M is called the *inverse* matrix of A and is denoted by A^{-1})
- $Ax = 0 \Leftrightarrow x = 0$ (this property is also expressed by ker $A = \{ 0 \}$)
- for each column b \neq 0 in R^n , there is only one solution x^* of the system A x = b
- det A \neq 0

(2.04) Remark (simple cases).

To decide whether the matrix A of the system is invertible and, if so, to determine the solution of the system A x = b is *simple* when the *structure* of A falls into one of the following cases:

- (D) diagonal (A is diagonal if $i \neq j \Rightarrow a_{i,j} = 0$)
 - It is: det A = $a_{1,1} \cdots a_{n,n}$, hence: det A = 0 \Leftrightarrow there exists k s.t. $a_{k,k}$ = 0. Then: A is invertible if and only if for every k it is $a_{k,k} \neq 0$.
 - If A is invertible, the components of the solution x^* of the system A x = b are determined by:

$$x_k^* = b_k / a_{k,k}$$

The number of operations needed to determine the solution is:

n divisions.

- (T) triangular (A is upper triangular if i > j \Rightarrow $a_{i,j}$ = 0; it is lower triangular if i < j \Rightarrow $a_{i,j}$ = 0)
 - Also in this case we have: det $A = a_{1,1} \cdots a_{n,n}$. Therefore: A is invertible if and

only if for each k we have $a_{k,k}\,\neq\,0$.

• If A is an invertible $upper\ triangular\ matrix$, the components of the solution x^* of the system Ax = b are determined by the following $backward\ substitution$ procedure:

The number of operations needed to determine the solution is:

n divisions +
$$\frac{n(n-1)}{2}$$
 (multiplications + sums)

(2.05) Exercise (homework).

Describe the forward substitution procedure whose header is:

$$z = FS(T,c)$$

which, given an invertible lower triangular matrix T and a column c, determines the solution of the system $T \, x = c$. Also determine the number of operations necessary to find the solution.