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(1.48) Example (numerical approximation of the derivative).

Suppose we know, at instants t1 and t2, the positions x1 and x2 of a point moving on a 
straight line. The quantity:

v = (x2 – x1) / (t2 – t1)

is the average velocity of the point between the two instants. If the quantities x1 and x2  
are known only with relative error ε1 and ε2, for example because they were obtained through 
measurements, we can only obtain an approximation of v:

    (1 + ε2)x2 - (1 + ε1)x1 
w = ----------------------

    t2 – t1

The relative error committed by approximating v with w is:

                              w - v      x2            x1

----- = -------- ε2 + -------- ε1

                                v      x2 - x1             x2 - x1    

In the case where the difference x2 – x1 is small (for example when v is used as an estimate 
of the instantaneous velocity of a moving point with high velocity), as shown in the 
previous Remark, the calculation is ill-conditioned and the error committed by 
approximating v with w will be much greater than the single errors ε1 and ε2.

(1.49) Exercize.

The statement:

(A) x = a + δ  with  | δ | ⩽ d

is equivalent to:

(B) x ∈ [a - d , a + d]

We want to determine y and E so that the statement:

(*) x = (1 + ε)y  with  | ε | ⩽ E 

be equivalent to (A) and (B).

The statement (*) is equivalent to:

x ∈ [(1 - E)y , (1 + E)y]

This last statement is equivalent to (B) if and only if:

(1 – E)y = a - d    and    (1 + E)y = a + d
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Solving the system we get:

y = a   and   E = d / a

So the statements (A) and (B) are equivalent to:

(C) x = (1 + ε)a  with  | ε | ⩽ d / a

(1.50) Theorem (stability of the bisezione procedure).

Consider the implementation in Scilab1, of the bisezione procedure.

If the assignment

[z,v,info] = bisezione(f,a,b,delta)

terminates with info = 0 or info = 1, then:

| z – α* | ⩽ delta

where α* is a zero of a function g ‘close’ to the function f in the sense that:

for every x in [a,b] it is |f(x) – g(x)| ‘small’

Informally: if info = 0 or info = 1 then the procedure returns a good approximation of a 
zero of a function close to the one under consideration.

(Proof omitted.)

(1.51) Remark (conditioning of the zeros of a regular function).

Let f:[a,b] → R be regular (differentiable with continuous f’) with f’ ≠ 0 and f(a)f(b) < 
0, α be the only zero of f in [a,b], g:[a,b] → R be continuous and ‘close’ to f, precisely 
such that:

for every x in [a,b] it is |f(x) – g(x)| ⩽ d with a ‘small’ d and d < min{|f(a)|,|f(b)|}

By the assumptions made, g has at least one zero in [a,b]. We want to know how far the zero 
α of f can be from a zero of g.

Let α* be a zero of g in [a,b]. Then we have (using Lagrange’s Theorem):

f(α*) = f(α*) - f(α) = f’(t)(α* - α)   with   t between α* and α

Hence, denoted m = min{ |f’(x)|, x in [a,b] }, we have:

   |f(α*)|    |f(α*)|
α| * - α| = -------- ⩽ --------

  |f’(t)|       m

1 See Statement (1.08), Lecture 2.



Lecture 8 - 3

Finally, since:
|f(α*)| = |f(α*) - g(α*)| ⩽ d

we get:
             d

α| * - α| ⩽ ---
                 m

The quantity 1/m plays the role of condition number: the larger it is, the further the 
zeros of g can be from the zero of f.

If f’(x) = 0 for some x in [a,b], in particular if f’(α) = 0, the conditioning is certainly 
bad, as highlighted in the following Example.

(1.52) Example.

Let f(x) = (x – 2)13. The function has only one zero, α = 2, and is regular in the interval 
[1,3]. Then consider g:[1,3] → R continuous such that:

for every x in [1,3] it is |f(x) – g(x)| ⩽ 10-9

 The graph of such a function g is shown in the figure.

                        f(x) = (x – 2)13  

   
          

                  

In the worst case the distance between the zero α of f and a zero α* of g is 10-9/13 ≈ 0.2, 
much larger than the distance 10-9 between f and g.

(1.1) ONE-POINT METHODS

The strength of the bisection method is its generality: it can be applied to any function 
that is continuous and takes values of opposite signs at the endpoints of an interval. 
However, in some applications, the method requires an excessive number of iterations to 
achieve the accuracy required by the user. To overcome this drawback, let’s analyze other 
methods for approximating the zero of a function: one-point methods.

(1.53) Definition (one-point method).

Let h:[a,b] → R be a continuous function. The one-point method defined by h is the 
following procedure:

(x – 2)13 + 10-9          

(x – 2)13 - 10-9          

 2 g(x)

     

2 + 10-9/13

2 - 10-9/13

∙ ∙
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z = MetodoUnPunto(h,a,b,γ)

input: a continuous h:[a,b] → R, γ in [a,b]

• x(0) =  γ;
• for   k = 1,2,3,... repeat

if x(k-1) in [a,b] then x(k) = h(x(k-1)) else STOP

output: when an appropriate stopping criterion is met: z = x(k).

(1.54) Remark.

If we omit the stopping criterion and for every k we have x(k-1) in [a,b], the one-point 
method defines a sequence x(0), x(1), x(2),... If the sequence is convergent, its limit is 
a fixed point of h.2 

(Proof. The sequence x(0), x(1), x(2),... is identical to the sequence h(x(0)), h(x(1)), 
h(x(2)),... Therefore the latter is convergent and, if α be the limit of the sequence x(k):

lim
k →∞

h(x(k)) = α

Since h is a continuous function and the sequence x(k) converges to α, we have:

lim
k →∞

h(x(k)) = h(lim
k →∞

x(k)) = h(α)

By the uniqueness of the limit of a convergent sequence, we deduce that α = h(α).)

(1.55) Remark.

Let f be the continuous function for which we are interested in approximating some zero. As 
stated in the previous Remark, ‘if all goes well’ the one-point method defined by h can be 
used to approximate a fixed point of h. The one-point method can be used to approximate 
some zero of f, if we choose the function h that defines it such that:

(#)        {zeroes of f} = {fixed point of h}

The question arises whether there exist (continuous) functions h with the required 
property.

Consider the function h defined as follows:

h(x) = f(x) + x

If α is a zero of f, i.e. f(α) = 0, we have:

h(α) = f(α) + α = α  ⇒  α is a fixed point of h

Conversely, if α is a fixed point of h (i.e. α = h(α)), we have:

2 The real number α is a fixed point of h meaning that α = h(α).
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h(α) = f(α) + α  ⇒  f(α) = 0  ⇒  α is a zero of f

The function h is therefore a function that verifies the property (#).

It is easily verified that, if g is a continuous function such that g(x) ≠ 0 for all x, the 
function h defined by:

h(x) = g(x)f(x) + x

it is continuous and satisfies the property (#). So there exist infinitely many functions h 
that have as their fixed points all and only the zeros of f.

The problem now arises of choosing, among all the possible functions that have the property 
(#), an h such that the method defined by it generates a convergent sequence.
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(1.48) Example (numerical approximation of the derivative).



Suppose we know, at instants t1 and t2, the positions x1 and x2 of a point moving on a straight line. The quantity:

v = (x2 – x1) / (t2 – t1)



is the average velocity of the point between the two instants. If the quantities x1 and x2  are known only with relative error ε1 and ε2, for example because they were obtained through measurements, we can only obtain an approximation of v:



					   (1 + ε2)x2 - (1 + ε1)x1 

w = ----------------------

						  t2 – t1



The relative error committed by approximating v with w is:



 w - v   x2  x1

----- = -------- ε2 + -------- ε1

 v  x2 - x1  x2 - x1   



In the case where the difference x2 – x1 is small (for example when v is used as an estimate of the instantaneous velocity of a moving point with high velocity), as shown in the previous Remark, the calculation is ill-conditioned and the error committed by approximating v with w will be much greater than the single errors ε1 and ε2.



(1.49) Exercize.



The statement:



			(A)		x = a + δ  with  | δ | ⩽ d



is equivalent to:



			(B)		x ∈ [a - d , a + d]



We want to determine y and E so that the statement:



			(*)		x = (1 + ε)y  with  | ε | ⩽ E 



be equivalent to (A) and (B).



The statement (*) is equivalent to:



x ∈ [(1 - E)y , (1 + E)y]



This last statement is equivalent to (B) if and only if:



(1 – E)y = a - d  and  (1 + E)y = a + d



Solving the system we get:



y = a  and  E = d / a



So the statements (A) and (B) are equivalent to:



			(C)		x = (1 + ε)a  with  | ε | ⩽ d / a



(1.50) Theorem (stability of the bisezione procedure).



Consider the implementation in Scilab1 See Statement (1.08), Lecture 2. , of the bisezione procedure.



If the assignment



[z,v,info] = bisezione(f,a,b,delta)



terminates with info = 0 or info = 1, then:



| z – α* | ⩽ delta



where α* is a zero of a function g ‘close’ to the function f in the sense that:



for every x in [a,b] it is |f(x) – g(x)| ‘small’



Informally: if info = 0 or info = 1 then the procedure returns a good approximation of a zero of a function close to the one under consideration.



(Proof omitted.)



(1.51) Remark (conditioning of the zeros of a regular function).



Let f:[a,b] → R be regular (differentiable with continuous f’) with f’ ≠ 0 and f(a)f(b) < 0, α be the only zero of f in [a,b], g:[a,b] → R be continuous and ‘close’ to f, precisely such that:



for every x in [a,b] it is |f(x) – g(x)| ⩽ d with a ‘small’ d and d < min{|f(a)|,|f(b)|}



By the assumptions made, g has at least one zero in [a,b]. We want to know how far the zero α of f can be from a zero of g.



Let α* be a zero of g in [a,b]. Then we have (using Lagrange’s Theorem):



f(α*) = f(α*) - f(α) = f’(t)(α* - α)  with  t between α* and α



Hence, denoted m = min{ |f’(x)|, x in [a,b] }, we have:



						  |f(α*)|  |f(α*)|

|α* - α| = -------- ⩽ --------

						  |f’(t)|  m



Finally, since:

|f(α*)| = |f(α*) - g(α*)| ⩽ d

we get:

 						  d

|α* - α| ⩽ ---

  						  m



The quantity 1/m plays the role of condition number: the larger it is, the further the zeros of g can be from the zero of f.



If f’(x) = 0 for some x in [a,b], in particular if f’(α) = 0, the conditioning is certainly bad, as highlighted in the following Example.



(1.52) Example.



Let f(x) = (x – 2)13. The function has only one zero, α = 2, and is regular in the interval [1,3]. Then consider g:[1,3] → R continuous such that:



for every x in [1,3] it is |f(x) – g(x)| ⩽ 10-9



 The graph of such a function g is shown in the figure.



   (x – 2)13 + 10-9   



   	  						  f(x) = (x – 2)13  

   2 - 10-9/13 

										

  2 

										  

 g(x) 

 ∙ 

									   

   ∙ 

   

	  									  



 2 + 10-9/13 



   (x – 2)13 - 10-9   

	





In the worst case the distance between the zero α of f and a zero α* of g is 10-9/13 ≈ 0.2, much larger than the distance 10-9 between f and g.







(1.1) ONE-POINT METHODS







The strength of the bisection method is its generality: it can be applied to any function that is continuous and takes values of opposite signs at the endpoints of an interval. However, in some applications, the method requires an excessive number of iterations to achieve the accuracy required by the user. To overcome this drawback, let’s analyze other methods for approximating the zero of a function: one-point methods.



(1.53) Definition (one-point method).



Let h:[a,b] → R be a continuous function. The one-point method defined by h is the following procedure:



		z = MetodoUnPunto(h,a,b,γ)



input: a continuous h:[a,b] → R, γ in [a,b]



		x(0) =  γ;



		for k = 1,2,3,... repeat

if x(k-1) in [a,b] then x(k) = h(x(k-1)) else STOP









output: when an appropriate stopping criterion is met: z = x(k).







(1.54) Remark.



If we omit the stopping criterion and for every k we have x(k-1) in [a,b], the one-point method defines a sequence x(0), x(1), x(2),... If the sequence is convergent, its limit is a fixed point of h.2 The real number α is a fixed point of h meaning that α = h(α).  



(Proof. The sequence x(0), x(1), x(2),... is identical to the sequence h(x(0)), h(x(1)), h(x(2)),... Therefore the latter is convergent and, if α be the limit of the sequence x(k):



= α



Since h is a continuous function and the sequence x(k) converges to α, we have:



formula== h(α)



By the uniqueness of the limit of a convergent sequence, we deduce that α = h(α).)



(1.55) Remark.



Let f be the continuous function for which we are interested in approximating some zero. As stated in the previous Remark, ‘if all goes well’ the one-point method defined by h can be used to approximate a fixed point of h. The one-point method can be used to approximate some zero of f, if we choose the function h that defines it such that:



(#)			  {zeroes of f} = {fixed point of h}



The question arises whether there exist (continuous) functions h with the required property.



Consider the function h defined as follows:



h(x) = f(x) + x



If α is a zero of f, i.e. f(α) = 0, we have:



h(α) = f(α) + α = α  ⇒  α is a fixed point of h



Conversely, if α is a fixed point of h (i.e. α = h(α)), we have:



h(α) = f(α) + α  ⇒  f(α) = 0  ⇒  α is a zero of f



The function h is therefore a function that verifies the property (#).



It is easily verified that, if g is a continuous function such that g(x) ≠ 0 for all x, the function h defined by:

h(x) = g(x)f(x) + x



it is continuous and satisfies the property (#). So there exist infinitely many functions h that have as their fixed points all and only the zeros of f.



The problem now arises of choosing, among all the possible functions that have the property (#), an h such that the method defined by it generates a convergent sequence.

