Lecture 10 (hrs. 17,18) - October 14, 2025, 16:30 - 18:30 F3

(1.58) Remark.

The use of the Convergence Theorem (Theorem (1.57) of Lesson 9) requires the verification of hypotheses (1) - (3). For hypotheses (1) and (2) it is necessary to decide whether there exists, and possibly determine, an interval [a,b] which contains only one fixed point of h and in all points x of which $|h'(x)| \leq L$ with $0 \leq L < 1$. Once an interval [a,b] with the required properties has been determined, it is necessary to decide whether hypothesis (3) is verified, that is, whether starting from γ the method defined by h generates a sequence in [a,b].

The following theorem and remark provide concrete criteria for testing hypotheses (1) - (3).

(1.59) Theorem (usability of the method defined by h).

Let h:[a,b] \rightarrow R be a function with continuous first derivative and α be a fixed point of h in [a,b]. A necessary and sufficient condition to the existence of an interval I \subset [a,b] containing α and at all whose points x it is $|h'(x)| \leq L$ with $0 \leq L < 1$ is:

$$|h'(\alpha)| < 1$$

Proof.

The condition is *necessary*: if there exists an interval $I \subset [a,b]$ containing α and at all whose points x it is $|h'(x)| \leq L$ with $0 \leq L < 1$, certainly we have $|h'(\alpha)| < 1$.

The condition is sufficient: if $|h'(\alpha)| < 1$, by the continuity of the function h' there exists a real number L with $0 \le L < 1$ and an interval $I \subset [a,b]$ containing α and at all whose points x it is $|h'(x)| \le L$.

(1.60) Remark (how to choose the initial point).

Let $h:[a,b] \to R$ be a function with continuous first derivative that satisfies hypotheses (1) and (2) of the Convergence Theorem and let α be the unique fixed point of h in [a,b]. Then:

using γ = the one of the endpoints of [a,b] closest to α as initial point, the method defined by h generates a sequence in [a,b], which therefore converges to α .

Proof.

Let $x_0 = \gamma$, and let $d = |x_0 - \alpha|$. Denoted by $I(\alpha, d)$ the neighborhood of center α and radius d, we have $I(\alpha, d) \subset [a,b]$. As shown in point (B) of the Proof of the Convergence Theorem, we have $|x_1 - \alpha| < |x_0 - \alpha| = d$, so $x_1 \in I(\alpha, d)$. Similarly, it can be shown that for every k we have $x_k \in I(\alpha, d) \subset [a,b]$.

(1.61) Remark.

Let h:[a,b] \rightarrow R be a function with continuous first derivative, α a fixed point of h and x_k a sequence generated by the method defined by h. <u>If</u> |h'(α)| > 1 <u>then</u> one and only one of

the following statements hold:

- there exists \overline{k} s.t. for every $k \geqslant \overline{k}$ it is $x_k = \alpha$
- $x_k \nrightarrow \alpha$

(<u>Proof</u> only in a particular case. Let $h(x) = A(x - \alpha) + \alpha$ with A > 1. We have: α is the unique fixed point of h, h'(x) = A and

$$x_k - \alpha = A^k(x_0 - \alpha)$$

Then: if $x_0 \neq \alpha$, for every M > 0 there exists n s.t. $k \geqslant n \Rightarrow |x_k - \alpha| \geqslant M$. Hence for every $x_0 \neq \alpha$ it is $x_k \nrightarrow \alpha$.)

The possibility of being able to determine an initial point s.t. $x_k = \alpha$ after a *finite* number of terms is extremely remote. For this reason, if $|h'(\alpha)| > 1$ the method defined by h is declared *unusable* to approximate α .

It remains to be clarified what happens if $|h'(\alpha)| = 1$. We will see that even in this case the method defined by h is declared *unusable* to approximate α .

Finally, note that the condition $|h'(\alpha)| < 1$, necessary and sufficient for the usability of the method to approximate the fixed point α , can be verified graphically by comparing the slope $(h'(\alpha))$ of the tangent line to the graph of y = h(x) at $x = \alpha$ with that (1) of the graph line of y = x and with that (-1) of the line $y = \alpha - x$.

(1.62) <u>Exercize</u>.

For any x > 0, let $f(x) = x + \log(x)$. We want (i) to know whether f has any zeros, and if so: (ii) to separate the zeros, and finally, (iii) to decide whether each of the methods defined by

$$h_1(x) = -\log(x)$$
; $h_2(x) = \exp(-x)$; $h_3(x) = (\exp(-x) + x)/2$

is usable to approximate the zeros of f.

Solution.

- (i) The function f(x) is continuous, $f(x) \to -\infty$ when $x \to 0$ and $f(x) \to +\infty$ when $x \to +\infty$. It follows that f has at least one zero. The function f(x) is also differentiable and for every x > 0 we have $f'(x) \neq 0$. Then f has at most one zero. Therefore f has a zero, α .
- (ii) We have: f(1) = 1, therefore $\alpha \in [0,1]$, that is, the interval [0,1] separates the zero of f.
- (iii) Consider the function $h_1(x)$. It is easily verified that the zeros of f are all and only the fixed points of h_1 . Furthermore, h_1 is differentiable and for every x > 0 we have $h_1'(x) = 1/x$. Since $\alpha \in (0,1)$ we certainly have $|h_1'(\alpha)| > 1$. By Remark (1.61) the method defined by h_1 cannot be used to approximate α .

then f has at most k distinct zeros in the interval [a,b].

¹ Let $f:[a,b] \to R$ be a sufficiently regular function. If for every x in [a,b] we have $f^{(k)}(x) \neq 0$

Consider the function $h_2(x)$. It is easily verified that the zeros of f are all and only the fixed points of h_2 . Furthermore, h_2 is differentiable and for every x we have $|h_2'(x)| = \exp(-x)$. Since $\alpha \in (0,1)$ we certainly have $|h_2'(\alpha)| < 1$ and, by Theorem (1.59), the method defined by h_2 can be used to approximate α . According to Remark (1.60), to determine an initial point from which the method defines a sequence convergent to α it is sufficient to determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence Theorem. The interval [0,1] is not suitable because hypothesis (2) is not verified: for every x in (0,1] we have $0 \le |h_2'(x)| = \exp(-x) < 1$ but $|h_2'(0)| = 1$. Then, an interval that also verifies hypothesis (2) is [t,1] with $t \in (0,\alpha)$. To determine t we use the Bolzano's Theorem. Since f(1/2) < 0, we set t = 1/2 and I = [1/2, 1]. At this point it is sufficient to decide which of the two extremes of I is closer to zero. We use the Bolzano's Theorem again. Since f(3/4) > 0, we choose $x_0 = 1/2$.

Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function defining the method is *negative*. Since, reviewing the Proof of the assertion (B) of the Convergence Theorem, for every k we have:

$$x_k - \alpha = h'(t_{k-1})(x_{k-1} - \alpha)$$

for some real number t_{k-1} in I, then for all k h'(t_{k-1}) < 0 and the differences x_k - α and x_{k-1} - α have opposite signs. It follows that the elements of the sequence are found, alternatively, to the right and to the left of α : the sequence 'oscillates' around zero. Anyway, the sequence of distances $|x_k - \alpha|$ is monotonically decreasing as shown in the Proof of the Convergence Theorem.

Finally, consider the function $h_3(x)$. It is easy to verify that the zeros of f are all and only the fixed points of h_3 . Furthermore, h_3 is differentiable and for each x we have:

$$|h_3'(x)| = (1 - \exp(-x))/2$$

Since $\alpha \in (1/2,1)$ we certainly have $|h_3'(\alpha)| < 1$ and, by Theorem (1.59), the method defined by h_3 can be used to approximate α . According to Remark (1.60), to determine an initial point from which the method defines a sequence convergent to α it is sufficient to determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence Theorem. The interval I = [1/2,1] is fine, in fact for every x in I we have $0 \le |h_3'(x)| < 1$. At this point it is sufficient to decide which of the two extremes of I is closer to the zero α . Proceeding as in the previous case, we choose $x_0 = 1/2$.

Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function defining the method is *positive*. Reasoning as in the previous case, the differences $x_k - \alpha$ and $x_{k-1} - \alpha$ have the *same sign*. It follows that the elements of the sequence are all on the same side with respect to α . Furthermore, also in this case, the sequence of *distances* $|x_k - \alpha|$ is *monotonically decreasing*, and therefore the sequence x_k is *monotone* (*increasing* if x_0 is to the left of α , *decreasing* in the opposite case). Finally, note that since for every x in I = [1/2, 1] the first derivative of the function defining the method is positive, from the Proof of the criterion for choosing the initial point (Remark (1.60)) we deduce that *for every* x_0 *in* I the sequence x_k converges to α .

(1.63) <u>Homework</u>.

For every $x \in R$ let: $h(x) = 2 \operatorname{arctg}(x)$.

- (1) Determine the number of fixed points of h and separate them.
- (2) For each of the fixed points, decide whether the iterative method defined by h can be used for the approximation and, if so, indicate an initial point from which the generated sequence converges to the fixed point under consideration.
- (3) Answer the previous questions using graphical methods, with the help of Scilab.