Lezione 13 (ore 23,24) - 21 ottobre 2025, 16:30 - 18:30 F3

(1.73) Osservazione (criteri d'arresto, continuazione).

Entrambi i criteri d'arresto considerati nell'Osservazione (1.72) della Lezione 12 presentano il problema che, in alcuni casi, x_k è un'approssimazione di α non sufficientemente buona. Questo nasce dal fatto che, nel criterio d'arresto, stimando l'errore assoluto commesso approssimando α con l'ultimo elemento della successione calcolato ($|x_k - \alpha|$) utilizzando la quantità scelta ($|x_{k+1} - x_k|$ in un caso, $|f(x_k)|$ nell'altro), si commette un errore relativo che *non tende a zero* quando $k \to \infty$.

I due criteri si possono modificare in modo da ottenere stime migliori. Ponendosi nel medesimo contesto utilizzato per i due criteri precedenti:

(1-bis) Dato un numero reale positivo E (l'errore massimo richiesto dall'utilizzatore) e inseriti E e la derivata h' tra le variabili di ingresso della procedura:

se
$$|x_{k+1} - x_k| / |1 - h'(x_k)| < E$$
 allora STOP

Il criterio è calcolabile ed efficace.

Per capire quanto buona sia x_k come approssimazione di α quando la condizione è verificata, si osservi che, procedendo come in (1) dell'Osservazione (1.72):

$$\left| \frac{\mathbf{x}_{k+1} - \mathbf{x}_{k}}{1 - \mathbf{h}'(\mathbf{x}_{k})} \right| = \left| \frac{1 - \mathbf{h}'(\mathbf{t}_{k})}{1 - \mathbf{h}'(\mathbf{x}_{k})} \right| |\mathbf{x}_{k} - \alpha| = (1 + \varepsilon_{k}) |\mathbf{x}_{k} - \alpha|$$

con

$$\varepsilon_{k} = \frac{h'(x_{k}) - h'(t_{k})}{1 - h'(x_{k})}$$

In questo caso, quando k $\rightarrow \infty$ si ha $x_k \rightarrow \alpha$, $t_k \rightarrow \alpha$ e quindi $\varepsilon_k \rightarrow 0$.

(2-bis) Dato un numero reale positivo E (l'errore massimo richiesto dall'utilizzatore) ed inserite E, f ed f' tra le variabili di ingresso della procedura sia:

$$\underline{se} |f(x_k)|/|f'(x_k)| < \underline{E} \underline{allora} STOP$$

Il criterio è calcolabile ed efficace.

Per capire quanto buona sia x_k come approssimazione di α quando la condizione è verificata, si osservi che, procedendo come in (2) dell'Osservazione (1.72):

$$\left| \frac{f(x_k)}{f'(x_k)} \right| = \left| \frac{f'(t_k)}{f'(x_k)} \right| |x_k - \alpha| = (1 + \varepsilon_k) |x_k - \alpha|$$

con

$$\varepsilon_{k} = \left| \frac{f'(t_{k})}{f'(x_{k})} \right| - 1$$

Anche in questo caso, quando k $\rightarrow \infty$ si ha $x_k \rightarrow \alpha$, $t_k \rightarrow \alpha$ e quindi $\varepsilon_k \rightarrow 0$.

(1.74) Osservazione (metodi ad un punto in $F(\beta,m)$).

Siano:

- h:[a,b] \rightarrow R e γ in [a,b] che verificano le ipotesi del Teorema di convergenza
- $\varphi:[a,b] \to F(\beta,m)$ l'algoritmo usato per approssimare i valori di h, tale che:

per ogni
$$heta$$
 in [a,b] \cap F(eta ,m) , $|arphi(heta)$ - h($heta$) $|$ \leqslant d $_{\!arphi}$

Siano poi x_k la successione generata dal metodo definito da h a partire da γ , convergente ad α per ipotesi, e ξ_k la successione definita da $\xi_0 = \gamma$, $\xi_{k+1} = \varphi(\xi_k)$. Si supponga che per ogni k sia ξ_k in [a,b].

Si ha:

(1.75) Teorema (stabilità dei metodi ad un punto, parte I).

Sia $\delta > 0$. Se MetodoUnPunto(h,a,b, δ) eseguito in $F(\beta,m)$ definisce ξ in $F(\beta,m)$ tale che

$$|\xi_{k+1} \ominus \xi_k| < rd(\delta)$$

allora ξ è punto unito di una funzione $h^*:[a,b] \to R$ tale che:

per ogni x in [a,b] ,
$$|\mathrm{h}^*(\mathrm{x})$$
 - $\mathrm{h}(\mathrm{x})| \leqslant \mathrm{d}_{arphi}$ + δ

Informalmente: se d_{ϕ} 'piccolo', la procedura restituisce un punto unito di una funzione h^* 'vicina' ad h.

(1.76) Teorema (stabilità dei metodi ad un punto, parte II).

Siano inoltre $f:[a,b] \to R$ una funzione regolare tale che $f(\alpha) = 0$, e $\psi:[a,b] \to F(\beta,m)$ l'algoritmo usato per approssimare i valori di f tale che:

per ogni
$$heta$$
 in [a,b] \cap F(eta ,m) , $|\psi(heta)$ - f($heta$) $|$ \leqslant d $_{\psi}$

Sia $\delta > 0$. Se MetodoUnPunto(h,a,b,f, δ) eseguito in F(β ,m) definisce ξ in F(β ,m) tale che

$$|\psi(\xi_{\mathbf{k}})| < \mathrm{rd}(\delta)$$

allora ξ è zero di una funzione $f^*:[a,b] \to R$ tale che:

per ogni x in [a,b] , |f*(x) - f(x)|
$$\leqslant$$
 d $_{\psi}$ + δ

Informalmente: se d_{ψ} 'piccolo', la procedura restituisce uno zero di una funzione f^{*} 'vicina' ad f.

(1.77) Osservazione (efficacia dei criteri d'arresto in $F(\beta,m)$).

I due teoremi precedenti stabiliscono che <u>se</u> in $F(\beta,m)$ la procedura definisce ξ allora... Questo lascia supporre che la procedura potrebbe non definire ξ . La supposizione è corretta: come già sappiamo, in $F(\beta,m)$ i criteri d'arresto possono risultare non efficaci.

Esempio.

Sia [a,b] non contenente 0. Allora $A=[a,b]\cap F(\beta,m)$ contiene un numero finito di elementi. Sia $\Delta>0$ la minima distanza tra due elementi consecutivi di A. Se φ non ha punti uniti in [a,b], si ha allora:

$$|\xi_{\mathbf{k+1}} - \xi_{\mathbf{k}}| \, \geqslant \, \Delta$$
 e quindi $|\xi_{\mathbf{k+1}} \, \ominus \, \xi_{\mathbf{k}}| \, \geqslant \, \Delta$

Se l'utilizzatore sceglie $\delta < \Delta$, la condizione $|\xi_{\mathbf{k}+1} \ominus \xi_{\mathbf{k}}| < \mathrm{rd}(\delta)$ non può essere verificata.

Nell'altro caso, Se ψ non ha zeri in [a,b], detto Γ > 0 il valore minimo di ψ in A, si ha:

$$|\psi(\xi_{\mathbf{k}})| \geqslant \Gamma$$

Se l'utilizzatore sceglie $\delta < \Gamma$, la condizione $|\psi(\xi_{\mathbf{k}})| < \mathrm{rd}(\delta)$ non può essere verificata.

(1.78) Esempio.

Sia $f(x) = (x - 2)^2$. La funzione ha un solo zero, $\alpha = 2$ e $f'(\alpha) = 0$. Scelto $x_0 > 2$, per la successione generata dal metodo di Newton applicato ad f si ha:

$$x_{k+1} = (x_k + 2) / 2$$

da cui:

$$x_k - 2 = (1/2)^k (x_0 - 2)$$

La successione converge ad α $\underline{\text{ma}}$ è una successione di tipo esponenziale. In questo caso si ha:

$$h_N(x) = (x + 2) / 2$$

dunque h' (α) = 1/2 \neq 0. In questo caso, il metodo di Newton risulta avere ordine di convergenza ad α pari a \underline{uno} .

(1.3) METODO DI NEWTON PER FUNZIONI DA R^n IN R^n

(1.79) Osservazione.

Se $f:R \to R$ è una funzione regolare, ciascuna iterazione del metodo di Newton costruisce, a partire da un valore x_k noto, il numero reale x_{k+1} determinando lo zero (se esiste) della funzione affine (si veda l'Osservazione (1.67) nella Lezione 11):

$$A_k(x) = f(x_k) + f'(x_k) (x - x_k)$$

La funzione $A_k:R\to R$ è lo sviluppo di Taylor di f(x) di ordine uno in x_k (graficamente: la retta di equazione $y=A_k(x)$ è la tangente al grafico di f(x) in x_k).

L'idea del metodo di Newton nel caso in cui $f:R^n\to R^n$ sia regolare è la stessa: a ciascuna iterazione, a partire da un valore noto $x_k\in R^n$, si costruisce lo zero (se esiste) dello sviluppo di Taylor di f(x) di ordine uno in x_k :

$$A_k(x) = f(x_k) + J_f(x_k) (x - x_k)$$

dove $J_f(x) \in R^{n \times n}$ è la matrice jacobiana di f in x, ovvero la matrice di elemento i,j dato da:

$$\frac{\partial f_{i}}{\partial x_{i}}(x)$$