
Lecture 11 (hrs. 19,20) – October 15, 2025, 11:30 – 13:30 A13

(1.2) NEWTON’S METHOD

(1.64) Definition (Newton’s method).

Let f:[a,b] → R be a function with first derivative such that f'(x) ≠ 0 for all x in [a,b].

Newton's method applied to the function f is the one-point method defined by the function 
hN:[a,b]→ R such that:

hN(x) = x – (f'(x))-1 f(x) = x - 
f(x)
f'(x)

Note that the fixed points of hN are all and only the zeros of f.

(1.65) Remark (usability of Newton’s method).

Let f:[a,b] → R be a function with continuous second derivative and with f'(x) ≠ 0 for all 
x in [a,b]. Then let α be a zero of f in [a,b]. We have:

hN'(x) = 1 -
(f'(x))2−f''(x)f(x)

(f'(x))2
=

f''(x)f(x)
(f'(x))2

The function hN' is continuous and, since f(α) = 0 and f'(α) ≠ 0, we have

hN'(α) = 0

By Theorem (1.59) of Lecture 10, Newton’s method can be used to approximate α.

(1.66) Remark (usability condition of Newton’s method).

Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in 
[a,b]. A sufficient condition for Newton’s method applied to f to be usable to approximate 
α is:

f'(α) ≠ 0

(1.67) Remark (graphical construction for Newton’s method).

Let f:[a,b] → R be a function with first derivative and let xk be a real number such that 
f'(xk) ≠ 0. Draw on the same Cartesian plane the graph of the function f and the graph of 
the tangent line to the graph of f at xk (see figure). Since f'(xk) ≠ 0, the tangent line is 
not horizontal and therefore intersects the x-axis at the point x such that:

f'(xk)(x – xk) + f(xk) = 0
i.e. at the point
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x = xk - 
f(xk)
f'(xk)

= hN(xk)

(1.68) Remark (how to choose the starting point in Newton’s method).

Let f:[a,b] → R with continuous second derivative be such that:
(1) there exists α zero of f in [a,b]
(2) for every x ∈ [a,b] we have f'(x) ≠ 0 (hence α is the unique zero of f in [a,b])
(3) f''(x) ≠ 0 (f is convex on [a,b])

Then: starting from γ = the endpoint of [a,b] where f and f'' have the same sign, Newton’s 
method generates a sequence in [a,b] convergent to α and monotone.

(Proof. Using the hypotheses and graphical reasoning, we show that the sequence generated 
from γ is monotone and bounded, and therefore convergent. The limit can only be a fixed 
point of hN in [a,b], hence the limit should be α.)

(1.69) Remark.

Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in 
[a,b]. If f'(α) ≠ 0 (thus Newton’s method applied to f can be used to approximate α), then 
there exists an interval I that satisfies the hypotheses of Remark (1.68) if and only if 
f''(α) ≠ 0.

(1.70) Remark (order of convergence to a fixed point of a method).

Let h:[a,b] → R, α be a fixed point of h and xk be a sequence convergent to  andα  generated 
by the method defined by h.

(1) Let h have a continuous first derivative such that 0 < |h'(α)| < 1. Then:

◦ Let d > 0 such that h'(x) ≠ 0 for every x ∈ I(α,d). Let λd and Ld be the minimum 
and maximum of |h'(x)| on I(α,d), respectively, and yn,d be the sequence 
consisting of the elements of xk in I(α,d). For every x in I(α,d), we have:

λd ⩽ |h'(x)| ⩽ Ld

◦ Then, for every n we have:

λd
n | y0,d – α| ⩽ | yn,d – α| ⩽ Ld

n | y0,d – α|
i.e.: 

the sequence yn,d – α converges to zero faster than the sequence 
Ld

n |y0,d – α| but slower than the sequence λd
n |y0,d – α|

Graph of the tangent line y = f'(xk)(x – xk) + f(xk)

x
 xk

Graph of y = f(x)

x  s.t.  f'(xk)(x – xk) + f(xk) = 0
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Given a tiny real number d it is λd ≈ Ld ≈ |h'(α)|. Hence:

| yn,d – α| ≈ |h'(α)|n | y0,d – α|

This property of the sequence xk is expressed by saying that ‘xk converges  
exponentially to α’.

(2) Let h(x) = α + A(x – α)2 with A ≠ 0. Then: α ia a fixed point of h and h'(α) = 0. 
Furthermore, given a real number x0, for every k we have: 

xk – α = A-1 ( A(x0 – α) )

If |A(x0 – α)| < 1, the sequence xk converges to α and, for every t in (0,1) we have

          |xk – α|
--------- ⟶ 0  when k → ∞

             tk

that is: the sequence xk – α tends to zero more rapidly than any exponential 
sequence.

In general, if h has a continuous second derivative and h'(α) = 0, the sequence xk 
tends to α more rapidly than any exponential sequence.

When the conditions ‘h with continuous h' and 0 < |h'(α)| < 1’ hold, we say that the order 
of convergence to α of the method defined by h is one. Analogously, when the conditions ‘h 
with continuous h'', h'(α) = 0 and h(2)(α)  0’ hold, we say that ≠ the order of convergence 
to α of the method defined by h is two. In general:

the order of convergence to α of the method defined by h is p
means

the function h(p)(x) is continuous, h(m)(α) = 0 for m = 1,...,p – 1 and h(p)(α) ≠ 0

The higher the order of convergence to α of the method, the more rapidly the sequences 
generated by the method converge to α.
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(1.64) Definition (Newton’s method).



Let f:[a,b] → R be a function with first derivative such that f'(x) ≠ 0 for all x in [a,b].



Newton's method applied to the function f is the one-point method defined by the function hN:[a,b]→ R such that:

hN(x) = x – (f'(x))-1 f(x) = x - 



Note that the fixed points of hN are all and only the zeros of f.



(1.65) Remark (usability of Newton’s method).



Let f:[a,b] → R be a function with continuous second derivative and with f'(x) ≠ 0 for all x in [a,b]. Then let α be a zero of f in [a,b]. We have:



hN'(x) = 1 -formula=formula



The function hN' is continuous and, since f(α) = 0 and f'(α) ≠ 0, we have



hN'(α) = 0



By Theorem (1.59) of Lecture 10, Newton’s method can be used to approximate α.



(1.66) Remark (usability condition of Newton’s method).



Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in [a,b]. A sufficient condition for Newton’s method applied to f to be usable to approximate α is:

f'(α) ≠ 0



(1.67) Remark (graphical construction for Newton’s method).



Let f:[a,b] → R be a function with first derivative and let xk be a real number such that f'(xk) ≠ 0. Draw on the same Cartesian plane the graph of the function f and the graph of the tangent line to the graph of f at xk (see figure). Since f'(xk) ≠ 0, the tangent line is not horizontal and therefore intersects the x-axis at the point x such that:



f'(xk)(x – xk) + f(xk) = 0

i.e. at the point

x = xk - formula= hN(xk)

  

 Graph of the tangent line y = f'(xk)(x – xk) + f(xk) 





  

 Graph of y = f(x) 



 x 

  xk 



 x  s.t.  f'(xk)(x – xk) + f(xk) = 0 







(1.68) Remark (how to choose the starting point in Newton’s method).



Let f:[a,b] → R with continuous second derivative be such that:

		there exists α zero of f in [a,b]



		for every x ∈ [a,b] we have f'(x) ≠ 0 (hence α is the unique zero of f in [a,b])



		f''(x) ≠ 0 (f is convex on [a,b])







Then: starting from γ = the endpoint of [a,b] where f and f'' have the same sign, Newton’s method generates a sequence in [a,b] convergent to α and monotone.



(Proof. Using the hypotheses and graphical reasoning, we show that the sequence generated from γ is monotone and bounded, and therefore convergent. The limit can only be a fixed point of hN in [a,b], hence the limit should be α.)



(1.69) Remark.



Let f:[a,b] → R be a function with a continuous second derivative and α be a zero of f in [a,b]. If f'(α) ≠ 0 (thus Newton’s method applied to f can be used to approximate α), then there exists an interval I that satisfies the hypotheses of Remark (1.68) if and only if f''(α) ≠ 0.



(1.70) Remark (order of convergence to a fixed point of a method).



Let h:[a,b] → R, α be a fixed point of h and xk be a sequence convergent to α and generated by the method defined by h.



		Let h have a continuous first derivative such that 0 < |h'(α)| < 1. Then:







				Let d > 0 such that h'(x) ≠ 0 for every x ∈ I(α,d). Let λd and Ld be the minimum and maximum of |h'(x)| on I(α,d), respectively, and yn,d be the sequence consisting of the elements of xk in I(α,d). For every x in I(α,d), we have:



λd ⩽ |h'(x)| ⩽ Ld



		Then, for every n we have:



λdn | y0,d – α| ⩽ | yn,d – α| ⩽ Ldn | y0,d – α|

i.e.: 











		the sequence yn,d – α converges to zero faster than the sequence 

Ldn |y0,d – α| but slower than the sequence λdn |y0,d – α|



Given a tiny real number d it is λd ≈ Ld ≈ |h'(α)|. Hence:



| yn,d – α| ≈ |h'(α)|n | y0,d – α|









		This property of the sequence xk is expressed by saying that ‘xk converges  exponentially to α’.









		Let h(x) = α + A(x – α)2 with A ≠ 0. Then: α ia a fixed point of h and h'(α) = 0. Furthermore, given a real number x0, for every k we have: 

 2k 



xk – α = A-1 ( A(x0 – α) )







	If |A(x0 – α)| < 1, the sequence xk converges to α and, for every t in (0,1) we have



				  |xk – α|

	--------- ⟶ 0  when k → ∞

				  tk



	that is: the sequence xk – α tends to zero more rapidly than any exponential 	sequence.



	In general, if h has a continuous second derivative and h'(α) = 0, the sequence xk 	tends to α more rapidly than any exponential sequence.



When the conditions ‘h with continuous h' and 0 < |h'(α)| < 1’ hold, we say that the order of convergence to α of the method defined by h is one. Analogously, when the conditions ‘h with continuous h'', h'(α) = 0 and h(2)(α) ≠ 0’ hold, we say that the order of convergence to α of the method defined by h is two. In general:



the order of convergence to α of the method defined by h is p

means



the function h(p)(x) is continuous, h(m)(α) = 0 for m = 1,...,p – 1 and h(p)(α) ≠ 0



The higher the order of convergence to α of the method, the more rapidly the sequences generated by the method converge to α.

