Lecture 13 (hrs. 23,24) - October 21, 2025, 16:30 - 18:30 F3

(1.73) Remark (halt condition, part two).

Both the halt conditions considered in Remark (1.72) of Lecture 12 present the problem that, in some cases, x_k is an insufficiently good approximation of α . This arises from the fact that, in the halt condition, estimating the absolute error committed by approximating α with the last element of the sequence calculated ($|x_k - \alpha|$) using the chosen quantity ($|x_{k+1} - x_k|$ in one case, $|f(x_k)|$ in the other), a relative error is committed that *does not tend to zero* as $k \to \infty$.

The two conditions can be modified to obtain better estimates. Using the same context as the two previous conditions:

(1-bis) Given a positive real number E (the maximum error required by the user) and inserting E and the derivative h' between the input variables of the procedure:

if
$$|x_{k+1} - x_k| / |1 - h'(x_k)| < E$$
 then STOP

The condition is computable and effective.

To understand how good x_k is as an approximation of α when the condition is verified, note that, proceeding as in (1) of Remark (1.72):

$$\left| \frac{x_{k+1} - x_{k}}{1 - h'(x_{k})} \right| = \left| \frac{1 - h'(t_{k})}{1 - h'(x_{k})} \right| |x_{k} - \alpha| = (1 + \varepsilon_{k}) |x_{k} - \alpha|$$

where

$$\varepsilon_{k} = \frac{h'(x_{k}) - h'(t_{k})}{1 - h'(x_{k})}$$

In this case, when k $\rightarrow \infty$ we have $x_k \rightarrow \alpha$, $t_k \rightarrow \alpha$ and hence $\varepsilon_k \rightarrow 0$.

(2-bis) Given a positive real number E (the maximum error required by the user) and insert E, f and f' among the input variables of the procedure:

$$\underline{if}$$
 |f(x_k)|/|f'(x_k)| < E \underline{then} STOP

The condition is computable and effective.

To understand how good x_k is as an approximation of α when the condition is verified, note that, proceeding as in (2) of Remark (1.72):

$$\left| \frac{f(x_k)}{f'(x_k)} \right| = \left| \frac{f'(t_k)}{f'(x_k)} \right| |x_k - \alpha| = (1 + \varepsilon_k) |x_k - \alpha|$$

where

$$\varepsilon_{k} = \left| \frac{f'(t_{k})}{f'(x_{k})} \right| - 1$$

In this case too, when $k \to \infty$ we have $x_k \to \alpha$, $t_k \to \alpha$ and hence $\varepsilon_k \to 0$.

(1.74) Remark (one-point methods in $F(\beta,m)$).

Let:

- h:[a,b] \rightarrow R and γ in [a,b] verify the hypotheses of convergence Theorem (1.59) of Lecture 9
- φ :[a,b] \rightarrow F(β ,m) the algorithm used to approximate the values of h, s.t.:

for every
$$heta$$
 in [a,b] \cap F(eta ,m) , $|arphi(heta)$ - h($heta$) $|$ \leqslant d $_{\!arphi}$

Then, let x_k be the sequence generated by the method defined by h starting from γ , convergent to α by hypothesis, and let ξ_k be the sequence defined by $\xi_0 = \gamma$, $\xi_{k+1} = \varphi(\xi_k)$. Suppose that for each k it is ξ_k in [a,b].

We have:

(1.75) Theorem (stability of one-point methods, part I).

Let $\delta > 0$. If MetodoUnPunto(h,a,b, δ) executed in F(β ,m) defines ξ in F(β ,m) such that

$$|\xi_{k+1} \ominus \xi_k| < rd(\delta)$$

then ξ is a fixed point of a function $h^*:[a,b] \to R$ such that:

for every x in [a,b] ,
$$|\mathrm{h}^*(\mathrm{x})$$
 - $\mathrm{h}(\mathrm{x})| \leqslant \mathrm{d}_{\scriptscriptstylearphi}$ + δ

Informally: if d_ϕ is 'small', the procedure returns a fixed point of a function h^* 'close' to h.

(1.76) Theorem (stability of one-point methods, part II).

Moreover, let $f:[a,b] \to R$ be a regular function such that $f(\alpha) = 0$, and $\psi:[a,b] \to F(\beta,m)$ be the algorithm used to approximate the values of f such that:

for every
$$heta$$
 in [a,b] \cap F(eta ,m) , $|\psi(heta)$ - f($heta$) $|$ \leqslant d $_{\psi}$

Let $\delta > 0$. If MetodoUnPunto(h,a,b,f, δ) executed in $F(\beta,m)$ defines ξ in $F(\beta,m)$ s.t.

$$|\psi(\xi_{\mathbf{k}})| < \mathrm{rd}(\delta)$$

then ξ is a zero of a function $f^*:[a,b] \to R$ s.t.:

for every x in [a,b] ,
$$|f^*(x) - f(x)| \leqslant d_{\psi} + \delta$$

Informally: if d_{ψ} is 'small', the procedure returns a zero of a function f^* 'close' to f.

(1.77) Remark (*effectiveness of the halt conditions in $F(\beta,m)$).

The two previous theorems state that <u>if</u> in $F(\beta,m)$ the procedure <u>defines</u> ξ then... This suggests that the procedure *might not define* ξ . The assumption is correct: as we already know, in $F(\beta,m)$ the halt conditions *may prove ineffective*.

Example.

Let [a,b] not contain 0. Then $A=[a,b]\cap F(\beta,m)$ contains a finite number of elements. Let $\Delta>0$ be the minimum distance between two consecutive elements of A. If φ has no fixed points in [a,b], then we have:

$$|\xi_{\mathtt{k+1}}$$
 - $\xi_{\mathtt{k}}| \, \geqslant \, arDelta$ hence $|\xi_{\mathtt{k+1}} \, \ominus \, \xi_{\mathtt{k}}| \, \geqslant \, arDelta$

If the user chooses $\delta < \Delta$, the condition $|\xi_{k+1} \ominus \xi_k| < rd(\delta)$ cannot be verified.

In the other case, if ψ has no zeros in [a,b], let Γ > 0 be the minimum value of ψ in A, we have:

$$|\psi(\xi_{k})| \geqslant \Gamma$$

If the user chooses $\delta < \Gamma$, the condition $|\psi(\xi_{\mathbf{k}})| < \mathrm{rd}(\delta)$ cannot be verified.

(1.78) Example.

Let $f(x) = (x - 2)^2$. The function has only one zero, $\alpha = 2$ and $f'(\alpha) = 0$. Choosing $x_0 > 2$, for the sequence generated by Newton's method applied to f we have:

$$x_{k+1} = (x_k + 2) / 2$$

hence:

$$x_k - 2 = (1/2)^k (x_0 - 2)$$

The sequence converges to α but is an exponential sequence. In this case we have:

$$h_N(x) = (x + 2) / 2$$

hence h'(α) = 1/2 \neq 0: Newton's method applied to f has an order of convergence to α equal to one.

(1.3) NEWTON'S METHOD FOR FUNCTIONS FROM R^n TO R^n

(1.79) <u>Remark</u>.

If $f:R \to R$ is a regular function, each iteration of Newton's method constructs, starting from a known value x_k , the real number x_{k+1} by determining the zero (if it exists) of the affine function (see Remark (1.67) in Lecture 11):

$$A_k(x) = f(x_k) + f'(x_k) (x - x_k)$$

Lecture 13 - 4

The function $A_k: R \to R$ is the Taylor expansion of f(x) of order one in x_k (graphically: the line with equation $y = A_k(x)$ is the tangent to the graph of f(x) in x_k).

The idea of Newton's method in the case where $f \colon R^n \to R^n$ is a regular function is the same: at each iteration, starting from a known value $x_k \in R^n$, we construct the zero (if it exists) of the Taylor expansion of f(x) of order one in x_k :

$$A_k(x) = f(x_k) + J_f(x_k) (x - x_k)$$

where $J_f(x) \in R^{n \times n}$ is the $\emph{jacobian matrix}$ of f in x, i.e. the matrix whose i,j element is:

$$\frac{\partial f_{i}}{\partial x_{i}}(x)$$