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(2) SYSTEMS OF LINEAR EQUATIONS

(2.01) Example.

Examples of contexts in which systems of linear equations must be solved:
• at each iteration of Newton’s method for functions from Rn to Rn;
• solving linear resistive electrical networks
• solving linear RLC electrical networks in sinusoidal regime.

(2.02) Problem.

Given an invertible matrix A ∈ Rn × n and b ∈ Rn, find x* ∈ Rn s.t. A x* = b. The column x* is 
called a solution if the system A x = b.

(2.03) Remark.

A matrix A ∈ Rn × n is invertible if it satisfies one of the following equivalent properties:

• there exists a matrix M ∈ Rn × n such that AM = MA = I (the matrix M is called the 
inverse matrix of A and is denoted by A-1)

• A x = 0 ⇔ x = 0 (this property is also expressed by ker A = { 0 })
• for each column b ≠ 0 in Rn, there is only one solution x* of the system A x = b
• det A ≠ 0

(2.04) Remark (simple cases).

To decide whether the matrix A of the system is invertible and, if so, to determine the 
solution of the system A x = b is simple when the structure of A falls into one of the 
following cases:

(D) diagonal (A is diagonal if i ≠ j ⇒ ai,j = 0)

• It is: det A = a1,1 ⋅ ⋅ ⋅ an,n, hence: det A = 0 ⇔ there exists k s.t. ak,k = 0. Then: A 
is invertible if and only if for every k it is ak,k ≠ 0.

• If A is invertible, the components of the solution x* of the system A x = b are 
determined by:

xk
* = bk / ak,k

The number of operations needed to determine the solution is:

n divisions.

(T) triangular (A is upper triangular if i > j ⇒ ai,j = 0; it is lower triangular
if i < j ⇒ ai,j = 0)

• Also in this case we have: det A = a1,1 ⋅ ⋅ ⋅ an,n. Therefore: A is invertible if and 
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only if for each k we have ak,k ≠ 0.

• If A is an invertible upper triangular matrix, the components of the solution x* of 
the system A x = b are determined by the following backward substitution procedure:

z = BS(T,c)
if T is not an invertible upper triangular matrix then STOP; 
   else
      zn = cn / tn,n;
      for k = n-1,...,1 repeat

   s = tk,k+1 * xk+1 + ... + tk,n * xn;
   xk = (bk – s) / tk,k;

The number of operations needed to determine the solution is:

n divisions +
n(n−1)

2
(multiplications + sums)

(2.05) Exercise (homework).

Describe the forward substitution procedure whose header is:

z = FS(T,c)

which, given an invertible lower triangular matrix T and a column c, determines the 
solution of the system T x = c. Also determine the number of operations necessary to find 
the solution.
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