Lecture 7 (hrs. 11,12) - October 7, 2025, 16:30 - 18:30 F3

(1.44) Remark (stability, non-elementary case).

Let f1,f9:R + R be two elementary functions and ¢i1,p2:R #+ M be the algorithms used to
approximate, respectively, the values of fi and f5. Let x € R, f(x) = fo(£1(x)) and p(x) =
po(p1(x)). Finally, let the algorithms ¢y and @5 be stable on R. The question is whether

the algorithm ¢ is stable when used to approximate f in x.

Using the stability of ¢i1 and @5 we have: there exist real numbers €1,...,€4 such that |€j|
<u, j=1,2,3,4 and:

P(x) = o1 (x)) = (1 + eg)fo( (1 + e3) (1 + ep)f1((1 + e9)x) )
Let (1 + e3)(1 +6) =1 +t, i.e. t = e3 + €9 + e9e3. It is: |t] < 2u + u” (< 1) and
px) = (1 + ex)fo( (1 + )£ (1 + e9)x) )

Let ¥ be the relative error committed when approximating fo( f1((1 + e9)x) ) with fo( (1 +

t)f1((1 + €9)x) ). We rewrite:
fol (1 + ©)f1((L + e9)x) ) = (1 + D £1((L + e9)x) )
Hence
ex) = (1 +eg)@ + PDEo( £1((1 + g9)x) )

Finally, set (1 + &4)(1 + ) =1 + gy and €9 = €, We get:

px) = (1 + e )E((1 + g5)x)

To be able to deduce the stability of ¢ when used to approximate f at x, we need to

investigate the magnitude of the perturbations e, and e£,. Regarding e, we have |ey|l < u,
therefore €, is ‘small’. The magnitude of &y, however, depends on that of ¥ which, in turn,

depends on the conditioning of the calculation of fo in f1((1 + e9)x). If this latter

calculation is well conditioned (therefore ¥ is ‘small’) then ¢ is stable when used to
approximate f at x, otherwise nothing can be said about the stability of ¢.

(1.45) Remark (conditioning of the calculation of regular functions).

Let f:A + R be a regular function (i.e. with a continuous first derivative), and x € A such
that f(x) # 0. We want to study the conditioning of the calculation of f in x.
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Since f(x) # 0, as stated in Remark (1.41) of Lesson 6, we must study, given a ‘small’ «a €
R, the quantity:

f( 1 +a)x) - £(x)

By the regularity of f, using Lagrange’s Theorem, we have:
there exists a real number 1 between x and (1 + a)x such that
f(d+a)x) - £fx) =£W) ax
So we rewrite:

£f20) ax

Introducing the condition number of the calculation of f in x:

c(x) = ’f'(x) ‘

x
f(x)

we get:

ey | = cx) | al

and the conditioning of the computation of f at x depends only on the size of the condition
number c(x).

(1.46) Example.

Let £(x) = sin(x) and x € (0, w/2). The condition number of the computation of f at x is:

cos (x)

_ X _ X
sen(x)X’ B ’tan(x)‘ "~ tan(x)

c(x) = ‘ <1

So in this case the calculation of sin(x) is well conditioned. But if we consider x close
to (but not equal to) m, taking into account that:

limc(x) = lim 00

t-mT tom

X
7‘=+
tan (x)
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the calculation of sin(x) is mot well conditioned.
(1.47) Remark (conditioning of arithmetic operatioms).

Let £(x;,%X,) = X; + X, and let x;, X, be such that f(x;,x,) # 0. We want to study the
conditioning of the computation of f in x;, x,.

Since f(x;, x,) # 0, as stated in Remark (1.41) of Lecture 6, we must study, given ‘small’
real numbers «; and «,, the quantity:

1+ o) x+ (1 + @) x - (x +x) X X2

Introducing the condition numbers:

X

1 X

2

ci (xy,%,) = and ci(xy,%,) =

X1+X2 X1+X2

we get:

if =xx, > 0 (that is, the two addends have the same sign) then:
ci(x,%x) <1 and Colxy,%,) < 1

and the conditioning of the calculation of the sum is good. However, if x;x, < O (i.e. the

two addends have opposite signs), the conditioning of the calculation can be worse the

smaller x; + x, is. In fact, given x;, # O and set x, =y - x; (i.e. x; + x, = y) with y # 0,
we get:

Xl Xl
C1(X1,X2) = ‘_ ’ Cl(X1:X2) = ’1__
y y
and:
limc, (x,,x%x,) = +0 limc,(x,,x,) = +x
y-=0 y=0

In the case of the other arithmetic operations we have:

Ey = o + ay *t a; ay (multiplication)

(division)

and in both cases the calculation is always well conditioned.
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(1.44) Remark (stability, non-elementary case).



Let f1,f2:R → R be two elementary functions and φ1,φ2:R → M be the algorithms used to approximate, respectively, the values of f1 and f2. Let x ∈ R, f(x) = f2(f1(x)) and φ(x) = φ2(φ1(x)). Finally, let the algorithms φ1 and φ2 be stable on R. The question is whether the algorithm φ is stable when used to approximate f in x.



Using the stability of φ1 and φ2 we have: there exist real numbers ε1,...,ε4 such that |εj| ⩽ u, j = 1,2,3,4 and:



φ(x) = φ2(φ1(x)) =  (1 + ε4)f2( (1 + ε3)(1 + ε1)f1((1 + ε2)x) )



Let (1 + ε3)(1 + ε1) = 1 + t, i.e. t = ε3 + ε2 + ε2ε3. It is: |t| ⩽ 2u + u2 (< 1) and



φ(x) = (1 + ε4)f2( (1 + t)f1((1 + ε2)x) )



Let ϑ be the relative error committed when approximating f2( f1((1 + ε2)x) ) with f2( (1 + t)f1((1 + ε2)x) ). We rewrite:



f2( (1 + t)f1((1 + ε2)x) ) = (1 + ϑ)f2( f1((1 + ε2)x) )



Hence

φ(x) = (1 + ε4)(1 + ϑ)f2( f1((1 + ε2)x) )



Finally, set (1 + ε4)(1 + ϑ) = 1 + εv and ε2 = εa. We get:



φ(x) = (1 + εv)f((1 + εa)x)



To be able to deduce the stability of φ when used to approximate f at x, we need to investigate the magnitude of the perturbations εv and εa. Regarding εa we have |εa| ⩽ u, therefore εa is ‘small’. The magnitude of εv, however, depends on that of ϑ which, in turn, depends on the conditioning of the calculation of f2 in f1((1 + ε2)x). If this latter calculation is well conditioned (therefore ϑ is ‘small’) then φ is stable when used to approximate f at x, otherwise nothing can be said about the stability of φ.



(1.45) Remark (conditioning of the calculation of regular functions).



Let f:A → R be a regular function (i.e. with a continuous first derivative), and x ∈ A such that f(x) ≠ 0. We want to study the conditioning of the calculation of f in x.



Since f(x) ≠ 0, as stated in Remark (1.41) of Lesson 6, we must study, given a ‘small’ α ∈  R, the quantity:



					  f( (1 + α)x ) - f(x)

εv = ----------------------

						  f(x)



By the regularity of f, using Lagrange’s Theorem, we have:



	there exists a real number ϑ between x and (1 + α)x such that	



f( (1 + α)x ) - f(x) = f’(ϑ) α x 



So we rewrite:



 					   f’(ϑ) α x

εv = ----------

					  f(x)



Since we have a ‘small’ α, we can reasonably approximate ϑ ≈ x and finally rewrite:



 					   f’(x)

εv ≈ ------ x α

					  f(x)



Introducing the condition number of the calculation of f in x:



c(x) = 



we get:

| εv | ≈ c(x) | α |



and the conditioning of the computation of f at x depends only on the size of the condition number c(x).



(1.46) Example.



Let f(x) = sin(x) and x ∈ (0, π/2). The condition number of the computation of f at x is:



c(x) = formula= = < 1



So in this case the calculation of sin(x) is well conditioned. But if we consider x close to (but not equal to) π, taking into account that:



== +∞



the calculation of sin(x) is not well conditioned.



(1.47) Remark (conditioning of arithmetic operations).



Let f(x1,x2) = x1 + x2 and let x1, x2 be such that f(x1,x2) ≠ 0. We want to study the conditioning of the computation of f in x1, x2.



Since f(x1, x2) ≠ 0, as stated in Remark (1.41) of Lecture 6, we must study, given ‘small’ real numbers α1 and α2, the quantity:



	  (1 + α1) x1 + (1 + α2) x2 - (x1 + x2)  x1  x2

εv = ------------------------------------ = ------- α1 + ------- α2

			  	  x1 + x2  x1 + x2  x1 + x2



Introducing the condition numbers:



c1(x1,x2) =  and  c1(x1,x2) = formula



we get:



if  x1x2 > 0 (that is, the two addends have the same sign) then:



c1(x1,x2) < 1  and  c2(x1,x2) < 1



and the conditioning of the calculation of the sum is good. However, if x1x2 < 0 (i.e. the two addends have opposite signs), the conditioning of the calculation can be worse the smaller x1 + x2 is. In fact, given x1 ≠ 0 and set x2 = y – x1 (i.e. x1 + x2 = y) with y ≠ 0, we get:

c1(x1,x2) = formula ,  c1(x1,x2) = formula



and:

formula= +∞  ,  formula= +∞



In the case of the other arithmetic operations we have:



εv = α1 + α2 + α1 α2  (multiplication)



εv =  (division)



and in both cases the calculation is always well conditioned.

