
Lecture 6 (hrs. 9,10) – October 2, 2025, 8:30 – 10:30 F3

(1.31) Definition (predefined functions).

Let M = F(β,m) be the set of machine numbers of the computer under consideration, and rd be 
the rounding function in M. The set FP of predefined functions, i.e. the functions that the 
computer can calculate by operating with the elements of M, is made up of three classes.

• The set of predefined functions corresponding to arithmetic operations. If ⋅ is one 
of the arithmetic operations between real numbers +, -, ×, / then the corresponding 
predefined function is indicated by the symbol ⊙ (a small circle containing the 
symbol of the operation considered) and is defined, for each pair ξ, ϑ of elements 
of F(β,m) belonging to the domain of the operation ⋅, by

ξ ⊙ ϑ = rd(ξ ⋅ ϑ)

• The set of predefined functions corresponding to the usual elementary functions 
(sin, cos, arcsin, arccos, ln, exp ...). If f:A → R is one of the elementary 
functions then the corresponding predefined function is indicated by the symbol F 
and is defined, for each element ξ of F(β,m) belonging to the domain A of the 
elementary function f, by

F(ξ) = rd(f(ξ))

• The set of predefined functions corresponding to comparisons between real numbers 
(<, , =, , , >). In this case, since the elements of⩽ ≠ ⩾  F(β,m) are real numbers, 
they are compared as such. Thus, the predefined functions corresponding to 
comparisons are simply the restrictions to F(β,m) × F(β,m) of comparisons between 
real numbers (and it is not necessary to introduce new symbols to indicate them).

(1.32) Definition (algorithm, naive algorithm).

Let f1,...,fk be elementary functions or arithmetic operations and let f:A → R, where A is a 
suitable subset of R, be the function obtained by composing f1,...,fk:

f(x) =  f1 ∘ ... ∘ fk(x)

(for example: f(x) = sin(x) + cos(x), where f3(x) = sin(x), f2(x) = cos(x) and f1(x1,x2) = x1 
+ x2). If we ask Scilab to evaluate the function f with the instruction

> f(x)

the returned value will be

F1 ∘ ... ∘ Fk(rd(x))

where F1,...,Fk(x) are, respectively, the predefined functions corresponding to f1,..., 
fk(x). 

The expression F1 ∘ ... ∘ Fk(rd(x)) defines a function φ: A → M called the naive algorithm 
for f (for the function in the example: φ(x) = SEN(rd(x)) ⊕ COS(rd(x)), defined for every x 
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in R). The term algorithm generally refers to a finite sequence of operations for 
calculating predefined functions.

Except that very special cases, there will be values of x for which f(x) ≠ φ(x). In these 
cases, we use φ(x) to approximate f(x), and it is interesting to have information on the 
error committed.

To obtain this information we introduce the notions of accurate algorithm, stable algorithm 
and well-conditioned computation of the value of a function.

(1.33) Definition (accurate algorithm).

Let f:A → R be a cunction, φ:A → M the algorithm used to approximate the values of f and x 
∈ A.

The algorithm φ is said to be accurate (when used to approximate the value of f at x) if
there exists a real number ε such that:

(1)  φ(x) = (1 + ε) f(x)
(2)  ε ‘small’

If the algorithm is accurate for every x ∈ B ⊂ A, the algorithm is said to be accurate on 
B. In that case ε will depend on x.    

(1.34) Remark.

• Let f and x be such that f(x) ≠ 0. Condition (1) of the previous Definition is 
equivalent to the following:

         φ(x) - f(x)
ε = ------------

     f(x)

In this case, then, the algorithm is accurate is equivalent to saying that the 
relative error committed by approximating f(x) with  φ(x) is ‘small’.

• If the algorithm is accurate we have: f(x) = 0 ⇔  φ(x) = 0.

• The definition of accurate algorithm is qualitative because the term ‘small’ 
relative to ε is not quantified. The concrete meaning of the term ‘small’ depends on 
the individual case. For example, if, as in the case of the bisection method, it 
only matters that φ(x) and f(x) have the same sign, ε ‘small’ means ε > -1.

Exercise: We use λ to approximate L > 0. What relative error ε is made using 
   λ = 0? What value of λ should be used to obtain a relative error ε = 
   1?

(1.35) Definition (stable algorithm).

Let f:A → R be a function, φ:A → M be the algorithm used to approximate the values of f and 
x ∈ A.

The algorithm φ is said to be stable (when used to approximate the value of f at x) if
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there exist real numbers εa, εv such that:

(1) φ(x) = (1 + εv) f((1 + εa)x)

(2) εa, εv ‘small’

If the algorithm is stable for every x ∈ B ⊂ A, we say that the algorithm is stable on B. 

In this case εa, εv will depend on x.

(1.36) Remark.

• If an algorithm is accurate then it is stable (εa = 0, εv = ε); a stable algorithm 
may not be accurate.

• Informally: a stable algorithm returns a good approximation (εv ‘small’) of the value 

of f at a point close to x (εa ‘small’).

(1.37) Remark (‘good’ algorithm).

The notion of stability formalizes the idea of a ‘good’ algorithm for approximating the 
values of a given f. For example, if f is an elementary function and φ is the naive 
algorithm for f, then, calling F the predefined function corresponding to f, we have:

φ(x) = F( rd(x) ) = rd( f( rd(x) ) )

(1.38) Theorem (relative error and perturbation).

Recalling the Definition of relative error committed by approximating a real number t with 
its rounded rd(t) and Theorem (1.28) of Lesson 5 on the limitation of the relative error, 
we obtain:

Let x be a real number and rd be the rounding function in F(β,m). There exists a real 
number ε such that:

rd(x) = (1 + ε)x    and     |ε| < u

The equality expresses the rounded of x as a (small) multiplicative perturbation of x.

(Proof: if x ≠ 0 then ε is the relative error committed by approximating x with rd(x);
if x = 0 (and therefore rd(x) = 0) the equality holds, for example, with ε = 0.)

(1.39) Remark (continuation of the previous one).

Using the previous Theorem twice we finally get:

φ(x) = (1 + ε2)f( (1 + ε1)x )    with    |ε1| < u  e  |ε2| < u

The algorithm φ returns the best possible approximation of the value of f at the point 
closest to x. In this sense, φ is the ‘best possible’ algorithm that the computer can use 
to approximate f(x). Hence, generalizing, the idea that a ‘good’ algorithm for 
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approximating the value of a function at a given point is an algorithm that returns a good 
approximation of the value of the function at a point close to the one where we wanted to 
compute it.

(1.40) Definition (well-conditioned computation of the value of a function).

Let f:A → R be a function and x ∈ A. The computation of the value of f at x is well-

conditioned if: for every ‘small’ real number α there exists a ‘small’ real number εv such 
that

f( (1 + α)x ) = (1 + εv)f(x)

Informally: the computation of the value of f at x is well conditioned if the value of f at 
any point ‘near’ x is a ‘good’ approximation of the value of f at x.

(1.41) Remark.

• The property that the computation of the value of f at x is well-conditioned 
concerns only the function f. In particular, it is not related to the algorithm 
chosen to approximate the values of f.

• If f(x) ≠ 0, the value of εv, once α is assigned, is determined. Specifically, εv 
is:

          f( (1 + α)x ) - f(x)

εv = ----------------------
      f(x)

(1.42) Theorem (stability + well-conditioning => accuracy).

Let f:A → R be a function, x ∈ A, and φ be the algorithm used to approximate f(x). If the 
algorithm is stable and the computation of f at x is well-conditioned, then the algorithm 
is accurate.

Proof. By the stability of the algorithm there exist ε1 and ε2 such that:

φ(x) = (1 + ε2)f( (1 + ε1)x )    and    ε1 e ε2 ‘small’

By the well-conditioning of the calculation of f at x there exists ε3 such that:

f( (1 + ε1)x ) = (1 + ε3)f(x)    and    ε3 ‘small’

Then we can rewrite:

φ(x) = (1 + ε2)(1 + ε3)f(x)

and, introducing (1 + ε2)(1 + ε3) = 1 + t, i.e. t =  ε2 + ε3 + ε2ε3, we get:
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φ(x) = (1 + t)f(x)    and    t ‘small’

so the algorithm is accurate.

(1.43) Remark (stability of naive algorithms in elementary cases).

• From what we deduced in Remarks (1.37) and (1.39), if f:A → R is an elementary 
function and φ is the naive algorithm for f, φ is stable on A: for each elementary 
function the naive algorithm is stable.

• Let f(x1,x2) = x1 + x2. The naive algorithm for f is:

φ(x1,x2) = rd(x1) ⊕ rd(x2)

Recalling the definition of ⊕ (see Definition (1.31)) and using Theorem (1.38) three 
times we obtain:

φ(x1,x2) = (1 + ε3)( (1 + ε1)x + (1 + ε2)x )    ,    with |εj| ⩽ u , j = 1,2,3

So, the naive algorithm for the sum is stable.

Similarly, the naive algorithm for each of the arithmetic operations is shown to be 
stable.
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Let M = F(β,m) be the set of machine numbers of the computer under consideration, and rd be the rounding function in M. The set FP of predefined functions, i.e. the functions that the computer can calculate by operating with the elements of M, is made up of three classes.
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(1.32) Definition (algorithm, naive algorithm).



Let f1,...,fk be elementary functions or arithmetic operations and let f:A → R, where A is a suitable subset of R, be the function obtained by composing f1,...,fk:



f(x) =  f1 ∘ ... ∘ fk(x)



(for example: f(x) = sin(x) + cos(x), where f3(x) = sin(x), f2(x) = cos(x) and f1(x1,x2) = x1 + x2). If we ask Scilab to evaluate the function f with the instruction



> f(x)



the returned value will be



F1 ∘ ... ∘ Fk(rd(x))



where F1,...,Fk(x) are, respectively, the predefined functions corresponding to f1,..., fk(x). 



The expression F1 ∘ ... ∘ Fk(rd(x)) defines a function φ: A → M called the naive algorithm for f (for the function in the example: φ(x) = SEN(rd(x)) ⊕ COS(rd(x)), defined for every x in R). The term algorithm generally refers to a finite sequence of operations for calculating predefined functions.



Except that very special cases, there will be values of x for which f(x) ≠ φ(x). In these cases, we use φ(x) to approximate f(x), and it is interesting to have information on the error committed.



To obtain this information we introduce the notions of accurate algorithm, stable algorithm and well-conditioned computation of the value of a function.



(1.33) Definition (accurate algorithm).



Let f:A → R be a cunction, φ:A → M the algorithm used to approximate the values of f and x ∈ A.



The algorithm φ is said to be accurate (when used to approximate the value of f at x) if

there exists a real number ε such that:



		 φ(x) = (1 + ε) f(x)



		 ε ‘small’







If the algorithm is accurate for every x ∈ B ⊂ A, the algorithm is said to be accurate on B. In that case ε will depend on x.  



(1.34) Remark.



		Let f and x be such that f(x) ≠ 0. Condition (1) of the previous Definition is equivalent to the following:





 φ(x) - f(x)

ε = ------------

 f(x)



	In this case, then, the algorithm is accurate is equivalent to saying that the 	relative error committed by approximating f(x) with  φ(x) is ‘small’.	



		If the algorithm is accurate we have: f(x) = 0 ⇔  φ(x) = 0.







		The definition of accurate algorithm is qualitative because the term ‘small’ relative to ε is not quantified. The concrete meaning of the term ‘small’ depends on the individual case. For example, if, as in the case of the bisection method, it only matters that φ(x) and f(x) have the same sign, ε ‘small’ means ε > -1.







		Exercise: We use λ to approximate L > 0. What relative error ε is made using 			  λ = 0? What value of λ should be used to obtain a relative error ε = 			  1?



(1.35) Definition (stable algorithm).



Let f:A → R be a function, φ:A → M be the algorithm used to approximate the values of f and x ∈ A.



The algorithm φ is said to be stable (when used to approximate the value of f at x) if

there exist real numbers εa, εv such that:



		φ(x) = (1 + εv) f((1 + εa)x)



		εa, εv ‘small’







If the algorithm is stable for every x ∈ B ⊂ A, we say that the algorithm is stable on B. In this case εa, εv will depend on x.



(1.36) Remark.



		If an algorithm is accurate then it is stable (εa = 0, εv = ε); a stable algorithm may not be accurate.



		Informally: a stable algorithm returns a good approximation (εv ‘small’) of the value of f at a point close to x (εa ‘small’).







(1.37) Remark (‘good’ algorithm).



The notion of stability formalizes the idea of a ‘good’ algorithm for approximating the values of a given f. For example, if f is an elementary function and φ is the naive algorithm for f, then, calling F the predefined function corresponding to f, we have:



φ(x) = F( rd(x) ) = rd( f( rd(x) ) )





(1.38) Theorem (relative error and perturbation).



Recalling the Definition of relative error committed by approximating a real number t with its rounded rd(t) and Theorem (1.28) of Lesson 5 on the limitation of the relative error, we obtain:



Let x be a real number and rd be the rounding function in F(β,m). There exists a real number ε such that:



rd(x) = (1 + ε)x  and  |ε| < u



The equality expresses the rounded of x as a (small) multiplicative perturbation of x.



(Proof: if x ≠ 0 then ε is the relative error committed by approximating x with rd(x);

if x = 0 (and therefore rd(x) = 0) the equality holds, for example, with ε = 0.)



(1.39) Remark (continuation of the previous one).



Using the previous Theorem twice we finally get:



φ(x) = (1 + ε2)f( (1 + ε1)x )  with  |ε1| < u  e  |ε2| < u





The algorithm φ returns the best possible approximation of the value of f at the point closest to x. In this sense, φ is the ‘best possible’ algorithm that the computer can use to approximate f(x). Hence, generalizing, the idea that a ‘good’ algorithm for approximating the value of a function at a given point is an algorithm that returns a good approximation of the value of the function at a point close to the one where we wanted to compute it.





(1.40) Definition (well-conditioned computation of the value of a function).



Let f:A → R be a function and x ∈ A. The computation of the value of f at x is well-conditioned if: for every ‘small’ real number α there exists a ‘small’ real number εv such that



f( (1 + α)x ) = (1 + εv)f(x)



Informally: the computation of the value of f at x is well conditioned if the value of f at any point ‘near’ x is a ‘good’ approximation of the value of f at x.



(1.41) Remark.



		The property that the computation of the value of f at x is well-conditioned concerns only the function f. In particular, it is not related to the algorithm chosen to approximate the values of f.



		If f(x) ≠ 0, the value of εv, once α is assigned, is determined. Specifically, εv is:





 					  f( (1 + α)x ) - f(x)

εv = ----------------------

						  f(x)



(1.42) Theorem (stability + well-conditioning => accuracy).



Let f:A → R be a function, x ∈ A, and φ be the algorithm used to approximate f(x). If the algorithm is stable and the computation of f at x is well-conditioned, then the algorithm is accurate.



Proof. By the stability of the algorithm there exist ε1 and ε2 such that:



φ(x) = (1 + ε2)f( (1 + ε1)x )  and  ε1 e ε2 ‘small’





By the well-conditioning of the calculation of f at x there exists ε3 such that:



f( (1 + ε1)x ) = (1 + ε3)f(x)  and  ε3 ‘small’



Then we can rewrite:



φ(x) = (1 + ε2)(1 + ε3)f(x)



and, introducing (1 + ε2)(1 + ε3) = 1 + t, i.e. t =  ε2 + ε3 + ε2ε3, we get:



φ(x) = (1 + t)f(x)  and  t ‘small’



so the algorithm is accurate.



(1.43) Remark (stability of naive algorithms in elementary cases).



		From what we deduced in Remarks (1.37) and (1.39), if f:A → R is an elementary function and φ is the naive algorithm for f, φ is stable on A: for each elementary function the naive algorithm is stable.



		Let f(x1,x2) = x1 + x2. The naive algorithm for f is:







φ(x1,x2) = rd(x1) ⊕ rd(x2)



	Recalling the definition of ⊕ (see Definition (1.31)) and using Theorem (1.38) three 	times we obtain:



	φ(x1,x2) = (1 + ε3)( (1 + ε1)x + (1 + ε2)x )  ,  with |εj| ⩽ u , j = 1,2,3



	So, the naive algorithm for the sum is stable.



	Similarly, the naive algorithm for each of the arithmetic operations is shown to be 	stable.

