Lecture 7 (hrs. 11,12) - October 7, 2025, 16:30 - 18:30 F3

(1.44) Remark (stability, non-elementary case).

Let $f_1, f_2: \mathbb{R} \to \mathbb{R}$ be two elementary functions and $\varphi_1, \varphi_2: \mathbb{R} \to \mathbb{M}$ be the algorithms used to approximate, respectively, the values of f_1 and f_2 . Let $x \in \mathbb{R}$, $f(x) = f_2(f_1(x))$ and $\varphi(x) = \varphi_2(\varphi_1(x))$. Finally, let the algorithms φ_1 and φ_2 be stable on \mathbb{R} . The question is whether the algorithm φ is stable when used to approximate f in f.

Using the stability of φ_1 and φ_2 we have: there exist real numbers $\varepsilon_1, \ldots, \varepsilon_4$ such that $|\varepsilon_j| \le u$, j = 1,2,3,4 and:

$$\varphi(\mathbf{x}) = \varphi_2(\varphi_1(\mathbf{x})) = (1 + \varepsilon_4) \mathbf{f}_2((1 + \varepsilon_3)(1 + \varepsilon_1) \mathbf{f}_1((1 + \varepsilon_2)\mathbf{x}))$$

Let $(1 + \varepsilon_3)(1 + \varepsilon_1) = 1 + t$, i.e. $t = \varepsilon_3 + \varepsilon_2 + \varepsilon_2\varepsilon_3$. It is: $|t| \leqslant 2u + u^2$ (< 1) and

$$\varphi(x) = (1 + \varepsilon_4)f_2((1 + t)f_1((1 + \varepsilon_2)x))$$

Let ϑ be the relative error committed when approximating $f_2(f_1((1+\varepsilon_2)x))$ with $f_2((1+t)f_1((1+\varepsilon_2)x))$. We rewrite:

$$f_2((1 + t)f_1((1 + \varepsilon_2)x)) = (1 + \vartheta)f_2(f_1((1 + \varepsilon_2)x))$$

Hence

$$\varphi(x) = (1 + \varepsilon_4)(1 + \vartheta)f_2(f_1((1 + \varepsilon_2)x))$$

Finally, set (1 + ε_4)(1 + ϑ) = 1 + $\varepsilon_{\rm V}$ and ε_2 = $\varepsilon_{\rm a}$. We get:

$$\varphi(x) = (1 + \varepsilon_v)f((1 + \varepsilon_a)x)$$

To be able to deduce the stability of φ when used to approximate f at x, we need to investigate the magnitude of the perturbations ε_v and ε_a . Regarding ε_a we have $|\varepsilon_a| \leq u$, therefore ε_a is 'small'. The magnitude of ε_v , however, depends on that of ϑ which, in turn, depends on the conditioning of the calculation of f_2 in $f_1((1 + \varepsilon_2)x)$. If this latter calculation is well conditioned (therefore ϑ is 'small') then φ is stable when used to approximate f at x, otherwise nothing can be said about the stability of φ .

(1.45) Remark (conditioning of the calculation of regular functions).

Let $f:A\to R$ be a regular function (i.e. with a continuous first derivative), and $x\in A$ such that $f(x)\neq 0$. We want to study the conditioning of the calculation of f in x.

Since $f(x) \neq 0$, as stated in Remark (1.41) of Lesson 6, we must study, given a 'small' $\alpha \in R$, the quantity:

By the regularity of f, using Lagrange's Theorem, we have:

there exists a real number ϑ between x and $(1 + \alpha)x$ such that

$$f((1 + \alpha)x) - f(x) = f'(\theta) \alpha x$$

So we rewrite:

$$f'(\vartheta) \alpha x$$

$$\varepsilon_{V} = -----$$

$$f(x)$$

Since we have a 'small' α , we can reasonably approximate $\vartheta \approx x$ and finally rewrite:

f'(x)
$$\varepsilon_{\rm V} \approx ---- \ {\rm x} \ \alpha$$
 f(x)

Introducing the condition number of the calculation of f in x:

$$c(x) = \left| \frac{f'(x)}{f(x)} x \right|$$

we get:

$$\mid \varepsilon_{v} \mid \approx c(x) \mid \alpha \mid$$

and the conditioning of the computation of f at x depends only on the size of the condition number c(x).

(1.46) <u>Example</u>.

Let $f(x) = \sin(x)$ and $x \in (0, \pi/2)$. The condition number of the computation of f at x is:

$$c(x) = \left| \frac{\cos(x)}{\sin(x)} x \right| = \left| \frac{x}{\tan(x)} \right| = \frac{x}{\tan(x)} < 1$$

So in this case the calculation of sin(x) is well conditioned. But if we consider x close to (but not equal to) π , taking into account that:

$$\lim_{t\to\pi} c(x) = \lim_{t\to\pi} \left| \frac{x}{\tan(x)} \right| = +\infty$$

the calculation of sin(x) is not well conditioned.

(1.47) Remark (conditioning of arithmetic operations).

Let $f(x_1,x_2) = x_1 + x_2$ and let x_1 , x_2 be such that $f(x_1,x_2) \neq 0$. We want to study the conditioning of the computation of f in x_1 , x_2 .

Since $f(x_1, x_2) \neq 0$, as stated in Remark (1.41) of Lecture 6, we must study, given 'small' real numbers α_1 and α_2 , the quantity:

$$\varepsilon_{v} = \frac{(1 + \alpha_{1}) x_{1} + (1 + \alpha_{2}) x_{2} - (x_{1} + x_{2})}{x_{1} + x_{2}} = \frac{x_{1}}{\alpha_{1}} + \frac{x_{2}}{\alpha_{2}}$$

Introducing the condition numbers:

$$c_1(x_1, x_2) = \left| \frac{x_1}{x_1 + x_2} \right|$$
 and $c_1(x_1, x_2) = \left| \frac{x_2}{x_1 + x_2} \right|$

we get:

<u>if</u> $x_1x_2 > 0$ (that is, the two addends have the same sign) <u>then</u>:

$$c_1(x_1,x_2) < 1$$
 and $c_2(x_1,x_2) < 1$

and the conditioning of the calculation of the sum is *good*. However, if $x_1x_2 < 0$ (i.e. the two addends have opposite signs), the conditioning of the calculation can be *worse the* smaller $x_1 + x_2$ is. In fact, given $x_1 \neq 0$ and set $x_2 = y - x_1$ (i.e. $x_1 + x_2 = y$) with $y \neq 0$, we get:

$$c_1(x_1, x_2) = \left| \frac{x_1}{y} \right|$$
 , $c_1(x_1, x_2) = \left| 1 - \frac{x_1}{y} \right|$

and:

$$\lim_{y\to 0} c_1(x_1, x_2) = +\infty$$
 , $\lim_{y\to 0} c_2(x_1, x_2) = +\infty$

In the case of the other arithmetic operations we have:

$$\varepsilon_{\rm V}$$
 = $\alpha_{\rm 1}$ + $\alpha_{\rm 2}$ + $\alpha_{\rm 1}$ $\alpha_{\rm 2}$ (multiplication)

$$\varepsilon_{\rm v} = \frac{\alpha_{\rm 1} - \alpha_{\rm 2}}{1 - \alpha_{\rm 2}} \qquad ({\rm division})$$

and in both cases the calculation is always well conditioned.