Lecture 11 (hrs. 19,20) - October 15, 2025, 11:30 - 13:30 A13

(1.2) NEWTON’S METHOD

(1.64) Definition (Newton’s method).
Let f:[a,b] » R be a function with first derivative such that f'(x) # O for all x in [a,b].

Newton's method applied to the function f is the one-point method defined by the function
hy:[a,b]» R such that:

f(x)

£f'(x)

hy(x) = x - (' @) fE) = x -

Note that the fized points of hy are all and only the zeros of f.
(1.65) Remark (usability of Newton’s method).

Let f:[a,b] » R be a function with continuous second derivative and with f'(x) # 0 for all

x in [a,b]. Then let o be a zero of f in [a,b]. We have:
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The function hy' is continuous and, since f(a) = 0 and f'(a) # 0, we have
hy'(a) = 0

By Theorem (1.59) of Lecture 10, Newton’s method can be used to approximate «.

(1.66) Remark (usability condition of Newton’s method).

Let f:[a,b] » R be a function with a continuous second derivative and a be a zero of f in
[a,b]l. A sufficient condition for Newton’s method applied to f to be usable to approximate
a is:

f'(a) # 0
(1.67) Remark (graphical construction for Newton’s method) .

Let f:[a,b] » R be a function with first derivative and let x, be a real number such that
f'(x,) # 0. Draw on the same Cartesian plane the graph of the function f and the graph of
the tangent line to the graph of f at x, (see figure). Since f'(x,) # 0, the tangent line is
not horizontal and therefore intersects the x-axis at the point x such that:

frix)(x - x) + £(x) =0
i.e. at the point
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Graph of the tangent line y = f'(x)(x - x) + f(xx)

I 4//’///§R\\ Graph of y = f(x)
s — x
X \E X s.t. f'(Xk)(§ - Xk) + f(Xk) =0

(1.68) Remark (how to choose the starting point in Newton’s method) .

Let f:[a,b] =+ R with continuous second derivative be such that:
(1) there exists a zero of f in [a,b]
(2) for every x € [a,b] we have f'(x) # O (hence a is the unique zero of f in [a,b])
(3)f''(x) # 0 (£ is convez on [a,b])

Then: starting from -y = the endpoint of [a,b] where £ and f'' have the same sign, Newton’s
method generates a sequence in [a,b] convergent to a and monotone.

(Proof. Using the hypotheses and graphical reasoning, we show that the sequence generated
from v is monotone and bounded, and therefore convergent. The limit can only be a fixed
point of hy in [a,b], hence the limit should be «.)

(1.69) Remark.
Let f:[a,b] » R be a function with a continuous second derivative and « be a zero of f in
[a,b]. If £'(a) # O (thus Newton’s method applied to f can be used to approximate a), then

there exists an interval I that satisfies the hypotheses of Remark (1.68) if and only if
f'' (@) # 0.

(1.70) Remark (order of convergence to a fixed point of a method).

Let h:[a,b] = R, a be a fixed point of h and x, be a sequence convergent to O and generated
by the method defined by h.

(1) Let h have a continuous first derivative such that O < |h'(a)| < 1. Then:
© Let d > 0 such that h'(x) # 0 for every x € I(a,d). Let A; and L, be the minimum
and maximum of |h'(x)| on I(a,d), respectively, and y., be the sequence

consisting of the elements of x, in I(a,d). For every x in I(«,d), we have:

)\d g |h|(x)| < Ld

© Then, for every n we have:

Ads IYO,d - al < Iyﬂ,d -al < LS |y0,d - «al

the sequence y,, - a converges to zero faster than the sequence
Lo 1yo,a — @l but slower than the sequence AS |y, - al
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Given a tiny real number d it is A; = L; = |h'(a)|. Hence:
[ ynae = al = |h' (@)™ | yo,0a - al

This property of the sequence x, is expressed by saying that ‘x, converges
exponentially to a’.

(2) Let h(x) = a + A(x - o) with A # 0. Then: o ia a fixed point of h and h'(a) = 0.
Furthermore, given a real number x,, for every k we have:

%, - o= AT ( AGx - @))%

If |A(x, - a)| < 1, the sequence x, converges to « and, for every t in (0,1) we have
————————— — 0 when k =+ o
that is: the sequence x, — o tends to zero more rapidly than any exponential

sequence.

In general, if h has a continuous second derivative and h'(a) = 0, the sequence x,
tends to a more rapidly than any exponential sequence.

When the conditions ‘h with continuous h' and O < |h'(a)| < 1’ hold, we say that the order
of convergence to o of the method defined by h is one. Analogously, when the conditions ‘h
with continuous h'', h'(a) = 0 and h”(a) # 0’ hold, we say that the order of convergence
to a of the method defined by h is two. In general:

the order of convergence to a of the method defined by h is p
means

the function h®(x) is continuous, h*”(a) = 0 for m=1,...,p - 1 and h®(a) # 0

The higher the order of convergence to a of the method, the more rapidly the sequences
generated by the method converge to «.
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(1.64) Definition (Newton’s method).



Let f:[a,b] → R be a function with first derivative such that f'(x) ≠ 0 for all x in [a,b].



Newton's method applied to the function f is the one-point method defined by the function hN:[a,b]→ R such that:

hN(x) = x – (f'(x))-1 f(x) = x - 



Note that the fixed points of hN are all and only the zeros of f.



(1.65) Remark (usability of Newton’s method).



Let f:[a,b] → R be a function with continuous second derivative and with f'(x) ≠ 0 for all x in [a,b]. Then let α be a zero of f in [a,b]. We have:



hN'(x) = 1 -formula=formula



The function hN' is continuous and, since f(α) = 0 and f'(α) ≠ 0, we have



hN'(α) = 0



By Theorem (1.59) of Lecture 10, Newton’s method can be used to approximate α.



(1.66) Remark (usability condition of Newton’s method).



Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in [a,b]. A sufficient condition for Newton’s method applied to f to be usable to approximate α is:

f'(α) ≠ 0



(1.67) Remark (graphical construction for Newton’s method).



Let f:[a,b] → R be a function with first derivative and let xk be a real number such that f'(xk) ≠ 0. Draw on the same Cartesian plane the graph of the function f and the graph of the tangent line to the graph of f at xk (see figure). Since f'(xk) ≠ 0, the tangent line is not horizontal and therefore intersects the x-axis at the point x such that:



f'(xk)(x – xk) + f(xk) = 0

i.e. at the point

x = xk - formula= hN(xk)

  

 Graph of the tangent line y = f'(xk)(x – xk) + f(xk) 





  

 Graph of y = f(x) 



 x 

  xk 



 x  s.t.  f'(xk)(x – xk) + f(xk) = 0 







(1.68) Remark (how to choose the starting point in Newton’s method).



Let f:[a,b] → R with continuous second derivative be such that:

		there exists α zero of f in [a,b]



		for every x ∈ [a,b] we have f'(x) ≠ 0 (hence α is the unique zero of f in [a,b])



		f''(x) ≠ 0 (f is convex on [a,b])







Then: starting from γ = the endpoint of [a,b] where f and f'' have the same sign, Newton’s method generates a sequence in [a,b] convergent to α and monotone.



(Proof. Using the hypotheses and graphical reasoning, we show that the sequence generated from γ is monotone and bounded, and therefore convergent. The limit can only be a fixed point of hN in [a,b], hence the limit should be α.)



(1.69) Remark.



Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in [a,b]. If f'(α) ≠ 0 (thus Newton’s method applied to f can be used to approximate α), then there exists an interval I that satisfies the hypotheses of Remark (1.68) if and only if f''(α) ≠ 0.



(1.70) Remark (order of convergence to a fixed point of a method).



Let h:[a,b] → R, α be a fixed point of h and xk be a sequence convergent to α and generated by the method defined by h.



		Let h have a continuous first derivative such that 0 < |h'(α)| < 1. Then:







				Let d > 0 such that h'(x) ≠ 0 for every x ∈ I(α,d). Let λd and Ld be the minimum and maximum of |h'(x)| on I(α,d), respectively, and yn,d be the sequence consisting of the elements of xk in I(α,d). For every x in I(α,d), we have:



λd ⩽ |h'(x)| ⩽ Ld



		Then, for every n we have:



λdn | y0,d – α| ⩽ | yn,d – α| ⩽ Ldn | y0,d – α|

i.e.: 











		the sequence yn,d – α converges to zero faster than the sequence 

Ldn |y0,d – α| but slower than the sequence λdn |y0,d – α|



Given a tiny real number d it is λd ≈ Ld ≈ |h'(α)|. Hence:



| yn,d – α| ≈ |h'(α)|n | y0,d – α|









		This property of the sequence xk is expressed by saying that ‘xk converges  exponentially to α’.









		Let h(x) = α + A(x – α)2 with A ≠ 0. Then: α ia a fixed point of h and h'(α) = 0. Furthermore, given a real number x0, for every k we have: 

 2k 



xk – α = A-1 ( A(x0 – α) )







	If |A(x0 – α)| < 1, the sequence xk converges to α and, for every t in (0,1) we have



				  |xk – α|

	--------- ⟶ 0  when k → ∞

				  tk



	that is: the sequence xk – α tends to zero more rapidly than any exponential 	sequence.



	In general, if h has a continuous second derivative and h'(α) = 0, the sequence xk 	tends to α more rapidly than any exponential sequence.



When the conditions ‘h with continuous h' and 0 < |h'(α)| < 1’ hold, we say that the order of convergence to α of the method defined by h is one. Analogously, when the conditions ‘h with continuous h'', h'(α) = 0 and h(2)(α) ≠ 0’ hold, we say that the order of convergence to α of the method defined by h is two. In general:



the order of convergence to α of the method defined by h is p

means



the function h(p)(x) is continuous, h(m)(α) = 0 for m = 1,...,p – 1 and h(p)(α) ≠ 0



The higher the order of convergence to α of the method, the more rapidly the sequences generated by the method converge to α.

