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(1.80) Example.

Let f:R2 → R2 be defined by:1

f(x) = [ f1(x1,x2) ; f2(x1,x2) ] = [ x1
2 – x2 ; - x1 + x2

2 ]

The jacobian matrix of f in x is:

Jf(x) = [ 2 x1 , -1 ; -1 , 2 x2 ] : R2 → R2 × 2

(1.81) Remark.2

Given an element x(k) in Rn, Newton’s method for the function f: Rn → Rn determines the 
element x(k+1) by solving the equation:

f(x(k)) + Jf(x(k)) (x – x(k)) = 0

i.e.:
Jf(x(k)) (x – x(k)) = - f(x(k))

This last equation is a system of linear equations. If the matrix Jf(x(k)) is invertible 
then we obtain:

x – x(k) = - Jf(x(k))-1 f(x(k))

Therefore, the element x(k+1) is:

x(k+1) = x(k) - Jf(x(k))-1 f(x(k))

(1.82) Example.

Consider the function f:R2 → R2 of Example (1.80) and let x(0) = [ 1 ; -1 ]. To determine 
x(1) we need to calculate Jf(x(0)), f(x(0)) and then solve the system

Jf(x(0)) z = - f(x(0))
It is:

Jf(x(0)) = [ 2 , -1 ; -1 , -2 ]    ,    f(x(0)) = [ 2 ; 0 ]

Observe that Jf(x(0)) is invertible. The solution of the system is:

p = [ - 4/5 ; 2/5 ]
Hence:

x(1) = x(0) + p = [ 1/5 ; -3/5 ]

1 For matrices we will use Scilab notation.
2 For sequences of elements in Rn, we will use the notation x(0), x(1), x(2), ...
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(1.83) Definition.

Newton’s method applied to the function f:Rn → Rn, with invertible Jacobian matrix Jf(x), is 
the one-point method defined by the function:

N(x) = x - Jf(x)-1 f(x) : Rn → Rn

(1.84) Theorem (local convergence for one-point methods in Rn).

Let h: Rn → Rn be sufficiently regular and α be a fixed point of h.

If all eigenvalues of Jh(α) have modulus < 1 then there exists a real number ρ > 0 such 
that:

|| x(0) – α || < ρ    ⇒    the sequence x(k) generated by the iterative method
   defined by h starting from x(0) converges to α

This Theorem provides a sufficient condition for the usability of the method defined by h 
to approximate α. For a one-point method in Rn, being usable means that for every x(0) 
sufficiently close to a fixed point α of h, the sequence generated by the method defined by 
h starting from x(0) converges to α.

(1.85) Example (part one).

Consider again the function f:R2 → R2 from Example (1.80).
The function has two zeros:

α' = [0 ; 0]    ,    α'' = [1 ; 1]

To approximate the two zeros, consider the method
defined by the function

       h(x) = x + f(x) = [ x1 + x2
2 – x2 ; x2 – x1 + x2

2 ]

It is easily verified that the fixed points of h are
all and only the zeros of f.

The jacobian matrix is:

Jh(x) = I + Jf(x) = [ 1 + 2 x1 , -1 ; -1 , 1 + 2 x2 ]

hence:
Jh(α') = [ 1 , -1 ; -1 , 1 ]

The eigenvalues are the roots of the characteristic polynomial:

p(λ) = det( Jh(α') – λI) = (1 - λ)2 – 1    i.e.    λ1 = 0 , λ2 = 2

The Local Convergence Theorem does not apply. However, the following holds:

  x2

 x1

f2(x1,x2) = 0

α'

α''
f1(x1,x2) = 0
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(1.86) Remark.

Under the assumptions of the Local Convergence Theorem: if at least one of the eigenvalues 
of Jh(α) has modulus > 1 then the iterative method defined by h cannot be used to 
approximate α.

(1.87) Example.

To justify the previous assertion, consider the following particular case.

Let h(x) = [ h1(x1) ; h2(x2) ]: R2 → R2 where h1 and h2 are regular functions, let α1 be a 
fixed point of h1 and α2 be a fixed point of h2. It follows that α = [α1 ; α2] is a fixed 
point of h. The jacobian matrix of h in α is:

Jh(α) = [ h1'(α1) , 0 ; 0 , h2'(α2) ]
whose eigenvalues are:

λ1 = h1'(α1)    e    λ2 = h2'(α2)

Let x(k) be a sequence generated by the method defined by h. Then x1(k) and x2(k) are, 
respectively, a sequence generated by the method defined by h1 and, respectively, by the 
method defined by h2. If, for example, |λ1| = |h1'(α1)| > 1, for the sequence x1(k) we have 
(Remark (1.61) of Lecture 10): either x1(k) = α1 for a finite value of k or x1(k) does not 
converge to α1. As already observed, the possibility of the first condition being met is 
very remote. Therefore, the sequence is expected not to be convergent. If
in this situation the iterative method defined by h were usable to approximate α, then for 
any x(0) sufficiently close to α the sequence x(k) would converge to the fixed point of h. 
It would follow that for any x1(0) sufficiently close to α1 the sequence x1(k) would 
converge to the fixed point of h1. But this, as observed above, is not possible.

(1.88) Example (part two).

From the final result of part one of the example it can be deduced that the method defined 
by h cannot be used to approximate α'.

Consider now α''. It is:
Jh(α'') = [ 3 , -1 ; -1 , 3 ]

hence:

p(λ) = det( Jh(α'') – λI) = (3 - λ)2 – 1    i.e.    λ1 = 2 , λ2 = 4

and the method defined by h is not usable to approximate α'' too.

(1.89) Exercise (homework).

Let f be the function of Example (1.85). Determine the function N: R2 → R2 that defines 
Newton’s method applied to f and verify (with a lot of patience) that we have: JN(α') = 0 
and JN(α'') = 0.

(1.90) Remark (usability of Newton’s method).

What was shown in the previous exercise is generally valid. In fact, we have:
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If f has continuous second derivatives, Jf is non-singular, and α is a zero of f, then JN(α) 
= 0 and Newton’s method can be used to approximate α. Furthermore, similarly to what 
happens in the case of functions of one variable, the order of convergence to α of Newton’s 
method is at least two.
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(1.80) Example.



Let f:R2 → R2 be defined by:1 For matrices we will use Scilab notation. 



f(x) = [ f1(x1,x2) ; f2(x1,x2) ] = [ x12 – x2 ; - x1 + x22 ]



The jacobian matrix of f in x is:



Jf(x) = [ 2 x1 , -1 ; -1 , 2 x2 ] : R2 → R2 × 2



(1.81) Remark.2 For sequences of elements in Rn, we will use the notation x(0), x(1), x(2), ... 



Given an element x(k) in Rn, Newton’s method for the function f: Rn → Rn determines the element x(k+1) by solving the equation:



f(x(k)) + Jf(x(k)) (x – x(k)) = 0



i.e.:

Jf(x(k)) (x – x(k)) = - f(x(k))



This last equation is a system of linear equations. If the matrix Jf(x(k)) is invertible then we obtain:



x – x(k) = - Jf(x(k))-1 f(x(k))



Therefore, the element x(k+1) is:



x(k+1) = x(k) - Jf(x(k))-1 f(x(k))



(1.82) Example.



Consider the function f:R2 → R2 of Example (1.80) and let x(0) = [ 1 ; -1 ]. To determine x(1) we need to calculate Jf(x(0)), f(x(0)) and then solve the system



Jf(x(0)) z = - f(x(0))

It is:



Jf(x(0)) = [ 2 , -1 ; -1 , -2 ]  ,  f(x(0)) = [ 2 ; 0 ]



Observe that Jf(x(0)) is invertible. The solution of the system is:



p = [ - 4/5 ; 2/5 ]

Hence:



x(1) = x(0) + p = [ 1/5 ; -3/5 ]





(1.83) Definition.



Newton’s method applied to the function f:Rn → Rn, with invertible Jacobian matrix Jf(x), is the one-point method defined by the function:



N(x) = x - Jf(x)-1 f(x) : Rn → Rn



(1.84) Theorem (local convergence for one-point methods in Rn).



Let h: Rn → Rn be sufficiently regular and α be a fixed point of h.



If all eigenvalues of Jh(α) have modulus < 1 then there exists a real number ρ > 0 such that:

|| x(0) – α || < ρ  ⇒  the sequence x(k) generated by the iterative method

			  defined by h starting from x(0) converges to α



This Theorem provides a sufficient condition for the usability of the method defined by h to approximate α. For a one-point method in Rn, being usable means that for every x(0) sufficiently close to a fixed point α of h, the sequence generated by the method defined by h starting from x(0) converges to α.



(1.85) Example (part one).



Consider again the function f:R2 → R2 from Example (1.80).

   f1(x1,x2) = 0 

The function has two zeros:

    x2 



 α'' 

		α' = [0 ; 0]  ,  α'' = [1 ; 1]

   f2(x1,x2) = 0 



To approximate the two zeros, consider the method

defined by the function



  x1 

 α' 

 h(x) = x + f(x) = [ x1 + x22 – x2 ; x2 – x1 + x22 ]



It is easily verified that the fixed points of h are

all and only the zeros of f.



The jacobian matrix is:



Jh(x) = I + Jf(x) = [ 1 + 2 x1 , -1 ; -1 , 1 + 2 x2 ]



hence:

Jh(α') = [ 1 , -1 ; -1 , 1 ]



The eigenvalues are the roots of the characteristic polynomial:



p(λ) = det( Jh(α') – λI) = (1 - λ)2 – 1  i.e.  λ1 = 0 , λ2 = 2



The Local Convergence Theorem does not apply. However, the following holds:









(1.86) Remark.



Under the assumptions of the Local Convergence Theorem: if at least one of the eigenvalues of Jh(α) has modulus > 1 then the iterative method defined by h cannot be used to approximate α.



(1.87) Example.



To justify the previous assertion, consider the following particular case.



Let h(x) = [ h1(x1) ; h2(x2) ]: R2 → R2 where h1 and h2 are regular functions, let α1 be a fixed point of h1 and α2 be a fixed point of h2. It follows that α = [α1 ; α2] is a fixed point of h. The jacobian matrix of h in α is:



Jh(α) = [ h1'(α1) , 0 ; 0 , h2'(α2) ]

whose eigenvalues are:

λ1 = h1'(α1)  e  λ2 = h2'(α2)



Let x(k) be a sequence generated by the method defined by h. Then x1(k) and x2(k) are, respectively, a sequence generated by the method defined by h1 and, respectively, by the method defined by h2. If, for example, |λ1| = |h1'(α1)| > 1, for the sequence x1(k) we have (Remark (1.61) of Lecture 10): either x1(k) = α1 for a finite value of k or x1(k) does not converge to α1. As already observed, the possibility of the first condition being met is very remote. Therefore, the sequence is expected not to be convergent. If

in this situation the iterative method defined by h were usable to approximate α, then for any x(0) sufficiently close to α the sequence x(k) would converge to the fixed point of h. It would follow that for any x1(0) sufficiently close to α1 the sequence x1(k) would converge to the fixed point of h1. But this, as observed above, is not possible.



(1.88) Example (part two).



From the final result of part one of the example it can be deduced that the method defined by h cannot be used to approximate α'.



Consider now α''. It is:

Jh(α'') = [ 3 , -1 ; -1 , 3 ]



hence:



p(λ) = det( Jh(α'') – λI) = (3 - λ)2 – 1  i.e.  λ1 = 2 , λ2 = 4



and the method defined by h is not usable to approximate α'' too.



(1.89) Exercise (homework).



Let f be the function of Example (1.85). Determine the function N: R2 → R2 that defines Newton’s method applied to f and verify (with a lot of patience) that we have: JN(α') = 0 and JN(α'') = 0.



(1.90) Remark (usability of Newton’s method).



What was shown in the previous exercise is generally valid. In fact, we have:

If f has continuous second derivatives, Jf is non-singular, and α is a zero of f, then JN(α) = 0 and Newton’s method can be used to approximate α. Furthermore, similarly to what happens in the case of functions of one variable, the order of convergence to α of Newton’s method is at least two.

