Lecture 4 (hrs. 5,6) - September 30, 2025, 16:30 - 18:30 F3

(1.16) Definition (finite precision floating point numbers).

Let β be an integer greater than or equal to two and let m be an integer greater than or equal to 1. The set

$$F(\beta,m) = \{0\} \cup \{x \text{ in } R \text{ s.t. } x = (-1)^s \beta^b \text{ 0.c}_1...c_m \text{ where}$$
$$s \in \{0,1\}, b \in Z, c_1,...,c_m \text{ radix } \beta \text{ digits, } c_1 \neq 0\}$$

is called the 'set of radix β floating point numbers with precision m'.

(1.17) <u>Example</u>.

Consider the set F(10,1).

- $1/100 \in F(10,1)$: $1/100 = 10^{-2} = 10^{-1} \ 0.1$
- 11/100 \notin F(10,1): 11/100 = 0.11 = 10 $^{\circ}$ 0.11 and the fraction 0.11 is not compatible with precision m = 1
- all the positive elements of F(10,1) with zero exponent are:

$$B = \{0.1 ; 0.2 ; ... ; 0.9\}$$

all those with exponent b \in Z:

$$10^{b}$$
 B (positive) , -10^{b} B (negative)

- $F(10,1) = \bigcup_{b \in Z} (-1) 10^b B \cup \{0\} \cup \bigcup_{b \in Z} 10^b B$
- (1.18) Remark (properties of $F(\beta,m)$).
 - (1) it is a proper subset of Q (hence, it is countable and ordered)
 - (2) it is symmetric with respect to zero
 - (3) zero is its unique accumulation point
 - (4) $\sup F(\beta,m) = +\infty$, $\inf F(\beta,m) = -\infty$
- (1.19) $\underline{\mathtt{Remark}}$ (distance between consecutive elements).

Distance between consecutive elements: 10^{-1} 0.1 (b = -1), 0.1 = 10^{0} 0.1 (b = 0), 1 = 10^{1} 0.1 (b = 1).

• exponent = b \Rightarrow distance between consecutive elements in F(10,1): 10^{b} 0.1 = 10^{b} 10^{-1}

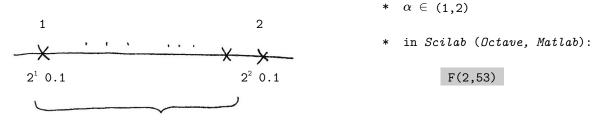
• in $F(\beta,m)$: given $\xi = \beta^b$ g, let $\sigma(\xi)$ the successor of ξ , it is:

$$\sigma(\xi) - \xi = \beta^{b-m}$$

• the distance is greater the larger the exponent is ('the farther ξ is from zero').

(1.20) <u>Remark</u>.

In Example (1.10), Lecture 3, we have:



b = 1 \Rightarrow dist. between consec. elements = 2^{1-53} = 2^{-52} \approx 2.22 10^{-16}

- When E = 10^{-16} the *bisezione function* found the smallest possible (non-degenerate) interval containing the zero α and with endpoints in F(2,53), but this interval has measure > E.
- There's no point in choosing E < β^{b-m} .

(1.21) Halt condition (with relative error bound).

Given a positive real number E...

Properties of the halt condition:

- (1) the condition is computable
- (2) $\underline{\text{if}}$ 0 \notin I(0) we have: for every k, 0 \notin I(k) and

since $a(0) \leqslant a(k) < b(0)$ then when $k \to \infty$ it is measure $I(k) / a(k) \to 0$

•
$$\frac{1}{a(0)} \Rightarrow \min\{|a(k)|,|b(k)|\} = |b(k)| > 0$$

since $|b(0)| \le b(k) < |a(0)|$ then when $k \to \infty$ it is measure $I(k) / |b(k)| \to 0$

hence: the condition is certainly satisfied after a finite number of iterations (the criterion is effective).

(3) <u>if</u> f is a <u>continuous</u> function, then:

• there exists $\alpha \in \mathtt{I}(\mathtt{k})$ zero of f

- x(k) approximates α with relative error < E: 'the procedure returns an approximation as accurate as required by the user'
- there's no point in choosing E < $\beta^{\rm 1-m}$