Lezione 10 (ore 17,18) - 14 ottobre 2025, 16:30 - 18:30 F3

(1.58) Osservazione.

L'uso del Teorema di convergenza (Teorema (1.57) della Lezione 9) richiede la verifica delle ipotesi (1) - (3). Per le ipotesi (1) e (2) occorre decidere se esiste, ed eventualmente determinare, un intervallo [a,b] che contiene un solo punto unito di h e in tutti i punti x del quale $|h'(x)| \leq L$ con $0 \leq L < 1$. Una volta determinato un intervallo [a,b] con le proprietà richieste, occorre decidere se sia verificata l'ipotesi (3), ovvero se a partire da γ il metodo definito da h genera una successione in [a,b].

Il teorema e l'osservazione seguenti forniscono criteri concreti riguardo la verifica delle ipotesi.

(1.59) Teorema (utilizzabilità del metodo definito da h).

Sia h:[a,b] \rightarrow R una funzione con derivata prima continua e α un punto unito di h in [a,b]. Condizione necessaria e sufficiente affinché esista un intervallo I \subset [a,b] contenente α e in tutti i punti x del quale si abbia |h'(x)| \leq L con 0 \leq L < 1 è:

$$|h'(\alpha)| < 1$$

Dimostrazione.

La condizione è necessaria: se esiste un intervallo I \subset [a,b] contenente α in tutti i punti x del quale $|h'(x)| \leq L$ con $0 \leq L < 1$, certamente si ha $|h'(\alpha)| < 1$.

La condizione è *sufficiente*: se $|h'(\alpha)| < 1$, per la continuità della funzione h' esistono un numero reale L con $0 \le L < 1$ e un intervallo I \subset [a,b] tali che $\alpha \in$ I e in tutti i punti $x \in I$ si ha $|h'(x)| \le L$.

(1.60) <u>Osservazione</u> (criterio di scelta del punto iniziale).

Sia h: $[a,b] \rightarrow R$ una funzione con derivata prima continua che verifica le ipotesi (1) e (2) del Teorema di convergenza e sia α l'unico punto unito di h in [a,b]. Allora:

a partire da γ = *l'estremo di* [a,b] più vicino ad α , il metodo definito da h genera una successione in [a,b] - dunque convergente ad α .

Dimostrazione.

Posto $x_0 = \gamma$, sia $d = |x_0 - \alpha|$. Indicato con $I(\alpha,d)$ l'intorno di centro α e raggio d, si ha $I(\alpha,d) \subset [a,b]$. Per quanto mostrato nel punto (B) della dimostrazione del Teorema di convergenza, si ha $|x_1 - \alpha| < |x_0 - \alpha| = d$, quindi $x_1 \in I(\alpha,d)$. Allo stesso modo si dimostra che per ogni k si ha $x_k \in I(\alpha,d) \subset [a,b]$.

(1.61) <u>Osservazione</u>.

Siano h:[a,b] \rightarrow R una funzione con derivata prima continua, α un punto unito di h e x_k una successione generata dal metodo definito da h. Se |h'(α)| > 1 allora uno soltanto dei seguenti asserti sussiste:

- esiste \overline{k} tale che per ogni $k \geqslant \overline{k}$ si ha $x_k = \alpha$
- $x_k \rightarrow \alpha$

(<u>Dimostrazione</u> solo in un caso particolare. Sia h(x) = A(x - α) + α con A > 1. Si ha: α è l'unico punto unito di h, h'(x) = A e

$$x_k - \alpha = A^k(x_0 - \alpha)$$

Allora: se $x_0 \neq \alpha$, per ogni M > 0 esiste n tale che $k \geqslant n \Rightarrow |x_k - \alpha| \geqslant M$. Dunque per ogni $x_0 \neq \alpha$ si ha $x_k \nrightarrow \alpha$.)

L'eventualità di riuscire a determinare concretamente un punto iniziale a partire dal quale risulti $x_k = \alpha$ dopo un numero finito di termini è estremamente remota. Per questo motivo, se $|h'(\alpha)| > 1$ il metodo definito da h si dichiara non utilizzabile per approssimare α .

Resta da chiarire cosa accade se $|h'(\alpha)| = 1$. Vedremo che anche in questo caso il metodo definito da h si dichiara non utilizzabile per approssimare α .

Si osservi, infine, che la condizione $|h'(\alpha)| < 1$, necessaria e sufficiente per l'utilizzabilità del metodo per approssimare il punto unito α , è verificabile *graficamente* confrontando la pendenza $(h'(\alpha))$ della retta tangente al grafico di y = h(x) in $x = \alpha$ con quella (1) della retta grafico di y = x e con quella (-1) della retta $y = \alpha - x$.

(1.62) Esercizio.

Per ogni x > 0, sia $f(x) = x + \log(x)$. Si vuole (i) sapere se f ha qualche zero e, in caso affermativo: (ii) separare gli zeri e, infine, (iii) decidere se ciascuno dei metodi definiti da

$$h_1(x) = -\log(x)$$
; $h_2(x) = \exp(-x)$; $h_3(x) = (\exp(-x) + x)/2$

sia utilizzabile per approssimare gli zeri di f.

Soluzione.

- (i) La funzione f(x) è continua, $f(x) \to -\infty$ quando $x \to 0$ e $f(x) \to +\infty$ quando $x \to +\infty$. Se ne deduce che f ha *almeno uno* zero. La funzione f(x) è anche derivabile e per ogni x > 0 risulta $f'(x) \neq 0$. Allora f ha *al più uno* zero. Dunque f ha *uno* zero, α .
- (ii) Si ha: f(1) = 1, dunque $\alpha \in$ [0,1], ovvero l'intervallo [0,1] separa lo zero di f.
- (iii) Si consideri la funzione $h_1(x)$. Si verifica facilmente che gli zeri di f sono tutti e soli i punti uniti di h_1 . Inoltre, h_1 è derivabile e per ogni x > 0 si ha $h_1'(x) = 1/x$. Essendo $\alpha \in (0,1)$ si ha certamente $|h_1'(\alpha)| > 1$. Per l'Osservazione (1.61) il metodo definito da h_1 non è utilizzabile per approssimare α .

Si consideri la funzione $h_2(x)$. Si verifica facilmente che gli zeri di f sono tutti e soli i

allora f ha al più k zeri distinti nell'intervallo [a,b].

¹ Sia f:[a,b] \rightarrow R una funzione sufficientemente regolare. Se per ogni x in [a,b] si ha $f^{(k)}(x) \neq 0$

punti uniti di h_2 . Inoltre, h_2 è derivabile e per ogni x si $ha \mid h_2'(x) \mid = \exp(-x)$. Essendo $\alpha \in (0,1)$ si ha certamente $\mid h_2'(\alpha) \mid < 1$ e, per il Teorema (1.59), il metodo definito da h_2 è utilizzabile per approssimare α . In base all'Osservazione (1.60), per determinare un punto iniziale a partire dal quale il metodo definisce una successione convergente ad α è sufficiente determinare un intervallo chiuso I che verifica le ipotesi (1) e (2) del Teorema di convergenza. L'intervallo [0,1] non va bene perché l'ipotesi (2) non è verificata: per ogni x in (0,1] si $ha 0 \leq |h_2'(x)| = \exp(-x) < 1$ $\underline{ma} \mid h_2'(0) \mid = 1$. Allora, un intervallo che verifica anche l'ipotesi (2) è [t,1] con $t \in (0,\alpha)$. Per determinare t si utilizza il Teorema di esistenza degli zeri. Siccome f(1/2) < 0, si pone t = 1/2 e I = [1/2, 1]. A questo punto è sufficiente decidere quale dei due estremi di I è più vicino allo zero. Si utilizza ancora il Teorema di esistenza degli zeri. Siccome f(3/4) > 0, si sceglie $x_0 = 1/2$.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione che definisce il metodo è negativa. Poiché, si riveda la dimostrazione dell'asserto (B) del Teorema di convergenza, per ogni k si ha:

$$x_k - \alpha = h'(t_{k-1})(x_{k-1} - \alpha)$$

per qualche numero reale t_{k-1} in I, allora per ogni k è h' (t_{k-1}) < 0 e le differenze x_k - α e x_{k-1} - α hanno $segno\ opposto$. Ne segue che gli elementi della successione si trovano, alternativamente, a destra e a sinistra di α : la successione 'oscilla' intorno allo zero. La successione delle $distanze\ |x_k$ - $\alpha|$ è comunque $monotona\ decrescente$ come mostrato nella dimostrazione del Teorema di convergenza.

Si consideri infine la funzione $h_3(x)$. Si verifica facilmente che gli zeri di f sono tutti e soli i punti uniti di h_3 . Inoltre, h_3 è derivabile e per ogni x si ha:

$$|h_3'(x)| = (1 - \exp(-x))/2$$

Essendo $\alpha \in (1/2,1)$ si ha certamente $|h_3'(\alpha)| < 1$ e, per il Teorema (1.59), il metodo definito da h_3 è utilizzabile per approssimare α . In base all'Osservazione (1.60), per determinare un punto iniziale a partire dal quale il metodo definisce una successione convergente ad α è sufficiente determinare un intervallo chiuso I che verifica le ipotesi (1) e (2) del Teorema di convergenza. L'intervallo I = [1/2,1] va bene, infatti per ogni x in I si ha $0 \le |h_3'(x)| < 1$. A questo punto è sufficiente decidere quale dei due estremi di I è più vicino allo zero. Procedendo come nel caso precedente, si sceglie $x_0 = 1/2$.

Si osservi che, in questo caso, per ogni x in I = [1/2, 1] la derivata prima della funzione che definisce il metodo è positiva. Ragionando come nel caso precedente, le differenze x_k - α e x_{k-1} - α hanno lo stesso segno. Ne segue che gli elementi della successione si trovano tutti dalla stessa parte rispetto ad α . Inoltre, anche in questo caso, la successione delle $distanze \ |x_k - \alpha|$ è monotona decrescente, e quindi la successione x_k risulta monotona (crescente se x_0 è a sinistra di α , decrescente nel caso opposto). Infine, si osservi che poiché per ogni x in I = [1/2, 1] la derivata prima della funzione che definisce il metodo è positiva, dalla dimostrazione del criterio di scelta del punto iniziale (Osservazione (1.60)) si deduce che per ogni x_0 in I la successione x_k converge ad α .

(1.63) Esercizio (per casa).

Per ogni $x \in R$ sia: $h(x) = 2 \operatorname{arctg}(x)$.

- (1) Determinare il numero di punti uniti di h e separarli.
- (2) Per ciascuno dei punti uniti, decidere se il metodo iterativo definito da h sia utilizzabile per l'approssimazione e, in caso affermativo, indicare un punto iniziale a partire dal quale la successione generata converge al punto unito in esame.
- (3) Rispondere alle domande precedenti utilizzando i metodi grafici, aiutandosi con *Scilab*.