Lezione 18

In questa lezione si descrive la procedura di ricerca di una fattorizzazione LR di un'assegnata matrice.

• Procedura EGP.

A partire da un'assegnata matrice $A \in \mathbb{R}^{n \times n}$, la procedura costruisce una sequenza finita di matrici $A^{(k)} \in \mathbb{R}^{n \times n}$. Se la procedura termina correttamente, la sequenza ha lunghezza n e $A^{(n)}$ è una matrice triangolare superiore.

La procedura opera come segue: posto $A^{(1)} = A$, per k = 2, ..., n determina opportunamente, se possibile, matrici $P_{k-1} \in \mathbb{R}^{n \times n}$ di permutazione e $H_{k-1} \in \mathbb{R}^{n \times n}$ elementare di Gauss e pone:

$$A^{(k)} = H_{k-1} P_{k-1} A^{(k-1)}$$

Se la procedura termina correttamente, posto $D = A^{(n)}$ si ha:

$$D = H_{n-1}P_{n-1}\cdots H_1P_1A$$

da cui, essendo ciascuno dei fattori P_k e H_k invertibile:

$$A = P_1^{-1} H_1^{-1} \cdots P_{n-1}^{-1} H_{n-1}^{-1} D$$

Come vedremo, la matrice:

$$\Sigma = P_1^{-1} H_1^{-1} \cdots P_{n-1}^{-1} H_{n-1}^{-1}$$

 $non \ \grave{e}$, in generale, triangolare inferiore e quindi la coppia (Σ, D) non è una fattorizzazione LR di A. Peró, posto $P = P_{n-1} \cdots P_1$ la matrice:

$$S = P\Sigma$$

è triangolare inferiore con uno sulla diagonale. Dunque: se termina correttamente, la procedura costruisce una terna di matrici S, D, P tali che: la coppia (S, D) è una fattorizzazione LR della matrice PA.

Resta da discutere: (i) la determinazione delle matrici di permutazione P_k ed elementari di Gauss H_k e (ii) come mai Σ non è triangolare inferiore e $P\Sigma$ è triangolare inferiore con uno sulla diagonale. Illustreremo questi punti descrivendo dettagliatamente il comportamento della procedura su un esempio.

• Esempio

Sia:

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ -2 & 0 & 0 & -1 \\ -1 & 1 & 2 & -1 \end{array} \right]$$

La procedura opera così:

- Pone $A^{(1)} = A$;
- Pone k=2.
 - * Constata che $a_{11}^{(1)} \neq 0$ e pone di conseguenza: $P_1 = I$ e

$$B^{(1)} = P_1 A^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ -2 & 0 & 0 & -1 \\ -1 & 1 & 2 & -1 \end{bmatrix}$$

* Considera la matrice elementare di Gauss:

$$H_1 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \lambda_{21} & 1 & 0 & 0 \\ \lambda_{31} & 0 & 1 & 0 \\ \lambda_{41} & 0 & 0 & 1 \end{array} \right]$$

e cerca valori di λ_{21} , λ_{31} e λ_{41} tali che gli elementi di posto (2,1), (3,1) e (4,1) della matrice $H_1B^{(1)}$ siano zero. Le tre condizioni equivalgono alle equazioni:

$$\lambda_{j1} b_{11}^{(1)} + b_{j1}^{(1)} = 0 \text{ per } j = 2, 3, 4$$

Poiché $b_{11}^{(1)} \neq 0$ le equazioni determinano, ciascuna, un solo valore di λ_{j1} :

$$\lambda_{21} = -\frac{b_{21}^{(1)}}{b_{11}^{(1)}} = -2 \quad , \quad \lambda_{31} = -\frac{b_{31}^{(1)}}{b_{11}^{(1)}} = 2 \quad , \quad \lambda_{41} = -\frac{b_{41}^{(1)}}{b_{11}^{(1)}} = 1$$

* Con i valori trovati costruisce:

$$A^{(2)} = H_1 B^{(1)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 2 & 2 & -1 \end{bmatrix}$$

Si osservi che la prima riga di $A^{(2)}$ è copia della prima riga di $B^{(1)}$.

- Pone k = 3.
 - * Constata che $a_{22}^{(2)}=0$ e cerca j>2 tale che $a_{j2}^{(2)}\neq 0$. Constatato che $a_{32}^{(2)}\neq 0$, indicata con P_{23} la matrice di permutazione che scambia le righe 2 e 3, pone di conseguenza: $P_2=P_{23}$ e

$$B^{(2)} = P_2 A^{(2)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 2 & -1 \end{bmatrix}$$

* Considera la matrice elementare di Gauss:

$$H_2 = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & \lambda_{32} & 1 & 0 \ 0 & \lambda_{42} & 0 & 1 \end{array}
ight]$$

e cerca valori di λ_{32} e λ_{42} tali che gli elementi di posto (3,2) e (4,2) della matrice $H_2B^{(2)}$ siano zero. Le due condizioni equivalgono alle equazioni:

$$\lambda_{i2} b_{22}^{(2)} + b_{i2}^{(2)} = 0 \text{ per } j = 3, 4$$

Poiché $b_{22}^{(2)} \neq 0$ le equazioni determinano, ciascuna, un solo valore di λ_{j2} :

$$\lambda_{32} = -\frac{b_{32}^{(2)}}{b_{22}^{(2)}} = 0$$
 , $\lambda_{42} = -\frac{b_{42}^{(2)}}{b_{22}^{(2)}} = -1$

* Con i valori trovati costruisce:

$$A^{(3)} = H_2 B^{(2)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

Si noti che la scelta di H_2 mantiene i tre zeri ottenuti al passo precedente e le prime due righe di $A^{(3)}$ sono copia delle prime due righe di $B^{(2)}$.

- Pone k=4.
 - * Constata che $a_{33}^{(3)} \neq 0$ e pone di conseguenza: $P_3 = I$ e

$$B^{(3)} = P_3 A^{(3)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

* Considera la matrice elementare di Gauss:

$$H_3 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \lambda_{43} & 1 \end{array} \right]$$

e cerca valori di λ_{43} tali che gli elementi di posto (4,3) della matrice $H_3B^{(3)}$ siano zero. La condizione equivale all'equazione:

$$\lambda_{43} \, b_{33}^{(3)} + b_{43}^{(3)} = 0$$

Poiché $b_{33}^{(3)} \neq 0$ l'equazione determina un solo valore di λ_{43} :

$$\lambda_{43} = -\frac{b_{43}^{(3)}}{b_{33}^{(3)}} = 0$$

* Con il valore trovato costruisce:

$$A^{(4)} = H_3 B^{(3)} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = D$$

Si noti che la scelta di H_3 mantiene i gli zeri ottenuti ai passi precedenti e le prime tre righe di $A^{(4)}$ sono copia delle prime tre righe di $B^{(3)}$.

I valori $b_{11}^{(1)}, b_{22}^{(2)}$ e $b_{33}^{(3)}$ che la procedura utilizza come divisori per determinare i vari elementi λ_{ij} , e che ritroviamo sulla diagonale della matrice finale D, si chiamano pivot.

Come preannunciato, la matrice $\Sigma = H_1^{-1}P_2^{-1}H_2^{-1}H_3^{-1}$ non è triangolare inferiore:

$$\Sigma = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 1 & 2 & 1 \end{array} \right]$$

ma, posto $P = P_2$ si ha invece:

$$P\Sigma = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -1 & 1 & 2 & 1 \end{array} \right]$$

che \dot{e} triangolare inferiore con uno sulla diagonale. Per capire come ciò accada si osservi che:

$$P\Sigma = P_2 H_1^{-1} P_2^{-1} H_2^{-1} H_3^{-1}$$

e che:

$$P_2 H_1^{-1} P_2^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \equiv H_1^{-1}(2)$$

è triangolare inferiore con uno sulla diagonale. La matrice $H_1^{-1}(2)$ è il risultato dell'azione della permutazione P_2 sulle righe e colonne di H_1^{-1} .

In generale, se:

$$P = P_3 P_2 P_1$$
 e $\Sigma = P_1^{-1} H_1^{-1} P_2^{-1} H_2^{-1} P_3^{-1} H_3^{-1}$

allora:

$$P\Sigma = P_3 P_2 P_1 P_1^{-1} H_1^{-1} P_2^{-1} H_2^{-1} P_3^{-1} H_3^{-1} = P_3 (P_2 H_1^{-1} P_2^{-1}) H_2^{-1} P_3^{-1} H_3^{-1}$$

e, con la notazione introdotta sopra:

$$P\Sigma = P_3H_1^{-1}(2)H_2^{-1}P_3^{-1}H_3^{-1}$$

Adesso, ricordando che $P_3^{-1}P_3 = I$, si riscrive:

$$P\Sigma = P_3H_1^{-1}(2)P_3^{-1}P_3H_2^{-1}P_3^{-1}H_3^{-1} = H_1^{-1}(2,3)H_2^{-1}(3)H_3^{-1}$$

Le matrici $H_1^{-1}(2,3),\,H_2^{-1}(3)$ e H_3^{-1} sono triangolari inferiori con uno sulla diagonale e tale è il loro prodotto.

• Osservazione.

Se per k < n si ha: $b_{j,k-1}^{(k-1)} = 0$ per ogni $j \ge k-1$, la procedura EGP arresta la costruzione della sequenza. La condizione: k < n e $b_{j,k-1}^{(k-1)} = 0$ per ogni $j \ge k-1$ implica che la matrice A è non invertibile. Infatti: $b_{j,k-1}^{(k-1)} = 0$ per ogni $j \ge k-1$ implica che la matrice $B^{(k-1)}$ è non invertibile, ma:

$$B^{(k-1)} = H_{k-2}P_{k-2}\cdots H_1P_1A$$

e quindi, essendo le matrici di permutazione e quelle elementari di Gauss invertibili, deve essere non invertibile la matrice A. In sostanza:

Se la procedura EGP applicata ad A non termina correttamente, allora A è non invertibile.

Esercizi

- 1. Siano $A, B \in \mathbb{R}^{4 \times 4}$ matrici triangolari inferiori con uno sulla diagonale. Costruire il prodotto AB per righe e verificare che a sua volta è una matrice triangolare inferiore con uno sulla diagonale.
- 2. Siano $A, B \in \mathbb{R}^{4 \times 4}$ matrici triangolari superiori. Costruire il prodotto AB per colonne e verificare che a sua volta è una matrice triangolare superiore.
- 3. Siano:

$$H_1 = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ \lambda_{21} & 1 & 0 & 0 \ \lambda_{31} & 0 & 1 & 0 \ \lambda_{41} & 0 & 0 & 1 \end{array}
ight]$$

e $P_2 = P_{24}, P_3 = P_{34}$. Calcolare $H_1^{-1}(2,3)$ e constatare che è triangolare inferiore con uno sulla diagonale.