Lezione 12 (ore 21,22) - 16 ottobre 2025, 8:30 - 10:30 F3

(1.71) Esercizio.

Siano t un numero reale positivo, n un numero intero $\geqslant 2$ e f(x) = x^n - t. La funzione f ha un solo zero, la radice n-esima di t: $t^{1/n}$.

Decidere se il metodo di Newton sia applicabile per approssimare lo zero e, in caso affermativo, determinare \mathbf{x}_0 in modo che il metodo generi una successione convergente allo zero.

(1.72) Osservazione (criteri d'arresto).

I criteri d'arresto presentati per il metodo di bisezione *non* sono utilizzabili per i metodi ad un punto: questi ultimi metodi, contrariamente al metodo di bisezione, non generano una successione di intervalli di misura tendente a zero e ciascuno contenente uno zero della funzione. Occorrono dunque criteri diversi. Discutiamo i due più utilizzati, entrambi di tipo *assoluto*.

Siano f la funzione della quale si vuole approssimare uno zero, h:[a,b] \rightarrow R e γ che verificano le ipotesi del Teorema di convergenza, α il punto unito di h (e zero di f) in [a,b] e x_k la successione generata dal metodo definito da h a partire da γ . La successione x_k converge ad α .

(1) Dato un numero reale positivo E (l'errore massimo richiesto dall'utilizzatore) e inserito E tra le variabili di ingresso della procedura:

se
$$|x_{k+1} - x_k| < E$$
 allora STOP

Il criterio è calcolabile: a ciascuna iterazione la procedura conosce x_k , determina $x_{k+1} = h(x_k)$ e verifica la condizione del criterio.

Il criterio è efficace: sia la successione x_k che la successione x_{k+1} = $h(x_k)$ convergono ad α (la funzione h è continua e α è punto unito di h), quindi la differenza tende a zero. La condizione del criterio è certamente soddisfatta dopo un numero finito di iterazioni.

Per capire quanto buona sia x_k come approssimazione di α quando la condizione è verificata, si osservi che:

$$|x_{k+1} - x_k| = |h(x_k) - x_k| = |(h(x_k) - \alpha) + (\alpha - x_k)| = |(h(x_k) - h(\alpha)) + (\alpha - x_k)|$$

Utilizzando il Teorema di Lagrange:

$$h(x_k) - h(\alpha) = h'(t_k)(x_k - \alpha)$$
 con t tra x_k e α

dunque:

$$|x_{k+1} - x_k| = |h'(t_k)(x_k - \alpha) + (\alpha - x_k)| = |h'(t_k) - 1| |x_k - \alpha| = |1 - h'(t_k)| |x_k - \alpha|$$

L'accuratezza di x_k come approssimazione di α dipende dal valore di h'(t_k). Precisamente:

• se h'(t_k) \approx 0 si ha $|x_{k+1} - x_k| \approx |x_k - \alpha|$ e il criterio d'arresto interrompe la costruzione della successione *non appena* l'approssimazione è accurata (si osservi

che se f è sufficientemente regolare e f' $(\alpha) \neq 0$ il Metodo di Newton rientra in questo caso);

- se h'(t_k) \approx 1 si ha 1 h'(t_k) \approx 0 e il criterio d'arresto interrompe la costruzione della successione *prima* che l'approssimazione sia accurata;
- se h'(t_k) < 0 si ha |1 h'(t_k)| > 1 e quindi $|x_{k+1} x_k| < E \Rightarrow |x_k \alpha| < E$ (<u>ma</u> il criterio d'arresto potrebbe interrompere la costruzione della successione *in* ritardo: l'approssimazione potrebbe essere buona già da qualche iterazione).

Esempio: Sia h(x) = α + A(x - α) e h'(x) = A. Per ogni k si ha: x_k - α = A^k(x_0 - α).

Se A = 0.9 (\approx 1) e k è tale che $|x_{k+1}-x_k|$ = 0.99 E (criterio d'arresto verificato), allora $|x_k-\alpha|$ = (0.99 / 0.1) E = 9.9 E > E e l'accuratezza dell'approssimazione non verifica la richiesta dell'utilizzatore.

Se A = -0.9 e k tale che $|\mathbf{x}_{\mathtt{k+1}} - \mathbf{x}_{\mathtt{k}}|$ = 0.99 E (criterio d'arresto verificato), allora $|\mathbf{x}_{\mathtt{k}} - \alpha|$ = E / 1.9 \approx 0.5 E < E e l'accuratezza dell'approssimazione verifica la richiesta dell'utilizzatore. Però: 6 iterazioni prima si aveva già $|\mathbf{x}_{\mathtt{k-6}} - \alpha|$ = $|\mathbf{x}_{\mathtt{k}} - \alpha|$ / $|\mathbf{A}|^6$ = E / (1.9 0.96) = E / 1.009... < E, ovvero già 6 iterazioni prima l'accuratezza dell'approssimazione verificava la richiesta dell'utilizzatore.

(2) Dato un numero reale positivo E (l'errore massimo richiesto dall'utilizzatore) ed inserite tra le variabili di ingresso della procedura sia E che f:

$$\underline{se}$$
 |f(x_k)| < E allora STOP

Il criterio è calcolabile: a ciascuna iterazione la procedura conosce x_k , determina $f(x_k)$ e verifica la condizione del criterio.

Il criterio è *efficace*: la successione x_k converge ad α e la successione $f(x_k)$ converge a $f(\alpha)$ = 0 (la funzione f è continua e α è zero di f). La condizione del criterio è quindi certamente soddisfatta dopo un numero finito di iterazioni.

Per capire quanto buona sia x_k come approssimazione di α quando la condizione è verificata, si supponga f regolare e si osservi che:

$$f(x_k) = f(x_k) - f(\alpha)$$

Utilizzando il Teorema di Lagrange:

$$f(x_k) - f(\alpha) = f'(t_k)(x_k - \alpha)$$
 con t_k tra x_k e α

dunque:

$$|f(x_k)| = |f'(t_k)| |x_k - \alpha|$$

L'accuratezza di x_k come approssimazione di α dipende dal valore di $|f'(t_k)|$. Precisamente:

- se $|f'(t_k)| \approx 1$ si ha $|f(x_k)| \approx |x_k \alpha|$ e il criterio d'arresto interrompe la costruzione della successione non appena l'approssimazione è accurata;
- se $|f'(t_k)| \approx 0$ il criterio d'arresto interrompe la costruzione della successione prima che l'approssimazione sia accurata;
- se $|f'(t_k)| > 1$ si ha $|f(x_k)| < E \Rightarrow |x_k \alpha| < E / |f'(t_k)| < E$ (ma il criterio d'arresto potrebbe interrompere la costruzione della successione *in ritardo*: l'approssimazione potrebbe essere buona già da qualche iterazione).