Lezione 11 (ore 19,20) - 15 ottobre 2025, 11:30 - 13:30 A13

(1.2) METODO DI NEWTON

(1.64) <u>Definizione</u> (metodo di Newton).

Sia f:[a,b] \rightarrow R una funzione con derivata prima tale che f'(x) \neq 0 per ogni x in [a,b].

Il $metodo\ di\ Newton$ applicato alla funzione f è il metodo ad un punto definito dalla funzione $h_N: [a,b] \to R$ tale che:

$$h_N(x) = x - (f'(x))^{-1} f(x) = x - \frac{f(x)}{f'(x)}$$

Si osservi che i $punti uniti di h_{\scriptscriptstyle N}$ sono tutti e soli gli zeri di f.

(1.65) <u>Osservazione</u> (utilizzabilità del metodo di Newton).

Sia f:[a,b] \rightarrow R una funzione con derivata seconda continua e con f'(x) \neq 0 per ogni x in [a,b]. Sia poi α uno zero di f in [a,b]. Si ha:

$$h_{N}'(x) = 1 - \frac{(f'(x))^2 - f''(x)f(x)}{(f'(x))^2} = \frac{f''(x)f(x)}{(f'(x))^2}$$

La funzione h_{N} ' è continua e, essendo $f(\alpha)$ = 0 e $f'(\alpha) \neq 0$, si ha

$$h_N'(\alpha) = 0$$

Per il Teorema (1.59) della Lezione 10, il metodo di Newton è utilizzabile per approssimare α .

(1.66) Osservazione (criterio di utilizzabilità per il metodo di Newton).

Siano f:[a,b] \rightarrow R una funzione con derivata seconda continua e α uno zero di f in [a,b]. Condizione *sufficiente* perché il metodo di Newton applicato ad f sia *utilizzabile* per approssimare α è:

$$f'(\alpha) \neq 0$$

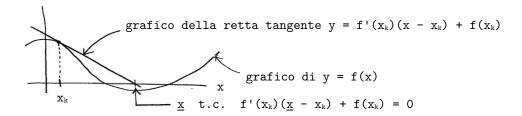
(1.67) Osservazione (interpretazione grafica del metodo di Newton).

Sia f:[a,b] \rightarrow R una funzione con derivata prima e sia x_k un numero reale tale che f' $(x_k) \neq 0$. Si disegnino su uno stesso piano cartesiano il grafico della funzione f e quello della retta tangente al grafico di f in x_k (vedi figura). Poiché f' $(x_k) \neq 0$, la retta tangente non è orizzontale e quindi interseca l'asse delle ascisse nel punto \underline{x} tale che:

$$f'(x_k)(\underline{x} - x_k) + f(x_k) = 0$$

ovvero in

$$\underline{\mathbf{x}} = \mathbf{x}_k - \frac{\mathbf{f}(\mathbf{x}_k)}{\mathbf{f}'(\mathbf{x}_k)} = \mathbf{h}_N(\mathbf{x}_k)$$



(1.68) Osservazione (criterio di scelta del punto iniziale per il metodo di Newton).

Sia $f:[a,b] \rightarrow R$ con derivata seconda continua tale che:

- (1) esiste α zero di f in [a,b]
- (2) per ogni $x \in [a,b]$ si ha f'(x) $\neq 0$ (e quindi α è *l'unico* zero di f in [a,b])
- (3) $f''(x) \neq 0$ (f è convessa in [a,b])

Allora: a partire da γ = l'estremo di [a,b] in cui f e f'' hanno lo stesso segno, il metodo di Newton genera una successione in [a,b] convergente ad α e monotona.

(<u>Dimostrazione</u>. Utilizzando le ipotesi, e ragionando graficamente, si mostra che la successione generata a partire da γ è monotona e limitata, e quindi convergente. Il limite non può che essere un punto unito di $h_{\rm N}$ in [a,b], dunque α .)

(1.69) <u>Osservazione</u>.

Siano f:[a,b] \rightarrow R una funzione con derivata seconda continua e α uno zero di f in [a,b]. Se f'(α) \neq 0 (dunque il metodo di Newton applicato ad f è utilizzabile per approssimare α) allora esiste un intervallo I che verifica le ipotesi del criterio di scelta (1.67) se e solo se f''(α) \neq 0.

(1.70) Osservazione (ordine di convergenza di un metodo ad un punto).

Siano h:[a,b] \rightarrow R, α un punto unito di h e x_k una successione convergente ad α generata dal metodo definito da h.

- (1) Sia h con h' continua e 0 < |h'(α)| < 1. Allora:
 - ° Sia d>0 tale che h'(x) $\neq 0$ per ogni x $\in I(\alpha,d)$. Detti λ_d e L_d , rispettivamente, il minimo ed il massimo di |h'(x)| su $I(\alpha,d)$ e $y_{n,d}$ la successione costituita dagli elementi di x_k in $I(\alpha,d)$, per ogni x in $I(\alpha,d)$ si ha:

$$\lambda_d \leq |h'(x)| \leq L_d$$

 \circ Per ogni n si ha allora:

$$\lambda_d^n \mid y_{0,d} - \alpha \mid \leq |y_{n,d} - \alpha| \leq L_d^n \mid y_{0,d} - \alpha \mid$$

ovvero:

la successione y $_{n,d}$ - lpha converge a zero $pi\dot{u}$ rapidamente della successione

 $\mathsf{L}_{d}^{n} \mid \mathsf{y}_{\mathsf{0},d} - \alpha \mid$ ma meno rapidamente della successione $\lambda_{d}^{n} \mid \mathsf{y}_{\mathsf{0},d} - \alpha \mid$

Scelto d molto piccolo si avrà $\lambda_d pprox \mathbb{L}_d pprox | ext{h'}(lpha) |$. Dunque

$$|y_{n,d} - \alpha| \approx |h'(\alpha)|^n |y_{0,d} - \alpha|$$

Questa proprietà della successione x_k si esprime dicendo che ' x_k converge ad α in modo esponenziale'.

(2) Sia h(x) = α + A(x - α)² con A \neq 0. Allora: α è punto unito di h e h'(α) = 0. Inoltre, dato un numero reale x₀, per ogni k si ha:

$$x_k - \alpha = A^{-1} (A(x_0 - \alpha))^{2^k}$$

Se $|A(x_0 - \alpha)| < 1$, la successione x_k converge ad α e, per ogni t in (0,1) si ha

ovvero: la successione x_k - α tende a zero più rapidamente di qualsiasi successione esponenziale.

In generale, se h ha derivata seconda continua e h' (α) = 0, la successione x_k tende ad α più rapidamente di qualsiasi successione di tipo esponenziale.

Il sussistere della condizione 'h con h' continua e $0 < |h'(\alpha)| < 1$ ' si esprime con la frase *l'ordine di convergenza ad* α *del metodo definito da* h è <u>uno</u>. Il sussistere della condizione 'h con h'' continua, h'(α) = 0 e h⁽²⁾(α) \neq 0' si esprime con la frase *l'ordine di convergenza ad* α *del metodo definito da* h è <u>due</u>. In generale:

l'ordine di convergenza ad α del metodo definito da h è p significa

h ha derivata di ordine p continua, $\mathbf{h}^{(m)}(\alpha)$ = 0 per m = 1,...,p - 1 e $\mathbf{h}^{(p)}(\alpha) \neq 0$

Tanto più elevato è l'ordine di convergenza ad α del metodo, tanto più rapidamente convergono ad α le successioni generate dal metodo.