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(1.58) Remark.

The use of the Convergence Theorem (Theorem (1.57) of Lesson 9) requires the verification 
of hypotheses (1) – (3). For hypotheses (1) and (2) it is necessary to decide whether there 
exists, and possibly determine, an interval [a,b] which contains only one fixed point of h 
and in all points x of which |h’(x)| ⩽ L with 0 ⩽ L < 1. Once an interval [a,b] with the 
required properties has been determined, it is necessary to decide whether hypothesis (3) 
is verified, that is, whether starting from γ the method defined by h generates a sequence 
in [a,b].

The following theorem and remark provide concrete criteria for testing hypotheses (1) - 
(3).

(1.59) Theorem (usability of the method defined by h).

Let h:[a,b] → R be a function with continuous first derivative and α be a fixed point of h 
in [a,b]. A necessary and sufficient condition to the existence of an interval I ⊂ [a,b] 
containing α and at all whose points x it is |h’(x)| ⩽ L with 0 ⩽ L < 1 is:

|h’(α)| < 1
Proof. 

The condition is necessary: if there exists an interval I ⊂ [a,b] containing α and at all 
whose points x it is |h’(x)| ⩽ L with 0 ⩽ L < 1, certainly we have |h’(α)| < 1.

The condition is sufficient: if |h’(α)| < 1, by the continuity of the function h’ there 
exists a real number L with 0 ⩽ L < 1 and an interval I ⊂ [a,b] containing α and at all 
whose points x it is |h’(x)| ⩽ L.

(1.60) Remark (how to choose the initial point).

Let h:[a,b] → R be a function with continuous first derivative that satisfies hypotheses 
(1) and (2) of the Convergence Theorem and let α be the unique fixed point of h in [a,b]. 
Then:

using γ = the one of the endpoints of [a,b] closest to α as initial point, the
 method defined by h generates a sequence in [a,b], which therefore converges to α.

Proof. 

Let x0 = γ, and let d = |x0 – α|. Denoted by I(α,d) the neighborhood of center α and radius 
d, we have I(α,d) ⊂ [a,b]. As shown in point (B) of the Proof of the Convergence Theorem, 
we have |x1 – α| < |x0 – α| = d, so x1 ∈ I(α,d). Similarly, it can be shown that for every k 
we have xk ∈ I(α,d) ⊂ [a,b].

(1.61) Remark.

Let h:[a,b] → R be a function with continuous first derivative, α a fixed point of h and xk 

a sequence generated by the method defined by h. If |h’(α)| > 1 then one and only one of 
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the following statements hold:

• there exists k s.t. for every k ⩾ k it is xk = α

• xk ↛ α 

(Proof only in a particular case. Let h(x) = A(x – α) + α with A > 1. We have: α is the 
unique fixed point of h, h’(x) = A and

xk - α = Ak(x0 – α)

Then: if x0 ≠ α, for every M > 0 there exists n s.t. k ⩾ n ⇒ |xk – α| ⩾ M. Hence for 
every x0 ≠ α it is xk ↛ α.)

The possibility of being able to determine an initial point s.t. xk = α after a finite 
number of terms is extremely remote. For this reason, if |h’(α)| > 1 the method defined by 
h is declared unusable to approximate α.

It remains to be clarified what happens if |h’(α)| = 1. We will see that even in this case 
the method defined by h is declared unusable to approximate α.

Finally, note that the condition |h’(α)| < 1, necessary and sufficient for the usability of 
the method to approximate the fixed point α, can be verified graphically by comparing the 
slope (h’(α)) of the tangent line to the graph of y = h(x) at x = α with that (1) of the 
graph line of y = x and with that (-1) of the line y = α - x.

(1.62) Exercize.

For any x > 0, let f(x) = x + log(x). We want (i) to know whether f has any zeros, and if 
so: (ii) to separate the zeros, and finally, (iii) to decide whether each of the methods 
defined by

h1(x) = - log(x)    ;    h2(x) = exp(-x)    ;    h3(x) = (exp(-x) + x)/2

is usable to approximate the zeros of f.

Solution.

(i) The function f(x) is continuous, f(x) → -∞ when x → 0 and f(x) → +∞ when x → +∞. It 
follows that f has at least one zero. The function f(x) is also differentiable and for 
every x > 0 we have f’(x) ≠ 0. Then f has at most one zero. Therefore f has a zero, α.1

(ii) We have: f(1) = 1, therefore α ∈ [0,1], that is, the interval [0,1] separates the zero 
of f.

(iii) Consider the function h1(x). It is easily verified that the zeros of f are all and 
only the fixed points of h1. Furthermore, h1 is differentiable and for every x > 0 we have 
h1’(x) = 1/x. Since α ∈ (0,1) we certainly have |h1’(α)| > 1. By Remark (1.61) the method 
defined by h1 cannot be used to approximate α.

1 Let f:[a,b] → R be a sufficiently regular function. If for every x in [a,b] we have
f(k)(x) ≠ 0

   then f has at most k distinct zeros in the interval [a,b].
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Consider the function h2(x). It is easily verified that the zeros of f are all and only the 
fixed points of h2. Furthermore, h2 is differentiable and for every x we have |h2’(x)| = 
exp(-x). Since α ∈ (0,1) we certainly have |h2’(α)| < 1 and, by Theorem (1.59), the method 
defined by h2 can be used to approximate α. According to Remark (1.60), to determine an 
initial point from which the method defines a sequence convergent to α it is sufficient to 
determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence 
Theorem. The interval [0,1] is not suitable because hypothesis (2) is not verified: for 
every x in (0,1] we have 0 ⩽ |h2’(x)| = exp(-x) < 1 but |h2’(0)| = 1. Then, an interval that 
also verifies hypothesis (2) is [t,1] with t ∈ (0,α). To determine t we use the Bolzano’s 
Theorem. Since f(1/2) < 0, we set t = 1/2 and I = [1/2, 1]. At this point it is sufficient 
to decide which of the two extremes of I is closer to zero. We use the Bolzano’s Theorem 
again. Since f(3/4) > 0, we choose x0 = 1/2.

Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function 
defining the method is negative. Since, reviewing the Proof of the assertion (B) of the 
Convergence Theorem, for every k we have:

xk – α = h’(tk-1)(xk-1 – α)

for some real number tk-1 in I, then for all k h’(tk-1) < 0 and the differences xk – α and xk-1 

– α have opposite signs. It follows that the elements of the sequence are found, 
alternatively, to the right and to the left of α: the sequence ‘oscillates’ around zero. 
Anyway, the sequence of distances |xk – α| is monotonically decreasing as shown in the 
Proof of the Convergence Theorem.

Finally, consider the function h3(x). It is easy to verify that the zeros of f are all and 
only the fixed points of h3. Furthermore, h3 is differentiable and for each x we have:

|h3’(x)| = (1 - exp(-x))/2  

Since α ∈ (1/2,1) we certainly have |h3’(α)| < 1 and, by Theorem (1.59), the method defined 
by h3 can be used to approximate α. According to Remark (1.60), to determine an initial 
point from which the method defines a sequence convergent to α it is sufficient to 
determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence 
Theorem. The interval I = [1/2,1] is fine, in fact for every x in I we have 0 ⩽ |h3’(x)| < 
1. At this point it is sufficient to decide which of the two extremes of I is closer to the 
zero α. Proceeding as in the previous case, we choose x0 = 1/2.

Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function 
defining the method is positive. Reasoning as in the previous case, the differences xk – α 
and  xk-1 – α have the same sign. It follows that the elements of the sequence are all on 
the same side with respect to α. Furthermore, also in this case, the sequence of distances 
|xk – α| is monotonically decreasing, and therefore the sequence xk is monotone (increasing 
if x0 is to the left of α, decreasing in the opposite case). Finally, note that since for 
every x in I = [1/2, 1] the first derivative of the function defining the method is 
positive, from the Proof of the criterion for choosing the initial point (Remark (1.60)) we 
deduce that for every x0 in I the sequence xk converges to α.

(1.63) Homework.

For every x ∈ R let: h(x) = 2 arctg(x).
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(1) Determine the number of fixed points of h and separate them.
(2) For each of the fixed points, decide whether the iterative method defined by h can 

be used for the approximation and, if so, indicate an initial point from which the 
generated sequence converges to the fixed point under consideration.

(3) Answer the previous questions using graphical methods, with the help of Scilab.
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(1.58) Remark.



The use of the Convergence Theorem (Theorem (1.57) of Lesson 9) requires the verification of hypotheses (1) – (3). For hypotheses (1) and (2) it is necessary to decide whether there exists, and possibly determine, an interval [a,b] which contains only one fixed point of h and in all points x of which |h’(x)| ⩽ L with 0 ⩽ L < 1. Once an interval [a,b] with the required properties has been determined, it is necessary to decide whether hypothesis (3) is verified, that is, whether starting from γ the method defined by h generates a sequence in [a,b].



The following theorem and remark provide concrete criteria for testing hypotheses (1) - (3).



(1.59) Theorem (usability of the method defined by h).



Let h:[a,b] → R be a function with continuous first derivative and α be a fixed point of h in [a,b]. A necessary and sufficient condition to the existence of an interval I ⊂ [a,b] containing α and at all whose points x it is |h’(x)| ⩽ L with 0 ⩽ L < 1 is:



|h’(α)| < 1

Proof. 



The condition is necessary: if there exists an interval I ⊂ [a,b] containing α and at all whose points x it is |h’(x)| ⩽ L with 0 ⩽ L < 1, certainly we have |h’(α)| < 1.



The condition is sufficient: if |h’(α)| < 1, by the continuity of the function h’ there exists a real number L with 0 ⩽ L < 1 and an interval I ⊂ [a,b] containing α and at all whose points x it is |h’(x)| ⩽ L.



(1.60) Remark (how to choose the initial point).



Let h:[a,b] → R be a function with continuous first derivative that satisfies hypotheses (1) and (2) of the Convergence Theorem and let α be the unique fixed point of h in [a,b]. Then:

using γ = the one of the endpoints of [a,b] closest to α as initial point, the

 method defined by h generates a sequence in [a,b], which therefore converges to α.



Proof. 



Let x0 = γ, and let d = |x0 – α|. Denoted by I(α,d) the neighborhood of center α and radius d, we have I(α,d) ⊂ [a,b]. As shown in point (B) of the Proof of the Convergence Theorem, we have |x1 – α| < |x0 – α| = d, so x1 ∈ I(α,d). Similarly, it can be shown that for every k we have xk ∈ I(α,d) ⊂ [a,b].



(1.61) Remark.



Let h:[a,b] → R be a function with continuous first derivative, α a fixed point of h and xk a sequence generated by the method defined by h. If |h’(α)| > 1 then one and only one of the following statements hold:



		there exists k s.t. for every k ⩾ k it is xk = α



		xk ↛ α 







(Proof only in a particular case. Let h(x) = A(x – α) + α with A > 1. We have: α is the unique fixed point of h, h’(x) = A and



xk - α = Ak(x0 – α)



Then: if x0 ≠ α, for every M > 0 there exists n s.t. k ⩾ n ⇒ |xk – α| ⩾ M. Hence for every x0 ≠ α it is xk ↛ α.)



The possibility of being able to determine an initial point s.t. xk = α after a finite number of terms is extremely remote. For this reason, if |h’(α)| > 1 the method defined by h is declared unusable to approximate α.



It remains to be clarified what happens if |h’(α)| = 1. We will see that even in this case the method defined by h is declared unusable to approximate α.



Finally, note that the condition |h’(α)| < 1, necessary and sufficient for the usability of the method to approximate the fixed point α, can be verified graphically by comparing the slope (h’(α)) of the tangent line to the graph of y = h(x) at x = α with that (1) of the graph line of y = x and with that (-1) of the line y = α - x.



(1.62) Exercize.



For any x > 0, let f(x) = x + log(x). We want (i) to know whether f has any zeros, and if so: (ii) to separate the zeros, and finally, (iii) to decide whether each of the methods defined by



h1(x) = - log(x)  ;  h2(x) = exp(-x)  ;  h3(x) = (exp(-x) + x)/2



is usable to approximate the zeros of f.



Solution.



(i) The function f(x) is continuous, f(x) → -∞ when x → 0 and f(x) → +∞ when x → +∞. It follows that f has at least one zero. The function f(x) is also differentiable and for every x > 0 we have f’(x) ≠ 0. Then f has at most one zero. Therefore f has a zero, α.1 Let f:[a,b] → R be a sufficiently regular function. If for every x in [a,b] we have  f(k)(x) ≠ 0   then f has at most k distinct zeros in the interval [a,b]. 



(ii) We have: f(1) = 1, therefore α ∈ [0,1], that is, the interval [0,1] separates the zero of f.



(iii) Consider the function h1(x). It is easily verified that the zeros of f are all and only the fixed points of h1. Furthermore, h1 is differentiable and for every x > 0 we have h1’(x) = 1/x. Since α ∈ (0,1) we certainly have |h1’(α)| > 1. By Remark (1.61) the method defined by h1 cannot be used to approximate α.



Consider the function h2(x). It is easily verified that the zeros of f are all and only the fixed points of h2. Furthermore, h2 is differentiable and for every x we have |h2’(x)| = exp(-x). Since α ∈ (0,1) we certainly have |h2’(α)| < 1 and, by Theorem (1.59), the method defined by h2 can be used to approximate α. According to Remark (1.60), to determine an initial point from which the method defines a sequence convergent to α it is sufficient to determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence Theorem. The interval [0,1] is not suitable because hypothesis (2) is not verified: for every x in (0,1] we have 0 ⩽ |h2’(x)| = exp(-x) < 1 but |h2’(0)| = 1. Then, an interval that also verifies hypothesis (2) is [t,1] with t ∈ (0,α). To determine t we use the Bolzano’s Theorem. Since f(1/2) < 0, we set t = 1/2 and I = [1/2, 1]. At this point it is sufficient to decide which of the two extremes of I is closer to zero. We use the Bolzano’s Theorem again. Since f(3/4) > 0, we choose x0 = 1/2.



Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function defining the method is negative. Since, reviewing the Proof of the assertion (B) of the Convergence Theorem, for every k we have:



xk – α = h’(tk-1)(xk-1 – α)



for some real number tk-1 in I, then for all k h’(tk-1) < 0 and the differences xk – α and xk-1 – α have opposite signs. It follows that the elements of the sequence are found, alternatively, to the right and to the left of α: the sequence ‘oscillates’ around zero. Anyway, the sequence of distances |xk – α| is monotonically decreasing as shown in the Proof of the Convergence Theorem.



Finally, consider the function h3(x). It is easy to verify that the zeros of f are all and only the fixed points of h3. Furthermore, h3 is differentiable and for each x we have:



|h3’(x)| = (1 - exp(-x))/2  



Since α ∈ (1/2,1) we certainly have |h3’(α)| < 1 and, by Theorem (1.59), the method defined by h3 can be used to approximate α. According to Remark (1.60), to determine an initial point from which the method defines a sequence convergent to α it is sufficient to determine a closed interval I that verifies hypotheses (1) and (2) of the Convergence Theorem. The interval I = [1/2,1] is fine, in fact for every x in I we have 0 ⩽ |h3’(x)| < 1. At this point it is sufficient to decide which of the two extremes of I is closer to the zero α. Proceeding as in the previous case, we choose x0 = 1/2.



Note that, in this case, for every x in I = [1/2, 1] the first derivative of the function defining the method is positive. Reasoning as in the previous case, the differences xk – α and  xk-1 – α have the same sign. It follows that the elements of the sequence are all on the same side with respect to α. Furthermore, also in this case, the sequence of distances |xk – α| is monotonically decreasing, and therefore the sequence xk is monotone (increasing if x0 is to the left of α, decreasing in the opposite case). Finally, note that since for every x in I = [1/2, 1] the first derivative of the function defining the method is positive, from the Proof of the criterion for choosing the initial point (Remark (1.60)) we deduce that for every x0 in I the sequence xk converges to α.



(1.63) Homework.



For every x ∈ R let: h(x) = 2 arctg(x).



		Determine the number of fixed points of h and separate them.



		For each of the fixed points, decide whether the iterative method defined by h can be used for the approximation and, if so, indicate an initial point from which the generated sequence converges to the fixed point under consideration.



		Answer the previous questions using graphical methods, with the help of Scilab.





