
Lecture 5 (hrs. 7,8) – October 1, 2025, 11:30 – 13:30 A13

(1.22) Remark (consequences of F(2,53) ≠ R).

Let M indicate the set of numbers that the computer can manipulate, the computer’s ‘machine
numbers’. Which set M exactly is depends on the computer you are considering. In the case
of Scilab (and Octave and Matlab) the set M is ‘substantially’ F(2,53). Reserving the right
to clarify the differences between the two sets later, we assume that:

 in Scilab it is M = F(2,53)

Consider the following examples (the > character is the Scilab console prompt).

• > x = 0.1;

Since 0.1 = 1/10 ∉ F(2,53), after the assignment the value of x is not equal to
1/10.

• > (1 – 9/10) * 10 – 1
 ans = - 2.220D-16

We have: 1, 9, 10 ∈ F(2,53) but 9/10 ∉ F(2,53). That is:

there exist x,y ∈ F(2,53) s.t. x/y ∉ F(2,53)

 x(x - 1)
• Let f(x) = ----------- , whose domain is x > 0 and x ≠ 1.

 x – sqrt(x)

 x2 – x (x + sqrt(x))(x - sqrt(x))
(A) It is: f(x) = ----------- = -------------------------- = x + sqrt(x)

 x – sqrt(x) x – sqrt(x)

(B) When x = 2 ∈ F(2,53) we have:

> a = 2 * (2 – 1)/(2 – sqrt(2));

> b = 2 + sqrt(2);

> a == b

ans = F

(1.23) Definition (the rounding function).

The computer uses the elements of F(β,m) to approximate real numbers. The approximation is
achieved by the rounding function rd: R → F(β,m) defined as follows:

rd(x) = the element of F(β,m) closest to x or, in case of ambiguity,
 that of the two elements of F(β,m) equidistant from x that has the

fraction ending in an even digit.

Lecture 5 - 2

(1.24) Remark.

The definition is well posed if β is even and m ⩾ 2. In that case, if the last digit of the
fraction of ξ ∈ F(β,m) is even (respectively: odd), the last digit of the fraction of the
successor of ξ is odd (respectively: even).

If β is even and m = 1 or β is odd, however, the definition is not well posed. For example,
in F(3,2) the positive elements with zero exponent are:

30 0.10 ; 30 0.11 ; 30 0.12 ; 30 0.20 ; ...

and the last two elements written are consecutive and both have an even fraction’s last
digit.

(1.25) Example.

Let x = 1/10. We want to determine the rounded value of x in F(2,3).

We already know (see Example (1.15)) that: x = 2-3 0.1100. Then we have the situation in
figure:

 elements of F(2,3) adjacent to x (the left one is
 obtained by truncating the fraction of x to the
 number of digits indicated by the precision - in

this case 3 - the right one is the successor)
 2-3 0.110 2-3 0.111

 midpoint = 2-3 0.1101 > x ⇒ rd(x) = 2-3 0.110 (= 3/32)

(1.26) Remark.

The rd function is not a function that the computer makes available to the user, but it is
essential to understand how:

(1) the computer ‘reads’ real numbers;
(2) the computer performs operations on the elements of F(β,m).

(1.27) Example.

Let's take up the first Example of the Remark (1.22). In Scilab the effect of assignment:

> x = 0.1

is: the value rd(0.1) ∈ F(2,53) is assigned to the variable x (if the variable x does not
exist at the time of the assignment, it is created).

The calculator approximates the real number with its rounded value in F(β,m). We are
interested in how large an error is being made.

Lezione 4 - 3

(1.28) Theorem (bound on relative error).

Let rd the rounding function in F(β,m). For every real number x ≠ 0 it is:

|rd (x)−x|

|x|
⩽

1
2

β
1-m = u (machine precision)

(Proof...)

(1.29) Remark.

• The bound is uniform, in the sense that the quantity that limits the error is
independent of x (it depends only on the parameters β and m that define the set of
numbers).

• For F(2,53) it is u = 1
2

21-53 = 2-53 ≈ 1.11 10-16.

• If we consider the absolute error, from the previous Theorem we obtain, for each
real number x, the (non-uniform!) limitation:

|rd(x) – x| ⩽ u |x|

It follows that the further away x is from zero, the greater the absolute error can
be.

The substantial difference between the two bounds — one is uniform and the other is
not — is due to how the elements of F(β,m) are distributed on the real line. The
distribution is specifically designed to achieve uniform bounding of the relative
error.

(1.30) Example.

Let ξ be a positive element of F(2,53) and ϑ the successor of ξ. It is:

• ξ/2 ∈ F(2,53) , ϑ/2 ∈ F(2,53)
 ξ ϑ

• ξ/2 + ϑ/2 ∉ F(2,53)

 (ξ + ϑ)/2

Choosing ξ = 1, in Scilab we have the following dialogue (for each t ∈ F(2,53),
nearfloat(‘succ’,t) is the successor of t):

> c = 1/2 + nearfloat(‘succ’,1)/2

c = 1

> c == 1

ans = T

To understand the dialogue, it is necessary to understand how Scilab sums two machine
numbers. If ξ,ϑ ∈ F(2,53), we indicate with ξ ⊕ ϑ the value assigned by Scilab to the
expression ξ + ϑ. It is, by definition:

Lecture 5 - 4

 ξ ⊕ ϑ = rd(ξ + ϑ)

The value is defined ‘as best as possible’ in the sense that the error between the exact
value ξ + ϑ and the defined value ξ ⊕ ϑ is as small as possible.

Let's go back to the Example. The value that Scilab assigns to c is, then:

1/2 ⊕ nearfloat(‘succ’,1)/2 = rd(1/2 + nearfloat(‘succ’,1)/2)

which, according to the definition of rounding, is equal to 1 (the one, between the two
elements adjacent to the number to be rounded, which has the last digit of the fraction
even).

What happens in the first assignment is:

 1/2 + nearfloat(‘succ’,1)/2 ...

 rd rd

 1/2 ...

 1

 ⊕

 c 1
 computer

 rd*: R → F(10,5)

Lecture 5 -

Lezione 4 -

Tu Sl <MU- ua/Qbo/Q/:ﬁ%H) Al s

det (prevdo-op anrtmTiets |

Sf(ﬁ\ ;{—'e_{‘f'/-/x//}'

TE £, € F((s/m) :
T @E = (55,
Le fprecdo-op sowo defimite "Ml muoda
W\“a”\w“* hooibde " mal neuse ol
2 oo U X qulove oot (gl*%)
e qudle defirnity (5@ E) ot
o Lo bl

e e o e e B 00 0 A g ot - 2 ATt

= _ Ct/\M_LJJvO d,_Q OkCLQ.DLk _‘e\
1z + /vum,@r@ﬁ@(”wca”ﬂ)/z

ey 4|

a b0 Lostonu

4

Quuito accade fer wwd aswo dintrbuts ﬁ"eﬂ
el o’ F//%/‘M> . Qs AL oo
e oI &f.ﬁbor)\j‘ oA) Ya&,./{'* Hevon S T

\ r ,
WLEL AaAan :R»M’ . oeld exvove r\)ibj: D,

CNO\&Q PR A e A an lo &ma
&ccod e At OH’)OO“I”O ¢ a AL ans. del _

(e ..
1 exrore. oo lto 4 i e ,

olu,z/Q/Q& led) ! ey \rcma"f\m AAR)

B (2 & b porlian i F(2,53)
4 succomore D E j(@'é 1?/2/530

+ 58 e F(z,53) , 06 Fl232)

® S

i+ 40 ¢ Flzs) &

e
slo
St vy (5=1). Jguccemonn duty 2
> C = 12 + mq;("Succh f) /2
< = 1 ”

[vanieatte 1 offogpio” o oo B i hontn

Z) csne A oo Cotore S PR ALEN %‘M&Jj
o F(pm) .

L per APPROSS I MARE v Al

0 awamuonu ARROTONDATO rd P R — F(Rwm]

dek . Yxe®, d(x)=
A domento ?(ﬁ,m) P el mo od x

¥ o \ N
X% 0 St e W%wﬁ/
X
r\?/$ quillo de due i A
O TR N .
. pomons e TBlmund o
Q‘M PARI .
. _ 4 _ _
B]e F(23) , ox= b= -3 2=10100
) ,~/ elemi dot Fl2,2) adu'oacen
- v ad x
‘+—"—l——*—‘
2‘5o,||o')‘ 220,11
|
[ty wadu
= 27 %09l0 ®:> d(x) = 27° guo

		

Lecture 5 (hrs. 7,8) – October 1, 2025, 11:30 – 13:30 A13

(1.22) Remark (consequences of F(2,53) ≠ R).

Let M indicate the set of numbers that the computer can manipulate, the computer’s ‘machine numbers’. Which set M exactly is depends on the computer you are considering. In the case of Scilab (and Octave and Matlab) the set M is ‘substantially’ F(2,53). Reserving the right to clarify the differences between the two sets later, we assume that:

 in Scilab it is M = F(2,53)

Consider the following examples (the > character is the Scilab console prompt).

		> x = 0.1;

	Since 0.1 = 1/10 ∉ F(2,53), after the assignment the value of x is not equal to

	1/10.

		> (1 – 9/10) * 10 – 1

 ans = - 2.220D-16

	We have: 1, 9, 10 ∈ F(2,53) but 9/10 ∉ F(2,53). That is:

	there exist x,y ∈ F(2,53) s.t. x/y ∉ F(2,53)

 x(x - 1)

		Let f(x) = ----------- , whose domain is x > 0 and x ≠ 1.

 x – sqrt(x)

	

			 x2 – x (x + sqrt(x))(x - sqrt(x))

	(A) It is: f(x) = ----------- = -------------------------- = x + sqrt(x)

 			 x – sqrt(x) x – sqrt(x)

	(B) When x = 2 ∈ F(2,53) we have:

	> a = 2 * (2 – 1)/(2 – sqrt(2));

	> b = 2 + sqrt(2);

	> a == b

	ans = F

(1.23) Definition (the rounding function).

The computer uses the elements of F(β,m) to approximate real numbers. The approximation is achieved by the rounding function rd: R → F(β,m) defined as follows:

rd(x) = the element of F(β,m) closest to x or, in case of ambiguity,

 that of the two elements of F(β,m) equidistant from x that has the

fraction ending in an even digit.

(1.24) Remark.

The definition is well posed if β is even and m ⩾ 2. In that case, if the last digit of the fraction of ξ ∈ F(β,m) is even (respectively: odd), the last digit of the fraction of the successor of ξ is odd (respectively: even).

If β is even and m = 1 or β is odd, however, the definition is not well posed. For example, in F(3,2) the positive elements with zero exponent are:

30 0.10 ; 30 0.11 ; 30 0.12 ; 30 0.20 ; ...

and the last two elements written are consecutive and both have an even fraction’s last digit.

(1.25) Example.

Let x = 1/10. We want to determine the rounded value of x in F(2,3).

We already know (see Example (1.15)) that: x = 2-3 0.1100. Then we have the situation in figure:

 elements of F(2,3) adjacent to x (the left one is

 	obtained by truncating the fraction of x to the

 						number of digits indicated by the precision - in

 						this case 3 - the right one is the successor)

 2-3 0.110 2-3 0.111

 midpoint = 2-3 0.1101 > x ⇒ rd(x) = 2-3 0.110 (= 3/32)

(1.26) Remark.

The rd function is not a function that the computer makes available to the user, but it is essential to understand how:

(1) the computer ‘reads’ real numbers;

(2) the computer performs operations on the elements of F(β,m).

(1.27) Example.

Let's take up the first Example of the Remark (1.22). In Scilab the effect of assignment:

> x = 0.1

is: the value rd(0.1) ∈ F(2,53) is assigned to the variable x (if the variable x does not exist at the time of the assignment, it is created).

The calculator approximates the real number with its rounded value in F(β,m). We are interested in how large an error is being made.

(1.28) Theorem (bound on relative error).

Let rd the rounding function in F(β,m). For every real number x ≠ 0 it is:

 formula⩽ formulaβ1-m = u (machine precision)

(Proof...)

(1.29) Remark.

		The bound is uniform, in the sense that the quantity that limits the error is independent of x (it depends only on the parameters β and m that define the set of numbers).

		For F(2,53) it is u =formula21-53 = 2-53 ≈ 1.11 10-16.

		If we consider the absolute error, from the previous Theorem we obtain, for each real number x, the (non-uniform!) limitation:

|rd(x) – x| ⩽ u |x|

It follows that the further away x is from zero, the greater the absolute error can be.

The substantial difference between the two bounds — one is uniform and the other is not — is due to how the elements of F(β,m) are distributed on the real line. The distribution is specifically designed to achieve uniform bounding of the relative error.

(1.30) Example.

Let ξ be a positive element of F(2,53) and ϑ the successor of ξ. It is:

		ξ/2 ∈ F(2,53) , ϑ/2 ∈ F(2,53)

 									 ξ ϑ

		 ξ/2 + ϑ/2 ∉ F(2,53)

										

										 (ξ + ϑ)/2

Choosing ξ = 1, in Scilab we have the following dialogue (for each t ∈ F(2,53), nearfloat(‘succ’,t) is the successor of t):

> c = 1/2 + nearfloat(‘succ’,1)/2

c = 1

> c == 1

ans = T

To understand the dialogue, it is necessary to understand how Scilab sums two machine numbers. If ξ,ϑ ∈ F(2,53), we indicate with ξ ⊕ ϑ the value assigned by Scilab to the expression ξ + ϑ. It is, by definition:

 ξ ⊕ ϑ = rd(ξ + ϑ)

The value is defined ‘as best as possible’ in the sense that the error between the exact value ξ + ϑ and the defined value ξ ⊕ ϑ is as small as possible.

Let's go back to the Example. The value that Scilab assigns to c is, then:

1/2 ⊕ nearfloat(‘succ’,1)/2 = rd(1/2 + nearfloat(‘succ’,1)/2)

which, according to the definition of rounding, is equal to 1 (the one, between the two elements adjacent to the number to be rounded, which has the last digit of the fraction even).

What happens in the first assignment is:

 1/2 + nearfloat(‘succ’,1)/2 ...

 rd 						 rd 	

 1/2 						 ...

 ⊕

 c

 1

 computer

 rd*: R → F(10,5)

				 	 1

