```
Lecture 02 (hrs. 01,02) - 24 September 2025, 11:30 - 13:30 A13
```

(1) FUNCTION ZEROES AND COMPUTER ARITHMETIC

(1.01) The problem.

Given a continuous function $f:[a,b] \to R$ such that there exists t in R s.t. f(t) = 0, $\underline{determine}$ t. The number t is called 'a zero of f'.

(1.02) Theorem (existence of a zero)

Let $f:[a,b] \to R$ be a continuous function s.t. f(a)f(b) < 0. Then: there exists t in (a,b) s.t. f(t) = 0.

(1.03) Remark.

The condition f(a)f(b) < 0 is equivalent to the condition:

$$f(a)$$
 is $not = 0 & f(b)$ is $not = 0 & sign f(a)$ not equal to sign $f(b)$

(1.04) Bisection method.

Idea: use Theorem (1.02) to obtain a sequence of intervals I(k) = [a(k),b(k)] such that:

- for every k, there exists a zero of f in I(k)
- I(k+1) is a subset of I(k)
- when $k \to \infty$ it is measure $I(k) \to 0$

(1.05) <u>Description of the method</u>.

(1.06) <u>Remark</u>.

(A) measure $I(k) = b(k) - a(k) = measure I(k-1) / 2^1 = measure I(k-2) / 2^2 = ... = measure I(0) / 2^k and then:$

(B) if f is a continuous function then: for every k, I(k) contains a zero of f and

when
$$k \to \infty$$
 it is $x(k) \to t$, where $f(t) = 0$

(Proof ...)

(1.07) Halt condition.

The bisection method is an *iterative method*, that is, a method that approximates the desired object by constructing a *sequence*. Since it is physically impossible to construct *all* the elements of the sequence, it is *necessary* to introduce a halt condition, that is, a condition that, when satisfied, stops the construction of the sequence.

An example of a halt condition is: given a positive real number Δ ...

$$\underline{\text{if}}$$
 measure I(k) < Δ $\underline{\text{then}}$ STOP

Properties of the halt condition:

- (1) the condition measure $I(k) < \Delta$ 'is computable'
- (2) the condition is *certainly verified* after a *finite* number of iterations (see Remark (B) in (1.06)): the criterion 'is *effective*'
- (3) if f is a continuous function and k is such that measure I(k) < Δ then:
 - there exists t in I(k) s.t. t is a zero di f
 - $|x(k) t| < measure I(k) / 2 < \Delta/2 < \Delta$

that is, the procedure returns a value x(k) that is an approximation of a zero of f with absolute error |x(k)-t| less than Δ : 'the procedure returns an approximation as accurate as required by the user'.