Lecture 12 (hrs. 21,22) - October 16, 2025, 8:30 - 10:30 F3

(1.71) Problem.

Let t be a positive real number, n an integer > 2 and f(x) = x" - t. The function f has

only one zero, the mnth root of t: i,

Decide whether Newton’s method is applicable to approximate the zero and, if so, determine
X, such that the method generates a sequence convergent to zero.

(1.72) Remark (halt condition).

The halt condition presented for the bisection method cannot be used for one-point methods:
these latter methods, unlike the bisection method, do not generate a sequence of intervals
of measure tending to zero, each containing a zero of the function. Different conditions
are therefore required. Let’s discuss the two most commonly used, both of which are of
absolute type.

Let f be the function of which we wish to approximate a zero, h:[a,b] =+ R and « verify the
hypotheses of the Convergence Theorem, o be the fixed point of h (and zero of f) in [a,b]
and x, be the sequence generated by the method defined by h starting from <. The sequence x
converges to «.

(1) Given a positive real number E (the maximum error required by the user) and added E to
the input variables of the procedure:

if |xw; - %! < E then STOP

The condition is computable: at each iteration the procedure knows x,, determines xu, =
h(x,) and verifies if the condition is satisfied.

The condition is effective: both the sequence x, and the sequence x.; = h(x,) converge to «
(the function h is continuous and « is a fixed point of h), so the difference x,. - X, tends
to zero. The condition is certainly satisfied after a finite number of iteratioms.

To understand how good x, is as an approximation to « when the condition is satisfied, note
that:
[Xeer = Xl = Th(x) - %l = [(h(x) - a) + (o - %) | = [(h(x) - h(a)) + (@ - x|

Using Lagrange’s Theorem:

h(x,) - h(a) = h'(t) (x - a) with t between x, and o
hence:

[Xeer = Xl = IH' (B (xx — @) + (@ - x)| = |h'(t) - 1] Ix - al = 11 - h' &) Ix - al

The accuracy of x, as an approximation of a depends on the value of h'(t,). Precisely:
¢ if h'(ty) = 0 we have [xXu: - x| = |x, - @l and the halt condition interrupts the
construction of the sequence as soon as the approximation is accurate (note that if
f is sufficiently regular and f'(a) # O Newton's method has h'(a) = 0 and for a
sufficiently large value of k it s h'(ty) = 0);



Lecture 12 - 2

¢ if h'(ty) =~ 1 we have 1 - h'(t,) ~ 0 and the halt condition interrupts the
construction of the sequence before the approximation is accurate;

® if h'(ty) <0 it is |1 - h'(ty) | > 1 hence |xu - x| <E = |x, - al < E
(but the halt condition could interrupt the construction of the sequence too late:
the approximation could be good already a few iterations before).

Example: Let h(x) = a + A(x - @) and h'(x) = A. For every k it is: x - a =
A (x, - @).

If A =0.9 (= 1) and k is such that [x.; - x| = 0.99 E (halt condition satisfied),
then |x, - al = (0.99 / 0.1) E = 9.9 E > E and the accuracy of the approximation does

not verify the user’s request.

If A = -0.9 and k is such that |x.; - x| = 0.99 E (halt condition satisfied),

then |x, - al =E / 1.9 = 0.5 E < E and the accuracy of the approximation verifies
the user’s request. But: 6 iterations before we already had |x,.¢ - al =

lx, - al / IAI®=E/ (1.9 0.95) =E / 1.009... < E, i.e. 6 iterations before the
approximation already satisfied the user’s request.

(2) Given a positive real number E (the maximum error required by the user) and added both
E and f to the input variables of the procedure:

if |f(x) | < E then STOP

The condition is computable: at each iteration the procedure knows xk, determines f(xk) and
verifies if the condition is satisfied.

The condition is effective: the sequence x, converges to a and the sequence f(x,) converges
to f(a) = O (the function f is continuous and « is a zero of f). The condition is therefore

certainly satisfied after a finite number of iteratioms.

To understand how good an approximation x, is to « when the condition is satisfied, suppose

f is regular and observe that:
f(x) = £(x) - f(a)

Using Lagrange’s Theorem:

f(x) - fla) = £'(t) (% - @) with t, between x, and o
hence:
[f(x) | = [£'(t) | Iz - al

The accuracy of x, as an approximation of a depends on the value of |f'(t,)|. Precisely:

e if |£'(t) | =~ 1 it is |[f(x)| =~ |x, - al and the halt condition interrupts the
construction of the sequence as soon as the approximation is accurate;

e if |f'(ty) | ~ O the halt condition interrupts the construction of the sequence
before the approximation is accurate;

e if [£'(t | > 1 it is [f(x)] <E = Ix - al <E/ [f'(t)]| <E
(but the halt condition could interrupt the construction of the sequence too late:
the approximation could be good already a few iterations before).
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(1.71) Problem.



Let t be a positive real number, n an integer ⩾ 2 and f(x) = xn – t. The function f has only one zero, the nth root of t: t1/n.



Decide whether Newton’s method is applicable to approximate the zero and, if so, determine x0 such that the method generates a sequence convergent to zero.



(1.72) Remark (halt condition).



The halt condition presented for the bisection method cannot be used for one-point methods: these latter methods, unlike the bisection method, do not generate a sequence of intervals of measure tending to zero, each containing a zero of the function. Different conditions are therefore required. Let’s discuss the two most commonly used, both of which are of absolute type.



Let f be the function of which we wish to approximate a zero, h:[a,b] → R and γ verify the hypotheses of the Convergence Theorem, α be the fixed point of h (and zero of f) in [a,b] and xk be the sequence generated by the method defined by h starting from γ. The sequence xk converges to α.



(1) Given a positive real number E (the maximum error required by the user) and added E to the input variables of the procedure:



if |xk+1 – xk| < E then STOP



The condition is computable: at each iteration the procedure knows xk, determines xk+1 = h(xk) and verifies if the condition is satisfied.



The condition is effective: both the sequence xk and the sequence xk+1 = h(xk) converge to α (the function h is continuous and α is a fixed point of h), so the difference xk+1 – xk tends to zero. The condition is certainly satisfied after a finite number of iterations.



To understand how good xk is as an approximation to α when the condition is satisfied, note that:

|xk+1 – xk| = |h(xk) – xk| = |(h(xk) – α) + (α – xk)| = |(h(xk) – h(α)) + (α – xk)|



Using Lagrange’s Theorem:



h(xk) – h(α) = h'(tk)(xk – α)  with  t between xk and α

hence:



|xk+1 – xk| = |h'(tk)(xk – α) + (α – xk)| = |h'(tk) – 1| |xk – α| = |1 - h'(tk)| |xk – α|



The accuracy of xk as an approximation of α depends on the value of h'(tk). Precisely:

		if h'(tk) ≈ 0 we have |xk+1 – xk| ≈ |xk – α| and the halt condition interrupts the construction of the sequence as soon as the approximation is accurate (note that if f is sufficiently regular and f'(α) ≠ 0 Newton's method has h'(α) = 0 and for a sufficiently large value of k it is h'(tk) ≈ 0);



		if h'(tk) ≈ 1 we have 1 – h'(tk) ≈ 0 and the halt condition interrupts the construction of the sequence before the approximation is accurate;



		if h'(tk) < 0 it is |1 – h'(tk)| > 1 hence |xk+1 – xk| < E ⇒ |xk – α| < E





	(but the halt condition could interrupt the construction of the sequence too late: 	the approximation could be good already a few iterations before).



	Example: Let h(x) = α + A(x – α) and h'(x) = A. For every k it is: xk - α = 

	Ak(x0 – α). 



	If A = 0.9 (≈ 1) and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 	then |xk – α| = (0.99 / 0.1) E = 9.9 E > E and the accuracy of the approximation does 	not verify the user’s request.



	If A = -0.9 and k is such that |xk+1 – xk| = 0.99 E (halt condition satisfied), 	then |xk – α| = E / 1.9 ≈ 0.5 E < E and the accuracy of the approximation verifies 	the user’s request. But: 6 iterations before we already had |xk-6 – α| = 

	|xk – α| / |A|6 = E / (1.9 0.96) = E / 1.009... < E, i.e. 6 iterations before the 	approximation already satisfied the user’s request.



(2) Given a positive real number E (the maximum error required by the user) and added both E and f to the input variables of the procedure:



if |f(xk)| < E then STOP



The condition is computable: at each iteration the procedure knows xk, determines f(xk) and verifies if the condition is satisfied.



The condition is effective: the sequence xk converges to α and the sequence f(xk) converges to f(α) = 0 (the function f is continuous and α is a zero of f). The condition is therefore certainly satisfied after a finite number of iterations.



To understand how good an approximation xk is to α when the condition is satisfied, suppose f is regular and observe that:

f(xk) = f(xk) – f(α)



Using Lagrange’s Theorem:



f(xk) – f(α) = f'(tk)(xk - α)  with  tk between xk and α

hence:

|f(xk)| = |f'(tk)| |xk – α|



The accuracy of xk as an approximation of α depends on the value of |f'(tk)|. Precisely:

		if |f'(tk)| ≈ 1 it is |f(xk)| ≈ |xk – α| and the halt condition interrupts the construction of the sequence as soon as the approximation is accurate;



		if |f'(tk)| ≈ 0 the halt condition interrupts the construction of the sequence before the approximation is accurate;



		if |f'(tk)| > 1 it is |f(xk)| < E ⇒ |xk – α| < E / |f'(tk)| < E





	(but the halt condition could interrupt the construction of the sequence too late: 	the approximation could be good already a few iterations before).

