Lezione 14

In questa lezione completiamo la discussione del $Critero\ d'arresto$ per i metodi ad un punto descritto nella lezione precedente (operando in \mathbb{R}). Nell'esercitazione vedremo una realizzazione in Scilab del metodo ad un punto definito da una funzione h ed alcuni esempi di uso.

• Primo criterio (seconda parte)

Si ha:

$$h(x_k) - x_k = h(x_k) - h(\alpha) + \alpha - x_k$$

Per il Teorema di Lagrange esiste θ_k tra x_k ed α tale che:

$$h(x_k) - h(\alpha) = h'(\theta_k)(x_k - \alpha)$$

da cui:

$$h(x_k) - x_k = (h'(\theta_k) - 1)(x_k - \alpha)$$

Poiché $\theta_k \in [a, b]$ allora $h'(\theta_k) < 1$ e $h'(\theta_k) - 1 < 0$. Dunque:

$$x_k - \alpha = \frac{h(x_k) - x_k}{h'(\theta_k) - 1}$$

e:

$$|x_k - \alpha| = \frac{|h(x_k) - x_k|}{1 - h'(\theta_k)}$$

Il criterio usa $|h(x_k) - x_k|$ per *stimare* l'errore assoluto $|x_k - \alpha|$ (ed è quindi un criterio *di tipo assoluto*). Inoltre, poiché $\theta_k \to \alpha$, per *k* grande si ha $h'(\theta_k) \approx h'(\alpha)$.

– La stima è tanto migliore quanto $h'(\alpha)$ è piccolo. In particolare la stima è buona quando $h'(\alpha) = 0$, ad esempio per il Metodo di Newton. In tal caso si ha anche:

$$|h(x_k) - x_k| = \left|\frac{f(x_k)}{f'(x_k)}\right|$$

– La stima è tanto peggiore quanto $h'(\alpha)$ è vicino a uno. Se $h'(x_k) \approx 1$ si ha:

$$|x_k - \alpha| = \frac{|h(x_k) - x_k|}{1 - h'(\theta_k)} \gg |h(x_k) - x_k|$$

e il criterio d'arresto rischia di interrompere la costruzione quando $|x_k - \alpha| \gg \delta$.