
Lecture 12 (hrs. 21,22) – October 16, 2025, 8:30 – 10:30 F3

(1.71) Problem.

Let t be a positive real number, n an integer ⩾ 2 and f(x) = xn – t. The function f has 
only one zero, the nth root of t: t1/n.

Decide whether Newton’s method is applicable to approximate the zero and, if so, determine 
x0 such that the method generates a sequence convergent to zero.

(1.72) Remark (halt condition).

The halt condition presented for the bisection method cannot be used for one-point methods: 
these latter methods, unlike the bisection method, do not generate a sequence of intervals 
of measure tending to zero, each containing a zero of the function. Different conditions 
are therefore required. Let’s discuss the two most commonly used, both of which are of 
absolute type.

Let f be the function of which we wish to approximate a zero, h:[a,b] → R and γ verify the 
hypotheses of the Convergence Theorem, α be the fixed point of h (and zero of f) in [a,b] 
and xk be the sequence generated by the method defined by h starting from γ. The sequence xk 

converges to α.

(1) Given a positive real number E (the maximum error required by the user) and added E to 
the input variables of the procedure:

if |xk+1 – xk| < E then STOP

The condition is computable: at each iteration the procedure knows xk, determines xk+1 = 
h(xk) and verifies if the condition is satisfied.

The condition is effective: both the sequence xk and the sequence xk+1 = h(xk) converge to α 
(the function h is continuous and α is a fixed point of h), so the difference xk+1 – xk tends 
to zero. The condition is certainly satisfied after a finite number of iterations.

To understand how good xk is as an approximation to α when the condition is satisfied, note 
that:

|xk+1 – xk| = |h(xk) – xk| = |(h(xk) – α) + (α – xk)| = |(h(xk) – h(α)) + (α – xk)|

Using Lagrange’s Theorem:

h(xk) – h(α) = h'(tk)(xk – α)    with   t between xk and α

hence:

|xk+1 – xk| = |h'(tk)(xk – α) + (α – xk)| = |h'(tk) – 1| |xk – α| = |1 - h'(tk)| |xk – α|

The accuracy of xk as an approximation of α depends on the value of h'(tk). Precisely:
• if h'(tk)  0 we have |x≈ k+1 – xk|  |x≈ k – α| and the halt condition interrupts the 

construction of the sequence as soon as the approximation is accurate (note that if 
f is sufficiently regular and f'(α) ≠ 0 Newton's method has h'(α) = 0 and for a 
sufficiently large value of k it is h'(tk)  0);≈



Lecture 12 - 2

• if h'(tk) ≈ 1 we have 1 – h'(tk) ≈ 0 and the halt condition interrupts the 
construction of the sequence before the approximation is accurate;

• if h'(tk) < 0 it is |1 – h'(tk)| > 1 hence |xk+1 – xk| < E ⇒ |xk – α| < E
(but the halt condition could interrupt the construction of the sequence too late: 
the approximation could be good already a few iterations before).

Example: Let h(x) = α + A(x – α) and h'(x) = A. For every k it is: xk - α = 
Ak(x0 – α). 

If A = 0.9 (≈ 1) and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 
then |xk – α| = (0.99 / 0.1) E = 9.9 E > E and the accuracy of the approximation does 
not verify the user’s request.

If A = -0.9 and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 
then |xk – α| = E / 1.9 ≈ 0.5 E < E and the accuracy of the approximation verifies 
the user’s request. But: 6 iterations before we already had |xk-6 – α| = 
|xk – α| / |A|6 = E / (1.9 0.96) = E / 1.009... < E, i.e. 6 iterations before the 
approximation already satisfied the user’s request.

(2) Given a positive real number E (the maximum error required by the user) and added both 
E and f to the input variables of the procedure:

if |f(xk)| < E then STOP

The condition is computable: at each iteration the procedure knows xk, determines f(xk) and 
verifies if the condition is satisfied.

The condition is effective: the sequence xk converges to α and the sequence f(xk) converges 
to f(α) = 0 (the function f is continuous and α is a zero of f). The condition is therefore 
certainly satisfied after a finite number of iterations.

To understand how good an approximation xk is to α when the condition is satisfied, suppose 
f is regular and observe that:

f(xk) = f(xk) – f(α)

Using Lagrange’s Theorem:

f(xk) – f(α) = f'(tk)(xk - α)    with    tk between xk and α

hence:
|f(xk)| = |f'(tk)| |xk – α|

The accuracy of xk as an approximation of α depends on the value of |f'(tk)|. Precisely:
• if |f'(tk)| ≈ 1 it is |f(xk)| ≈ |xk – α| and the halt condition interrupts the 

construction of the sequence as soon as the approximation is accurate;
• if |f'(tk)| ≈ 0 the halt condition interrupts the construction of the sequence 

before the approximation is accurate;
• if |f'(tk)| > 1 it is |f(xk)| < E ⇒ |xk – α| < E / |f'(tk)| < E

(but the halt condition could interrupt the construction of the sequence too late: 
the approximation could be good already a few iterations before).
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(1.71) Problem.



Let t be a positive real number, n an integer ⩾ 2 and f(x) = xn – t. The function f has only one zero, the nth root of t: t1/n.



Decide whether Newton’s method is applicable to approximate the zero and, if so, determine x0 such that the method generates a sequence convergent to zero.



(1.72) Remark (halt condition).



The halt condition presented for the bisection method cannot be used for one-point methods: these latter methods, unlike the bisection method, do not generate a sequence of intervals of measure tending to zero, each containing a zero of the function. Different conditions are therefore required. Let’s discuss the two most commonly used, both of which are of absolute type.



Let f be the function of which we wish to approximate a zero, h:[a,b] → R and γ verify the hypotheses of the Convergence Theorem, α be the fixed point of h (and zero of f) in [a,b] and xk be the sequence generated by the method defined by h starting from γ. The sequence xk converges to α.



(1) Given a positive real number E (the maximum error required by the user) and added E to the input variables of the procedure:



if |xk+1 – xk| < E then STOP



The condition is computable: at each iteration the procedure knows xk, determines xk+1 = h(xk) and verifies if the condition is satisfied.



The condition is effective: both the sequence xk and the sequence xk+1 = h(xk) converge to α (the function h is continuous and α is a fixed point of h), so the difference xk+1 – xk tends to zero. The condition is certainly satisfied after a finite number of iterations.



To understand how good xk is as an approximation to α when the condition is satisfied, note that:

|xk+1 – xk| = |h(xk) – xk| = |(h(xk) – α) + (α – xk)| = |(h(xk) – h(α)) + (α – xk)|



Using Lagrange’s Theorem:



h(xk) – h(α) = h'(tk)(xk – α)  with  t between xk and α

hence:



|xk+1 – xk| = |h'(tk)(xk – α) + (α – xk)| = |h'(tk) – 1| |xk – α| = |1 - h'(tk)| |xk – α|



The accuracy of xk as an approximation of α depends on the value of h'(tk). Precisely:

		if h'(tk) ≈ 0 we have |xk+1 – xk| ≈ |xk – α| and the halt condition interrupts the construction of the sequence as soon as the approximation is accurate (note that if f is sufficiently regular and f'(α) ≠ 0 Newton's method has h'(α) = 0 and for a sufficiently large value of k it is h'(tk) ≈ 0);



		if h'(tk) ≈ 1 we have 1 – h'(tk) ≈ 0 and the halt condition interrupts the construction of the sequence before the approximation is accurate;



		if h'(tk) < 0 it is |1 – h'(tk)| > 1 hence |xk+1 – xk| < E ⇒ |xk – α| < E





	(but the halt condition could interrupt the construction of the sequence too late: 	the approximation could be good already a few iterations before).



	Example: Let h(x) = α + A(x – α) and h'(x) = A. For every k it is: xk - α = 

	Ak(x0 – α). 



	If A = 0.9 (≈ 1) and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 	then |xk – α| = (0.99 / 0.1) E = 9.9 E > E and the accuracy of the approximation does 	not verify the user’s request.



	If A = -0.9 and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 	then |xk – α| = E / 1.9 ≈ 0.5 E < E and the accuracy of the approximation verifies 	the user’s request. But: 6 iterations before we already had |xk-6 – α| = 

	|xk – α| / |A|6 = E / (1.9 0.96) = E / 1.009... < E, i.e. 6 iterations before the 	approximation already satisfied the user’s request.



(2) Given a positive real number E (the maximum error required by the user) and added both E and f to the input variables of the procedure:



if |f(xk)| < E then STOP



The condition is computable: at each iteration the procedure knows xk, determines f(xk) and verifies if the condition is satisfied.



The condition is effective: the sequence xk converges to α and the sequence f(xk) converges to f(α) = 0 (the function f is continuous and α is a zero of f). The condition is therefore certainly satisfied after a finite number of iterations.



To understand how good an approximation xk is to α when the condition is satisfied, suppose f is regular and observe that:

f(xk) = f(xk) – f(α)



Using Lagrange’s Theorem:



f(xk) – f(α) = f'(tk)(xk - α)  with  tk between xk and α

hence:

|f(xk)| = |f'(tk)| |xk – α|



The accuracy of xk as an approximation of α depends on the value of |f'(tk)|. Precisely:

		if |f'(tk)| ≈ 1 it is |f(xk)| ≈ |xk – α| and the halt condition interrupts the construction of the sequence as soon as the approximation is accurate;



		if |f'(tk)| ≈ 0 the halt condition interrupts the construction of the sequence before the approximation is accurate;



		if |f'(tk)| > 1 it is |f(xk)| < E ⇒ |xk – α| < E / |f'(tk)| < E





	(but the halt condition could interrupt the construction of the sequence too late: 	the approximation could be good already a few iterations before).

