Lezione 14 (ore 25,26) - 22 ottobre 2025, 11:30 - 13:30 A13

(1.80) <u>Esempio</u>.

Sia $f:R^2 \rightarrow R^2$ definita da:¹

$$f(x) = [f_1(x_1,x_2); f_2(x_1,x_2)] = [x_1^2 - x_2; - x_1 + x_2^2]$$

La matrice jacobiana di f in x è:

$$J_f(x) = [2 x_1, -1; -1, 2 x_2] : R^2 \rightarrow R^{2 \times 2}$$

(1.81) Osservazione.²

Noto un elemento x(k) in R^n , il metodo di Newton per la funzione $f:R^n\to R^n$ determina l'elemento x(k+1) risolvendo l'equazione:

$$f(x(k)) + J_f(x(k)) (x - x(k)) = 0$$

ovvero:

$$J_f(x(k)) (x - x(k)) = - f(x(k))$$

Quest'ultima equazione è un sistema di equazioni lineari. Se la matrice $J_f(x(k))$ è invertibile allora si ottiene:

$$x - x(k) = - J_f(x(k))^{-1} f(x(k))$$

L'elemento x(k+1) è quindi:

$$x(k+1) = x(k) - J_f(x(k))^{-1} f(x(k))$$

(1.82) <u>Esempio</u>.

Si consideri la funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ dell'Esempio (1.80) e sia x(0) = [1; -1]. Per determinare x(1) occorre calcolare $J_f(x(0))$, f(x(0)) e poi risolvere il sistema

$$J_f(x(0)) z = - f(x(0))$$

Si ha:

$$J_f(x(0)) = [2, -1; -1, -2]$$
 , $f(x(0)) = [2; 0]$

Si osserva che $J_f(x(0))$ è invertibile. La soluzione del sistema risulta:

$$p = [-4/5 ; 2/5]$$

Allora:

$$x(1) = x(0) + p = [1/5; -3/5]$$

¹ Per le matrici utilizzeremo la notazione di Scilab.

² Per le successioni di elementi in R^n , useremo la notazione x(0), x(1), x(2), ...

(1.83) <u>Definizione</u>.

Il metodo di Newton applicato alla funzione $f: \mathbb{R}^n \to \mathbb{R}^n$, con matrice jacobiana $J_f(x)$ invertibile, è il metodo ad un punto definito dalla funzione:

$$N(x) = x - J_f(x)^{-1} f(x) : R^n \rightarrow R^n$$

(1.84) Teorema (di convergenza locale per metodi ad un punto in R^n).

Siano $h: \mathbb{R}^n \to \mathbb{R}^n$ sufficientemente regolare e α punto unito di h.

<u>Se</u> tutti gli autovalori di $J_h(\alpha)$ hanno modulo < 1 <u>allora</u> esiste un numero reale ρ > 0 tale che:

|| x(0) - α || < ρ \Rightarrow la successione x(k) generata dal metodo iterativo definito da h a partire da x(0) converge ad α

(<u>Dimostrazione</u> omessa.)

Questo teorema fornisce una condizione sufficiente per l'utilizzabilità del metodo definito da h per approssimare α . Per un metodo ad un punto in R^n , essere utilizzabile significa che per ogni x(0) sufficientemente vicino ad un punto unito α di h, la successione generata dal metodo definito da h a partire da x(0) converge ad α .

(1.85) Esempio (prima parte).

Si consideri ancora la funzione $f: \mathbb{R}^2 \to \mathbb{R}^2$ dell'Esempio (1.80). La funzione ha *due zeri*:

$$\alpha' = [0; 0]$$
 , $\alpha'' = [1; 1]$

Per approssimare i due zeri si considera il metodo definito dalla funzione

$$h(x) = x + f(x) = [x_1 + x_2^2 - x_2; x_2 - x_1 + x_2^2]$$

Si verifica facilmente che i punti uniti di h sono tutti e soli gli zeri di f.

Per la matrice jacobiana si ha:

$$J_h(x) = I + J_f(x) = [1 + 2 x_1, -1; -1, 1 + 2 x_2]$$

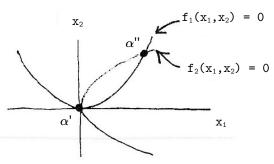
da cui:

$$J_h(\alpha') = [1, -1; -1, 1]$$

Gli autovalori sono le radici del polinomio caratteristico:

$$p(\lambda) = \det(\ J_h(\alpha') - \lambda I) = (1 - \lambda)^2 - 1 \qquad \text{ovvero} \qquad \lambda_1 = 0 \ , \ \lambda_2 = 2$$

Il Teorema di convergenza locale non è applicabile. Sussiste però la seguente



(1.86) Osservazione.

Nelle ipotesi del Teorema di convergenza locale: se almeno uno degli autovalori di $J_h(\alpha)$ ha modulo > 1 allora il metodo iterativo definito da h non è utilizzabile per approssimare α .

(1.87) <u>Esempio</u>.

Per giustificare l'asserto precedente, si consideri il seguente caso particolare.

Siano $h(x) = [h_1(x_1); h_2(x_2)]: R^2 \to R^2 \text{ con } h_1 \text{ e } h_2 \text{ regolari, } \alpha_1 \text{ punto unito di } h_1 \text{ e } \alpha_2 \text{ punto unito di } h_2$. Ne segue che $\alpha = [\alpha_1; \alpha_2]$ è punto unito di h. La matrice jacobiana di h in α à:

$$J_h(\alpha) = [h_1'(\alpha_1), 0; 0, h_2'(\alpha_2)]$$

i cui autovalori sono:

$$\lambda_1 = h_1'(\alpha_1)$$
 e $\lambda_2 = h_2'(\alpha_2)$

Sia x(k) una successione generata dal metodo definito da h. Allora $x_1(k)$ e $x_2(k)$ sono, rispettivamente, una successione generata dal metodo definito da h_1 e, rispettivamente, dal metodo definito da h_2 . Se, ad esempio, $|\lambda_1| = |h_1|(\alpha_1)| > 1$, per la successione $x_1(k)$ si ha (Osservazione (1.61) della Lezione 10): o $x_1(k) = \alpha_1$ per un valore finito di k o $x_1(k)$ non converge ad α_1 . Come già osservato a suo tempo, l'eventualità che accada la prima condizione è molto remota. Dunque ci si aspetta che la successione non sia convergente. Se in questa situazione il metodo iterativo definito da h fosse utilizzabile per approssimare α allora per qualunque x(0) sufficientemente vicino ad α la successione x(k) risulterebbe convergere al punto unito di h. Ne seguirebbe che per qualunque $x_1(0)$ sufficientemente vicino ad α_1 la successione $x_1(k)$ risulterebbe convergere al punto unito di k_1 . Ma questo, per quanto osservato sopra, non è possibile.

(1.88) <u>Esempio</u> (seconda parte).

Dal risultato finale della prima parte dell'esempio si deduce che il metodo definito da h $non\ \check{e}\ utilizzabile$ per approssimare α '.

Per α'' si ha:

$$J_h(\alpha'') = [3, -1; -1, 3]$$

e quindi:

$$p(\lambda) = det(J_h(\alpha'') - \lambda I) = (3 - \lambda)^2 - 1$$
 ovvero $\lambda_1 = 2$, $\lambda_2 = 4$

e il metodo definito da h non è utilizzabile neppure per approssimare α ''.

(1.89) <u>Esercizio</u> (per casa).

Sia f la funzione dell'Esempio (1.85). Determinare la funzione $N:R^2\to R^2$ che definisce il metodo di Newton applicato ad f e verificare (con tanta pazienza) che si ha: $J_N(\alpha')=0$ e $J_N(\alpha'')=0$.

(1.90) <u>Osservazione</u> (utilizzabilità del metodo di Newton).

Quanto mostrato nell'esercizio precedente vale in generale. Si ha infatti:

<u>Se</u> f ha derivate seconde continue, J_f è non singolare e α è uno zero di f, <u>allora</u> $J_N(\alpha) = 0$ e il metodo di Newton è utilizzabile per approssimare α . Si ha inoltre che, analogamente a quanto accade nel caso di funzioni di una variabile, l'ordine di convergenza ad α del metodo di Newton è almeno due.