Lezione 30

In questa lezione si studia il problema del campionamento e ricostruzione nel caso di ricostruzione mediante interpolazione con funzioni continue lineari a tratti.

• Definizione (funzione lineare a tratti).

Siano I = [a, b] un intervallo non degenere, $a = t_0 < t_1 < \cdots < t_k = b$ istanti di campionamento e, per $j = 1, \dots, k$, $I_j = (t_{j-1}, t_j)$. Indichiamo con τ l'insieme aperto unione dei k intervalli I_1, \dots, I_k .

Una funzione $f:[a,b] \to \mathbb{R}$ è lineare a tratti su τ se per ogni $j=1,\ldots,k$ esiste $p_j \in P_1(\mathbb{R})$ tale che $f=p_j$ su I_j . Il termine "lineare a tratti" fa riferimento al grafico di f su τ che, appunto, è unione di segmenti.

• Osservazione (lo spazio $S(\tau)$).

Siano I, t_0, \ldots, t_k e τ come nella Definizione precedente. Detto $S(\tau)$ l'insieme di tutte le funzioni $f: I \to \mathbb{R}$ continue e lineari a tratti su τ si ha:

- (a) $S(\tau)$ è un sottospazio vettoriale dello spazio C(I) delle funzioni continue su I. Infatti: si verifica facilmente che se $f,g\in S(\tau)$ e $\alpha\in\mathbb{R}$ allora $f+g\in S(\tau)$ e $\alpha f\in S(\tau)$.
- (b) Assegnati numeri reali y_0, \ldots, y_k esiste un solo elemento di $S(\tau)$ che interpola i dati $(t_0, y_0), \ldots, (t_k, y_k)$.

Infatti: Per $j=1,\ldots,k$ sia p_j l'unico elemento di $P_1(\mathbb{R})$ che interpola i dati $(t_{j-1},y_{j-1}),$ (t_j,y_j) e sia poi f la funzione continua tale che $f=p_1$ su $I_1,\ldots,f=p_k$ su I_k . Allora $f\in S(\tau)$ e $f(t_0)=y_0,\ldots,f(t_k)=y_k$. Sia inoltre g un altro elemento di $S(\tau)$ che interpola gli stessi dati. Allora $f-g\in S(\tau)$. Se fosse $f(t)-g(t)\neq 0$ per $t\in I_j$, detto q_j l'elemento di $P_1(\mathbb{R})$ che coincide con f-g su I_j , si avrebbe: (a) $q_j(t)\neq 0$ e quindi $q_j\neq 0$, e (b) q_j è l'unico elemento di $P_1(\mathbb{R})$ che interpola i dati $(t_{j-1},0),(t_j,0)$, ovvero $q_j=0$: assurdo.

(c) $S(\tau)$ ha dimensione k+1.

Infatti: Per i = 0, ..., k, sia s_i l'elemento di $S(\tau)$ che vale uno in t_i e zero in tutti gli altri istanti di campionamento. Questi elementi sono univocamente determinati per quanto mostrato nel punto (b). Allora si ha:

- * Se $a_0, \ldots, a_k \in \mathbb{R}$ sono coefficienti tali che $\phi = a_0 s_0 + \cdots + a_k s_k = 0$, allora $0 = \phi(t_0) = a_0, \ldots, 0 = \phi(t_k) = a_k$: gli elementi s_0, \ldots, s_k sono linearmente indipendenti.
- * Sia $\sigma \in S(\tau)$. Si verifica che l'elemento $\sigma(t_0) s_0 + \cdots + \sigma(t_k) s_k \in S(\tau)$ interpola i dati $(t_0, \sigma(t_0)), \ldots, (t_k, \sigma(t_k))$. Ma anche σ interpola gli stessi dati. Per l'unicità stabilita nel punto (b) si ha:

$$\sigma = \sigma(t_0) s_0 + \dots + \sigma(t_k) s_k$$

ovvero σ è una combinazione lineare di s_0, \ldots, s_k : gli elementi s_0, \ldots, s_k sono generatori di $S(\tau)$.

Dunque: s_0, \ldots, s_k sono una base di $S(\tau)$, che chiameremo base canonica.

Quanto mostrato nei punti (a) e (c) – che $S(\tau)$ è un sottospazio vettoriale di C(I) di dimensione finita – consente di asserire che il problema di cui tratta il punto (b) è un problema lineare di interpolazione.

• Ricostruzione con funzioni continue lineari a tratti.

Siano I, t_0, \ldots, t_k e τ come nella Definizione iniziale, c la funzione di campionamento agli istanti t_0, \ldots, t_k . Dette y_0, \ldots, y_k le componenti di $y \in \mathbb{R}^{k+1}$, la funzione $\rho : \mathbb{R}^{k+1} \to C(I)$ definita da:

$$\rho(y) =$$
l'elemento di $S(\tau)$ che interpola i dati $(t_0, y_0), \dots, (t_k, y_k)$

è una funzione di ricostruzione relativa a c.

Infatti: Utilizzando la base canonica di $S(\tau)$ si ha:

$$\rho(y) = y_0 s_0 + \dots + y_k s_k$$

Allora si constata facilmente che ρ è lineare; inoltre, per definizione, $\rho(y)$ interpola i dati $(t_0, y_0), \ldots, (t_k, y_k)$.

• Teorema (errore di ricostruzione con funzioni continue lineari a tratti).

Siano I, t_0, \ldots, t_k e τ come nella Definizione iniziale. Se $f: I \to \mathbb{R}$ è una funzione con derivata seconda continua e σ è l'elemento di $S(\tau)$ che interpola i campioni di f, ovvero i dati $(t_0, f(t_0)), \ldots, (t_k, f(t_k))$, posto $M_2 = \max_{x \in I} |f''(x)|$ e $h(\tau) = \max \{ \min I_1, \ldots, \min I_k \}$, allora per l'errore di ricostruzione relativo ad f si ha:

$$e(f) = \max_{t \in I} |f(t) - \sigma(t)| \leqslant \frac{M_2}{8} h(\tau)^2$$

Dimostrazione: Per ogni $j=1,\ldots,k$ esiste $p_j\in P_1(\mathbb{R})$ tale che $\sigma=p_j$ su I_j . Allora, dal Teorema riguardante l'errore di ricostruzione con interpolazione polinomiale, per $j=1,\ldots,k$ si ha:

$$Per \ ogni \ t \in I_j \ esiste \ \theta_j \in I_j \ tale \ che: \ f(t) - \sigma(t) = f(t) - p_j(t) = \frac{f''(\theta_j)}{2} \left(t - t_{j-1}\right) (t - t_j)$$

Per ogni $t \in I_i$ si ha poi:

$$\left| \frac{f''(\theta_j)}{2} (t - t_{j-1})(t - t_j) \right| \leqslant \frac{M_2}{2} \max_{t \in I_j} |(t - t_{j-1})(t - t_j)|$$

e:

$$\max_{t \in I_j} |(t - t_{j-1})(t - t_j)| = \left(\frac{t_j - t_{j-1}}{2}\right)^2 = \frac{(\min I_j)^2}{4}$$

ovvero, posto mis $I_j = m_j$:

$$\left| \frac{f''(\theta_j)}{2} (t - t_{j-1})(t - t_j) \right| \leqslant \frac{M_2}{8} m_j^2$$

Dunque:

$$\max_{t \in I_j} |f(t) - \sigma(t)| \leqslant \frac{M_2}{8} m_j^2$$

Infine:

$$e(f) = \max_{t \in I} |f(t) - \sigma(t)| = \max_{j} \max_{t \in I_{j}} |f(t) - \sigma(t)| \leqslant \max_{j} \frac{M_{2}}{8} m_{j}^{2} = \frac{M_{2}}{8} h(\tau)^{2}$$

• Una strategia di scelta degli istanti di campionamento è una funzione che ad ogni numero intero $k=1,2,\ldots$ associa un insieme di k+1 istanti di campionamento. La strategia genera quindi una successione di insiemi τ_k . Il Teorema precedente mostra che per la ricostruzione con funzioni continue lineari a tratti si ha: Se f ha derivata seconda continua e la strategia di scelta degli istanti di campionamento è tale che:

$$\lim_{k \to \infty} h(\tau_k) = 0$$

allora $\lim_{k\to\infty} e(f) = 0$.

- Esempio.
 - * Sia [a,b] un intervallo non degenere. Per la strategia di scelta degli istanti di campionamento definita da:

$$t_j = a + \frac{b-a}{k}j$$
 , $j = 0, \dots, k$

ovvero per il campionamento uniforme, si ha:

$$h(\tau_k) = \frac{b-a}{k}$$

Dunque $\lim_{k\to\infty} h(\tau) = 0$, con la rapidità di $1/k^2$.

* Sia [a,b] = [0,1]. Per la strategia di scelta degli istanti di campionamento definita da:

$$t_j = \frac{j}{j+1}$$
 per $j = 0, \dots, k-1$ e $t_k = 1$

si ha:

$$h(\tau_1) = 1$$
 e, per $k > 1$: $h(\tau_k) = \frac{1}{2}$

Dunque $\lim_{k\to\infty} h(\tau) \neq 0$.

• Condizionamento del problema della ricostruzione con funzioni continue lineari a tratti. Siano I un intervallo chiuso e limitato non degenere, k un numero intero non negativo ed $r: \mathbb{R}^{k+1} \to C(I)$ una funzione di ricostruzione. Dato $y \in \mathbb{R}^{k+1}$ sia $\delta \in \mathbb{R}^{k+1}$ la perturbazione di componenti $\delta_0, \ldots, \delta_k$ e si considerino le funzioni r(y) e $r(y+\delta)$. Scelto di misurare la variazione della funzione ricostruita con:

$$\max_{t \in I} |r(y+\delta) - r(y)|$$

per la linearità della funzione di ricostruzione si ha:

$$\max_{t \in I} |r(y+\delta) - r(y)| = \max_{t \in I} |r(\delta)|$$

Nel caso di ricostruzione con funzioni continue lineari a tratti, posto $\tau = (t_0, t_1) \cup \cdots \cup (t_{k-1}, t_k)$ ed utilizzando la base canonica di $S(\tau)$ si ottiene:

$$|r(\delta)| = |\delta_0 s_0(t) + \dots + \delta_k s_k(t)| \le |\delta_0| |s_0(t)| + \dots + |s_k| |\ell_k(t)|$$

Introdotta la misura della perturbazione $\parallel \delta \parallel_{\infty}$ si deduce:

$$|\delta_0| |s_0(t)| + \dots + |\delta_k| |s_k(t)| \le ||\delta||_{\infty} (|s_0(t)| + \dots + |s_k(t)|)$$

Ma per ogni $t \in I$ e j = 0, ..., k si ha: $s_i(t) \ge 0$, dunque:

$$|s_0(t)| + \cdots + |s_k(t)| = s_0(t) + \cdots + s_k(t)$$

e si constata inoltre che:

$$s_0(t) + \dots + s_k(t) = 1$$

Allora:

$$\max_{t \in I} |r(y+\delta) - r(y)| \leqslant \|\delta\|_{\infty} \qquad (**)$$

Questa disuguaglianza mostra che il condizionamento del problema della ricostruzione con funzioni continue lineari a tratti è sempre buono.

Esercizi

1. Sia $I=[0,2],\, \tau=(0,1)\cup(1,2)$ e $f:I\to\mathbb{R}$ la funzione continua e lineare a tratti definita da:

$$f(t) = \begin{cases} 1+t & \text{per } t \in (0,1) \\ 3-t & \text{per } t \in (1,2) \end{cases}$$

Determinare $f(0), f(1) \in f(2)$.

2. Sia $\tau = (0, \frac{1}{2}), (\frac{1}{2}, 1)$. Determinare gli elementi $\sigma \in S(\tau)$ che verificano le condizioni:

$$\int_0^{\frac{1}{2}} \sigma(x) \, dx = 0 \quad , \quad \sigma(0) = 1 \quad , \quad \int_{\frac{1}{2}}^1 \sigma(x) \, dx = -1$$

- 3. Siano I = [0,4] e $\tau = (0,1) \cup (1,2) \cup (2,3) \cup (3,4)$. Detta s_0, \ldots, s_4 la base canonica di $S(\tau)$, disegnare il grafico di $\sigma = 4s_0 s_1 + 2s_2 + s_3 2s_4$.
- 4. Dimostrare che la disuguaglianza (**) è la migliore possibile nel senso che: esiste $\delta \in \mathbb{R}^{k+1}$ tale che:

$$\max_{t \in I} |r(y + \delta) - r(y)| = ||\delta||_{\infty}$$

5. Siano I=[0,1] e $f(t)=e^{-t}$. Scelto di utilizzare il campionamento uniforme e la ricostruzione con funzioni continue lineari a tratti, determinare il numero di istanti di campionamento in modo che $e(f)<10^{-3}$. Confrontare la risposta con quella dell'Esercizio 3, Lezione 29. Discutere il risultato del confronto.