
Lecture 6 (hrs. 9,10) – October 2, 2025, 8:30 – 10:30 F3

(1.31) Definition (predefined functions).

Let M = F(β,m) be the set of machine numbers of the computer under consideration, and rd be
the rounding function in M. The set FP of predefined functions, i.e. the functions that the
computer can calculate by operating with the elements of M, is made up of three classes.

• The set of predefined functions corresponding to arithmetic operations. If ⋅ is one
of the arithmetic operations between real numbers +, -, ×, / then the corresponding
predefined function is indicated by the symbol ⊙ (a small circle containing the
symbol of the operation considered) and is defined, for each pair ξ, ϑ of elements
of F(β,m) belonging to the domain of the operation ⋅, by

ξ ⊙ ϑ = rd(ξ ⋅ ϑ)

• The set of predefined functions corresponding to the usual elementary functions
(sin, cos, arcsin, arccos, ln, exp ...). If f:A → R is one of the elementary
functions then the corresponding predefined function is indicated by the symbol F
and is defined, for each element ξ of F(β,m) belonging to the domain A of the
elementary function f, by

F(ξ) = rd(f(ξ))

• The set of predefined functions corresponding to comparisons between real numbers
(<, , =, , , >). In this case, since the elements of⩽ ≠ ⩾ F(β,m) are real numbers,
they are compared as such. Thus, the predefined functions corresponding to
comparisons are simply the restrictions to F(β,m) × F(β,m) of comparisons between
real numbers (and it is not necessary to introduce new symbols to indicate them).

(1.32) Definition (algorithm, naive algorithm).

Let f1,...,fk be elementary functions or arithmetic operations and let f:A → R, where A is a
suitable subset of R, be the function obtained by composing f1,...,fk:

f(x) = f1 ∘ ... ∘ fk(x)

(for example: f(x) = sin(x) + cos(x), where f3(x) = sin(x), f2(x) = cos(x) and f1(x1,x2) = x1
+ x2). If we ask Scilab to evaluate the function f with the instruction

> f(x)

the returned value will be

F1 ∘ ... ∘ Fk(rd(x))

where F1,...,Fk(x) are, respectively, the predefined functions corresponding to f1,...,
fk(x).

The expression F1 ∘ ... ∘ Fk(rd(x)) defines a function φ: A → M called the naive algorithm
for f (for the function in the example: φ(x) = SEN(rd(x)) ⊕ COS(rd(x)), defined for every x

Lecture 6 - 2

in R). The term algorithm generally refers to a finite sequence of operations for
calculating predefined functions.

Except that very special cases, there will be values of x for which f(x) ≠ φ(x). In these
cases, we use φ(x) to approximate f(x), and it is interesting to have information on the
error committed.

To obtain this information we introduce the notions of accurate algorithm, stable algorithm
and well-conditioned computation of the value of a function.

(1.33) Definition (accurate algorithm).

Let f:A → R be a cunction, φ:A → M the algorithm used to approximate the values of f and x
∈ A.

The algorithm φ is said to be accurate (when used to approximate the value of f at x) if
there exists a real number ε such that:

(1) φ(x) = (1 + ε) f(x)
(2) ε ‘small’

If the algorithm is accurate for every x ∈ B ⊂ A, the algorithm is said to be accurate on
B. In that case ε will depend on x.

(1.34) Remark.

• Let f and x be such that f(x) ≠ 0. Condition (1) of the previous Definition is
equivalent to the following:

 φ(x) - f(x)
ε = ------------

 f(x)

In this case, then, the algorithm is accurate is equivalent to saying that the
relative error committed by approximating f(x) with φ(x) is ‘small’.

• If the algorithm is accurate we have: f(x) = 0 ⇔ φ(x) = 0.

• The definition of accurate algorithm is qualitative because the term ‘small’
relative to ε is not quantified. The concrete meaning of the term ‘small’ depends on
the individual case. For example, if, as in the case of the bisection method, it
only matters that φ(x) and f(x) have the same sign, ε ‘small’ means ε > -1.

Exercise: We use λ to approximate L > 0. What relative error ε is made using
 λ = 0? What value of λ should be used to obtain a relative error ε =
 1?

(1.35) Definition (stable algorithm).

Let f:A → R be a function, φ:A → M be the algorithm used to approximate the values of f and
x ∈ A.

The algorithm φ is said to be stable (when used to approximate the value of f at x) if

Lecture 6 - 3

there exist real numbers εa, εv such that:

(1) φ(x) = (1 + εv) f((1 + εa)x)

(2) εa, εv ‘small’

If the algorithm is stable for every x ∈ B ⊂ A, we say that the algorithm is stable on B.

In this case εa, εv will depend on x.

(1.36) Remark.

• If an algorithm is accurate then it is stable (εa = 0, εv = ε); a stable algorithm
may not be accurate.

• Informally: a stable algorithm returns a good approximation (εv ‘small’) of the value

of f at a point close to x (εa ‘small’).

(1.37) Remark (‘good’ algorithm).

The notion of stability formalizes the idea of a ‘good’ algorithm for approximating the
values of a given f. For example, if f is an elementary function and φ is the naive
algorithm for f, then, calling F the predefined function corresponding to f, we have:

φ(x) = F(rd(x)) = rd(f(rd(x)))

(1.38) Theorem (relative error and perturbation).

Recalling the Definition of relative error committed by approximating a real number t with
its rounded rd(t) and Theorem (1.28) of Lesson 5 on the limitation of the relative error,
we obtain:

Let x be a real number and rd be the rounding function in F(β,m). There exists a real
number ε such that:

rd(x) = (1 + ε)x and |ε| < u

The equality expresses the rounded of x as a (small) multiplicative perturbation of x.

(Proof: if x ≠ 0 then ε is the relative error committed by approximating x with rd(x);
if x = 0 (and therefore rd(x) = 0) the equality holds, for example, with ε = 0.)

(1.39) Remark (continuation of the previous one).

Using the previous Theorem twice we finally get:

φ(x) = (1 + ε2)f((1 + ε1)x) with |ε1| < u e |ε2| < u

The algorithm φ returns the best possible approximation of the value of f at the point
closest to x. In this sense, φ is the ‘best possible’ algorithm that the computer can use
to approximate f(x). Hence, generalizing, the idea that a ‘good’ algorithm for

Lecture 6 - 4

approximating the value of a function at a given point is an algorithm that returns a good
approximation of the value of the function at a point close to the one where we wanted to
compute it.

(1.40) Definition (well-conditioned computation of the value of a function).

Let f:A → R be a function and x ∈ A. The computation of the value of f at x is well-

conditioned if: for every ‘small’ real number α there exists a ‘small’ real number εv such
that

f((1 + α)x) = (1 + εv)f(x)

Informally: the computation of the value of f at x is well conditioned if the value of f at
any point ‘near’ x is a ‘good’ approximation of the value of f at x.

(1.41) Remark.

• The property that the computation of the value of f at x is well-conditioned
concerns only the function f. In particular, it is not related to the algorithm
chosen to approximate the values of f.

• If f(x) ≠ 0, the value of εv, once α is assigned, is determined. Specifically, εv
is:

 f((1 + α)x) - f(x)

εv = ----------------------
 f(x)

(1.42) Theorem (stability + well-conditioning => accuracy).

Let f:A → R be a function, x ∈ A, and φ be the algorithm used to approximate f(x). If the
algorithm is stable and the computation of f at x is well-conditioned, then the algorithm
is accurate.

Proof. By the stability of the algorithm there exist ε1 and ε2 such that:

φ(x) = (1 + ε2)f((1 + ε1)x) and ε1 e ε2 ‘small’

By the well-conditioning of the calculation of f at x there exists ε3 such that:

f((1 + ε1)x) = (1 + ε3)f(x) and ε3 ‘small’

Then we can rewrite:

φ(x) = (1 + ε2)(1 + ε3)f(x)

and, introducing (1 + ε2)(1 + ε3) = 1 + t, i.e. t = ε2 + ε3 + ε2ε3, we get:

Lecture 6 - 5

φ(x) = (1 + t)f(x) and t ‘small’

so the algorithm is accurate.

(1.43) Remark (stability of naive algorithms in elementary cases).

• From what we deduced in Remarks (1.37) and (1.39), if f:A → R is an elementary
function and φ is the naive algorithm for f, φ is stable on A: for each elementary
function the naive algorithm is stable.

• Let f(x1,x2) = x1 + x2. The naive algorithm for f is:

φ(x1,x2) = rd(x1) ⊕ rd(x2)

Recalling the definition of ⊕ (see Definition (1.31)) and using Theorem (1.38) three
times we obtain:

φ(x1,x2) = (1 + ε3)((1 + ε1)x + (1 + ε2)x) , with |εj| ⩽ u , j = 1,2,3

So, the naive algorithm for the sum is stable.

Similarly, the naive algorithm for each of the arithmetic operations is shown to be
stable.

Lecture 6 -

Lecture 6 -

		

Lecture 6 (hrs. 9,10) – October 2, 2025, 8:30 – 10:30 F3

(1.31) Definition (predefined functions).

Let M = F(β,m) be the set of machine numbers of the computer under consideration, and rd be the rounding function in M. The set FP of predefined functions, i.e. the functions that the computer can calculate by operating with the elements of M, is made up of three classes.

		The set of predefined functions corresponding to arithmetic operations. If ⋅ is one of the arithmetic operations between real numbers +, -, ×, / then the corresponding predefined function is indicated by the symbol ⊙ (a small circle containing the symbol of the operation considered) and is defined, for each pair ξ, ϑ of elements of F(β,m) belonging to the domain of the operation ⋅, by

	ξ ⊙ ϑ = rd(ξ ⋅ ϑ)

		The set of predefined functions corresponding to the usual elementary functions (sin, cos, arcsin, arccos, ln, exp ...). If f:A → R is one of the elementary functions then the corresponding predefined function is indicated by the symbol F and is defined, for each element ξ of F(β,m) belonging to the domain A of the elementary function f, by

F(ξ) = rd(f(ξ))

		The set of predefined functions corresponding to comparisons between real numbers (<, ⩽, =, ≠, ⩾, >). In this case, since the elements of F(β,m) are real numbers, they are compared as such. Thus, the predefined functions corresponding to comparisons are simply the restrictions to F(β,m) × F(β,m) of comparisons between real numbers (and it is not necessary to introduce new symbols to indicate them).

	

(1.32) Definition (algorithm, naive algorithm).

Let f1,...,fk be elementary functions or arithmetic operations and let f:A → R, where A is a suitable subset of R, be the function obtained by composing f1,...,fk:

f(x) = f1 ∘ ... ∘ fk(x)

(for example: f(x) = sin(x) + cos(x), where f3(x) = sin(x), f2(x) = cos(x) and f1(x1,x2) = x1 + x2). If we ask Scilab to evaluate the function f with the instruction

> f(x)

the returned value will be

F1 ∘ ... ∘ Fk(rd(x))

where F1,...,Fk(x) are, respectively, the predefined functions corresponding to f1,..., fk(x).

The expression F1 ∘ ... ∘ Fk(rd(x)) defines a function φ: A → M called the naive algorithm for f (for the function in the example: φ(x) = SEN(rd(x)) ⊕ COS(rd(x)), defined for every x in R). The term algorithm generally refers to a finite sequence of operations for calculating predefined functions.

Except that very special cases, there will be values of x for which f(x) ≠ φ(x). In these cases, we use φ(x) to approximate f(x), and it is interesting to have information on the error committed.

To obtain this information we introduce the notions of accurate algorithm, stable algorithm and well-conditioned computation of the value of a function.

(1.33) Definition (accurate algorithm).

Let f:A → R be a cunction, φ:A → M the algorithm used to approximate the values of f and x ∈ A.

The algorithm φ is said to be accurate (when used to approximate the value of f at x) if

there exists a real number ε such that:

		 φ(x) = (1 + ε) f(x)

		 ε ‘small’

If the algorithm is accurate for every x ∈ B ⊂ A, the algorithm is said to be accurate on B. In that case ε will depend on x.

(1.34) Remark.

		Let f and x be such that f(x) ≠ 0. Condition (1) of the previous Definition is equivalent to the following:

 φ(x) - f(x)

ε = ------------

 f(x)

	In this case, then, the algorithm is accurate is equivalent to saying that the 	relative error committed by approximating f(x) with φ(x) is ‘small’.	

		If the algorithm is accurate we have: f(x) = 0 ⇔ φ(x) = 0.

		The definition of accurate algorithm is qualitative because the term ‘small’ relative to ε is not quantified. The concrete meaning of the term ‘small’ depends on the individual case. For example, if, as in the case of the bisection method, it only matters that φ(x) and f(x) have the same sign, ε ‘small’ means ε > -1.

		Exercise: We use λ to approximate L > 0. What relative error ε is made using 			 λ = 0? What value of λ should be used to obtain a relative error ε = 			 1?

(1.35) Definition (stable algorithm).

Let f:A → R be a function, φ:A → M be the algorithm used to approximate the values of f and x ∈ A.

The algorithm φ is said to be stable (when used to approximate the value of f at x) if

there exist real numbers εa, εv such that:

		φ(x) = (1 + εv) f((1 + εa)x)

		εa, εv ‘small’

If the algorithm is stable for every x ∈ B ⊂ A, we say that the algorithm is stable on B. In this case εa, εv will depend on x.

(1.36) Remark.

		If an algorithm is accurate then it is stable (εa = 0, εv = ε); a stable algorithm may not be accurate.

		Informally: a stable algorithm returns a good approximation (εv ‘small’) of the value of f at a point close to x (εa ‘small’).

(1.37) Remark (‘good’ algorithm).

The notion of stability formalizes the idea of a ‘good’ algorithm for approximating the values of a given f. For example, if f is an elementary function and φ is the naive algorithm for f, then, calling F the predefined function corresponding to f, we have:

φ(x) = F(rd(x)) = rd(f(rd(x)))

(1.38) Theorem (relative error and perturbation).

Recalling the Definition of relative error committed by approximating a real number t with its rounded rd(t) and Theorem (1.28) of Lesson 5 on the limitation of the relative error, we obtain:

Let x be a real number and rd be the rounding function in F(β,m). There exists a real number ε such that:

rd(x) = (1 + ε)x and |ε| < u

The equality expresses the rounded of x as a (small) multiplicative perturbation of x.

(Proof: if x ≠ 0 then ε is the relative error committed by approximating x with rd(x);

if x = 0 (and therefore rd(x) = 0) the equality holds, for example, with ε = 0.)

(1.39) Remark (continuation of the previous one).

Using the previous Theorem twice we finally get:

φ(x) = (1 + ε2)f((1 + ε1)x) with |ε1| < u e |ε2| < u

The algorithm φ returns the best possible approximation of the value of f at the point closest to x. In this sense, φ is the ‘best possible’ algorithm that the computer can use to approximate f(x). Hence, generalizing, the idea that a ‘good’ algorithm for approximating the value of a function at a given point is an algorithm that returns a good approximation of the value of the function at a point close to the one where we wanted to compute it.

(1.40) Definition (well-conditioned computation of the value of a function).

Let f:A → R be a function and x ∈ A. The computation of the value of f at x is well-conditioned if: for every ‘small’ real number α there exists a ‘small’ real number εv such that

f((1 + α)x) = (1 + εv)f(x)

Informally: the computation of the value of f at x is well conditioned if the value of f at any point ‘near’ x is a ‘good’ approximation of the value of f at x.

(1.41) Remark.

		The property that the computation of the value of f at x is well-conditioned concerns only the function f. In particular, it is not related to the algorithm chosen to approximate the values of f.

		If f(x) ≠ 0, the value of εv, once α is assigned, is determined. Specifically, εv is:

 					 f((1 + α)x) - f(x)

εv = ----------------------

						 f(x)

(1.42) Theorem (stability + well-conditioning => accuracy).

Let f:A → R be a function, x ∈ A, and φ be the algorithm used to approximate f(x). If the algorithm is stable and the computation of f at x is well-conditioned, then the algorithm is accurate.

Proof. By the stability of the algorithm there exist ε1 and ε2 such that:

φ(x) = (1 + ε2)f((1 + ε1)x) and ε1 e ε2 ‘small’

By the well-conditioning of the calculation of f at x there exists ε3 such that:

f((1 + ε1)x) = (1 + ε3)f(x) and ε3 ‘small’

Then we can rewrite:

φ(x) = (1 + ε2)(1 + ε3)f(x)

and, introducing (1 + ε2)(1 + ε3) = 1 + t, i.e. t = ε2 + ε3 + ε2ε3, we get:

φ(x) = (1 + t)f(x) and t ‘small’

so the algorithm is accurate.

(1.43) Remark (stability of naive algorithms in elementary cases).

		From what we deduced in Remarks (1.37) and (1.39), if f:A → R is an elementary function and φ is the naive algorithm for f, φ is stable on A: for each elementary function the naive algorithm is stable.

		Let f(x1,x2) = x1 + x2. The naive algorithm for f is:

φ(x1,x2) = rd(x1) ⊕ rd(x2)

	Recalling the definition of ⊕ (see Definition (1.31)) and using Theorem (1.38) three 	times we obtain:

	φ(x1,x2) = (1 + ε3)((1 + ε1)x + (1 + ε2)x) , with |εj| ⩽ u , j = 1,2,3

	So, the naive algorithm for the sum is stable.

	Similarly, the naive algorithm for each of the arithmetic operations is shown to be 	stable.

