(1.08) Scilab code.

```
function [z, v, info, k, mis] = bisezione(f, a, b, E, kmax)
//
// Use:
      [z,v,info,[k,[mis]]] = bisezione(f,a,b,E,kmax)
//
//
// Approximate a zero of the function f: [a,b] \rightarrow R, which must
// be continuous, using the bisection method. The function f
// must assume non-zero values of opposite signs at a and b.
//
// The iteration stops when:
// (*) the function f evaluates to zero at the midpoint x_m
      of the actual interval [a(k),b(k)];
// (*) the measure of the actual interval [a(k),b(k)] is lower than
     E: in this case, in theory, z approximates a zero of
      f with an absolute error no greater than E/2;
// (*) after kmax iterations.
//
// kmax: optional argument (predefined value: 50).
// z: final approximation (zero of f or midpoint
// of the last generated interval);
// v: value of f at z;
// info = 0: a zero of has been found (f(z) = 0);
      = 1: f(z) ~= 0 and the last interval considered has measure
//
            less than E (mis < E);
//
        = 2: f(z) \sim 0, mis >= E and the number of iterations has
             reached the maximum allowed (k = kmax);
// k: number of iterations performed;
// mis: amplitude of the last determined interval.
//
//
// Initializations
if ~exists('kmax','l') then kmax = 50; end;
k_bis = 0; // counter of executed iterations
// Construction of the sequences
//
x_m = (a + b)/2;
f_m = f(x_m);
while (abs(b-a) >= E \& f_m \sim= 0 \& k_bis < kmax),
 k_bis = k_bis+1;
 if sign(f_m) == sign(f(b)) then b = x_m; else a = x_m; end;
  x_m = (a + b)/2;
```

```
Lecture 03 - 2
  f_m = f(x_m);
end;
//
// End of construction: assign output variables
z = x_m; v = f_m; k = k_bis; mis = abs(b-a);
if f_m == 0 then info = 0;
   else if abs(b-a) >= E then info = 2; else info = 1; end;
end;
//
endfunction
(1.09) Remark.
The Scilab loop
               while condition,
                 instructions;
               end;
is equivalent to:
               <u>repeat</u>:
                 \underline{\text{if}} condition is true \underline{\text{then}} instructions;
                      else leave the loop;
(1.10) <u>Example</u>.
                                                                         cos x
Let f(x) = cos(x).
      The function is continuous on [a,b] = [1,2] and
       f(a) > 0, f(b) < 0
   • Given E > 0 it is:
              measure I(k) < E \Leftrightarrow measure I(0) / 2^k < E
                        2^k > measure I(0) / E \quad\Leftrightarrow\quad k > log_2( measure I(0) / E )
       so: we expect to obtain an approximation of pi/2 with absolute error less than E in
             VA = the least integer greater than or equal to log_2( mis I(0) / E )
       iterations.
   • We get (using the file EsempioBisezione.sce downloadable from the 'altro materiale
```

didattico' section of the course web page):

E	info	mis	k	VA	kmax
10 ⁻⁵	1	$7.6 \ 10^{-6}$	17	17	50
10 ⁻¹⁰	1	5.8 10 ⁻¹¹	34	34	50
10 ⁻¹⁵	1	$8.8 \ 10^{-16}$	50	50	50
10 ⁻¹⁶	2	$2.2 \ 10^{-16}$	60	54	60
10 ⁻¹⁶	2	$2.2 ext{ } 10^{-16}$	100	54	100

From the last two rows of the table we can observe that when $E = 10^{-16}$ the function bisezione stops because it has reached the maximum number of iterations allowed <u>but</u>, while in the first case (penultimate row) this is consistent with the theory, in the second case (last row) it is not consistent with the theory: the procedure should have stopped after 54 iterations with info = 1.

To understand why this happens, we need to study COMPUTER ARITHMETIC in more detail.

(1.11) Questions.

- (A) What numbers can the calculator work with?
- (B) What can he do with these numbers?

(1.12) Remark.

Let x be a *non-zero* real number, and β be an integer greater than or equal to two (radix). There is exactly *one* factorization of x in the form:

$$x = (-1)^s \beta^b g$$

where:

- s in {0,1}, sign of x
- b: integer number, radix β -exponent of x
- g: real number in $[1/\beta,1)$, radix β -fraction of x

(Proof:

- if x > 0 then s = 0, if x < 0 then s = 1;
- b is the unique integer number such that:

$$\beta^{b-1} < |x| \le \beta^{b}$$

- $g = |x| / \beta^b$)
- (1.13) <u>Example</u>.

(1) x = sqrt(5),
$$\beta$$
 = 10 \Rightarrow s = 0, b = 1, g = sqrt(5) / 10

(2)
$$x = sqrt(5)$$
, $\beta = 2 \Rightarrow s = 0$, $b = 2$, $g = sqrt(5) / 4$

(1.14) <u>Remark</u>.

The condition g real number in $[1/\beta,1)$ translates as follows: the positional radix β writing of g has the form:

$$0.c_1c_2c_3...$$
 where $c_1 \neq 0$

In particular: if β = 2 it must be c_1 = 1.

(1.15) <u>Example</u>.

(1)
$$x = 1/10$$
, $\beta = 10 \Rightarrow s = 0$, $b = 0$, $g = 1/10 = 0.1$
(2) $x = 1/10$, $\beta = 2 \Rightarrow s = 0$, $b = -3$, $g = 8/10 = 4/5 = 0.\overline{1100}$
(Step-by-step proof¹:
(1)
* $4/5 = 0.c_1c_2c_3... \Rightarrow 8/5 = c_1.c_2c_3...$ and then:
* $[8/5] = [c_1.c_2c_3...] = \{8/5\} = \{c_1.c_2c_3...\}$ i.e.:
* $c_1 = 1 = 3/5 = 0.c_2c_3c_4...$
(2)
* $3/5 = 0.c_2c_3c_4... \Rightarrow 6/5 = c_2.c_3c_4...$ and then:
* $[6/5] = [c_2.c_3c_4...] = \{6/5\} = \{c_2.c_3c_4...\}$ i.e.:
* $c_2 = 1 = 1/5 = 0.c_3c_4c_5...$
(3)
* $1/5 = 0.c_3c_4c_5... \Rightarrow 2/5 = c_3.c_4c_5...$ and then:
* $[2/5] = [c_3.c_4c_5...] = \{2/5\} = \{c_3.c_4c_5...\}$ i.e.:
* $c_3 = 0 = 2/5 = 0.c_4c_5c_6...$
(4)
* $2/5 = 0.c_4c_5c_6... \Rightarrow 4/5 = c_4.c_5c_6...$ and then:

We now observe that we have obtained a new writing for the initial number 4/5. We deduce that 4/5 has a periodic writing of period four.

* $[4/5] = [c_4.c_5c_6...]$ e $\{4/5\} = \{c_4.c_5c_6...\}$ i.e.:

End of the step-by-step proof.)

* $c_4 = 0 = 4/5 = 0.c_5c_6c_7...$

Note that in both examples it is x = 1/10, <u>but</u> in example (1) the fraction has a *finite-length* positional notation, while in example (2) it has an *infinite length*. The length of the positional notation depends on the radix.

¹ If q is a real number, we indicate by [q] the integer part of q and by $\{q\}$ the fractional part of q, that is $\{q\} = q - [q]$.